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Executive Summary:
For the emergency response (ER) and treaty verification communities, methods to 
determine and/or verify the masses present in containers are highly desirable.  
Additionally, the ability to perform these measurements passively and rapidly is also 
important in the ER community. The ability to quantify relevant masses and aspects of 
their spatial distribution is essential for setting lower bounds in relevant ER calculations 
and for monitoring treaty compliance.  The purpose of this feasibility study was to 
demonstrate a completely passive, rapid method to determine the mass of high-density 
material present in a closed box, without the need to move, radiograph, or otherwise 
manipulate the box.  Our method applies an existing, DARPA-AOSense, Inc. developed 
gravity gradiometer based on atomic fountain interferometer technology originally 
invented by Steven Chu and his team at Stanford, to perform differential gravity 
measurements, taken from positions around the container with the heavy mass sources 
inside.  In this feasibility study, done with the AOSense gradiometer, we (equivalently) 
carried out the measurements by moving the mass source, in the required arrangements 
and orientations, parallel to the atomic fountain axis.  We also built and applied 
computational models of the atomic fountain responses to our high-density mass sources 
and the background container to enable the blind determination of the overall masses and 
configurations of material present in the container in our experiments.

Specifically, in this feasibility study demonstration, we successfully used the existing 
gradiometer at AOSense, Inc. developed for DARPA, to detect masses and multi-polar 
aspects of their distribution as a function of distance and integration time with high 
accuracy.  Typical situations involved the detection, to within a few percent, of pairs of 
12.7 kg. tungsten cylindrical masses  in various configurations between 0.3 m and 0.8 m 
from the instrument axis.  Our computational models, including time series signal 
analysis of the atomic fountain response, based on potential theory and a semi-classical 
approximation of the atomic phase shifts, matched the experimental data well.  
Furthermore, we carried out a detailed noise (Allan deviation) analysis of the fountain 
interferometer phase noise as well as background measurements of an empty box.  These 
models, as well as signal analysis, noise, and background results will form the basis of 



2

future hypothesis test models for rapid gravity gradient mass detection and analysis with 
instruments of this type.

Having successfully demonstrated the potential of cold atom interferometers to rapidly 
and passively image mass distributions, we now seek to develop and execute proposals to 
design, construct and field a portable system (including developing the required modeling 
and analysis software) for use by the ER and treaty verification communities.  This has 
the potential to replace aspects of x-ray radiography with a completely passive technique.

Technical Basis for the Work:
High-density components can, in principle, be detected by their effect on the local 
gravitational field. This fact motivated our adoption11 of an advanced version of the 
gravity gradiometer sensor developed and demonstrated by AOSense, Inc. for DARPA 
(see Figure 1). This type of gradiometer, based on very well established atomic source 
laser cooling and trapping (magneto-optical trap and/or optical molasses), and a separate 
laser-driven light-pulse atom (LPA) interferometer consisting of a beam splitter, 
combiner, and phase read out, was initially used in 2002 to measure gravitational 
gradients due to ~100 kg perturbing masses at distances of ~ 0.2 m, corresponding to an 
acceleration of  ~ 8 x10-9 g. (Kasevich and Chu, ’92, McGuirk et al. ’02).1

Precise gravity measurements using mechanical instruments (modern examples being 
torsion pendulums and balances, falling corner cubes, and superconducting 
accelerometers)14-18 of local gravitational field variations due to nearby perturbing masses 
go back at least to Bouger, Cavendish and Eötvös.  Early applications were to geodesy.  
More recently, very sensitive torsion balances and superconducting gravimeters and 
gradiometers have been applied to fundamental physics with the goal of discovering, or at 
least setting bounds on non-Newtonian, mass coupled, static short distance forces that 
might arise as a consequence of grand unification.19  However, these instruments are ill-
suited to mobile, rapid data acquisition because of their mechanical calibration 
requirements14-16 and general lack of long-term stability. In contrast, the cold atom 
interferometer gravity gradiometer used in this study and proposed for ER and treaty 
verification mobile applications, only depends on fundamental atomic physics, has no 
cryogenic requirements, has been demonstrated to be stable for long periods, and has the 
potential for significant miniaturization.1,6, 8, 12

Recent significant improvements in this technology combined with the contribution of 
LLNL’s advanced computation and knowledge of ER requirements, led us to believe it 
possible to design and develop a portable gradiometer system that is capable of 
measuring, in minutes, masses relevant to the ER and treaty verification communities. 
The exact detection limits (SNR) at different distances depends upon the noise7

sensitivity scaling, which was one of the subjects of this feasibility study. In addition to 
the present gradiometer’s unique passive mass detection capability, mass imaging by 
moving the detectors to acquire phase shifts from different positions (as done in this 
study) or by use of multiple sensors, combined with future improvements in noise 
reduction and the exploitation of quantum coherence will likely yield even greater sensor 
performance.  
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State of technology and scientific basis:

Light-Pulse Atom (LPA) sensors overview
The discovery of laser cooling of neutral atoms, which enabled applications of ultra slow 
atoms (T~ 10-6 K), dates back to the mid 1980’s (Steven Chu, Claude Cohen-Tannoudji, 
William Phillips, Nobel Prize 1997).9   In particular, atom interferometric sensors, based 
on laser-cooled sources, exploit the wavelike properties of atoms to achieve unparalleled 
accuracies orders-of-magnitude superior to conventional sensors.  The light-pulse atom 
(LPA) interference method (the method applied in the gravity gradiometer in this 
proposal) uses successive interactions with laser beams to measure an atom’s inertial 
trajectory (and therefore phase) with respect to an optical reference mirror fixed relative 
to the sensor case.  In this respect, the atom interferometer is a quantum analog of the 
classical wave Mach-Zehnder interferometer widely applied in optics.1,2,4

Here, the laser beam frequencies are resonant with a transition between two of the atom’s 
internal quantum states.  Under appropriate conditions, the atom records the phase of the 
driving electromagnetic field during each resonant interaction.  This phase is directly 
proportional to the distance of the atom from the optical reference mirror that defines the 
laser field phase (i.e., = k·x, where k is the propagation vector of the interrogating laser 
and x is the distance of the atom from the reference mirror).  Key features of the light-
pulse approach are:  (i) No coupling of the sensor proof-mass to sensor case.  Atoms are 
in a high to ultra-high vacuum environment, in a quantum state that is immune to external 
electromagnetic fields.  (ii) High accuracy pick-off.  A frequency-stabilized laser 
measures the relative motion between the proof mass and case.  (iii) Conceptual 
simplicity.  A complete sensor requires a laser source, vacuum cell, atomic vapor and 
control electronics.  In contrast to its mechanical sensor competitors, there are no moving 
parts (other than the atomic proof mass).  Attributes (i) and (ii) enable exceptionally 
accurate sensors.  Attribute (iii) indicates that after appropriate engineering refinements, 
these sensors should be robust and cost-effective to manufacture and maintain.  In the 
laboratory, LPA sensors have precisely measured rotations,2 gravitational acceleration 
and gravity gradients,1 the Newtonian gravitational constant,3 and the fine structure 
constant.4 Now LPA sensors are transitioning from the laboratory to field applications.5
The AOSense team and their closely coupled Stanford collaborators are world leaders in 
this field, having led the way in both basic and applied uses of laser-pulsed atom 
interferometry for many years.
In practical LPA sensors, lasers cool a cloud of atoms and launch or drop them as 
required. Additional microwave and/or optical pulses prepare the atoms in a known state, 
and a series of three (or more) Raman pulses create the atom interferometer.  Resonant 
fluorescence detection measures the excitation probability Pe that an atom ends up in a 
particular ground state after the interferometer sequence: 2/)]cos(1[Pe L .  Here 

321 2   is the net phase difference between two paths of the interferometer, 

and L is due to the laser arbitrary phase.  iii xk 
 is the phase shift the atoms acquire 

due to momentum transfer from Raman pulse i when the atoms are at position 
ix
 , and 

ik


is the wave vector corresponding to the two-photon Raman transition for pulse i. The 
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inertial measurement sensitivity comes from the leading dependence of the phase shift on 
the local acceleration experienced by the atom, the Raman wave-vector and the time of 
flight: 2Tak 

 , where k
 is the effective Raman wave vector, a is the linear or 

Coriolis acceleration (‘a’ could for example, be g, the local gravitational acceleration or 
v


 2 , where  is the rotation rate and v is the atom velocity in the case of the Coriolis 

acceleration), and T is the separation time between consecutive interferometer pulses.  
Figure 2 shows the coherent connection between the Raman atomic excitation, spatial 
recoil, and the space-time trajectories of the atoms in the interferometer.6 Note that 
Coriolis acceleration depends on the sign of the velocity, but acceleration does not.  This 
allows us to distinguish between rotation and linear acceleration by taking the sum or 
difference signals from two atom clouds launched in opposite directions.

For a gradiometer, where one is measuring the z (or x, y) component of the gradient of 
the gravitational acceleration g, one has two vertically displaced laser-pulse atom 
accelerometers (see Figure 1) and the difference in the phase between the two gives the 
Tzz component (actually its finite difference analog) of the Cartesian gravity gradient 
tensor Tij=  ∂2U(r)/∂ri∂rj (U(r) is the gravitational potential).  Unlike the absolute value of 
the local acceleration, this tensor is insensitive to platform vibration noise and allows for 
measurement of gravitational anomalies such as those due to nearby, dense sources.  This 
tensor data, then, is the input to our computational density distribution determination.

Figure 1.Cold atom Tzz gravity gradiometer (GG).

The relevant unit for gravity gradients is the “Eötvös” (1 E = 10-9/s2). For comparison, the 
gravity gradient of the Earth is ~ 3000 E, a mass of 75 kg at distance of 0.6 m is 8 E, 
while an IAEA 25 kg sphere of highly enriched Uranium at a distance of 1 m creates a 
gradient of 3.4 E. 

Assuming roughly white Allan phase noise sensitivity scaling we expect the mass 
detection threshold to vary as 1/t1/2.  Because the sensor measures the field gradient, we 
can expect it to scale as 1/r3 as a function of distance (or somewhat better when ‘close 
in’). 
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A cold atom Tzz gravity gradiometer (GG) consists of two vertically displaced 
interferometric accelerometers.  Figure 1 shows the schematic for such a sensor, which 
has two regions for trapping and cooling atoms.  Optical forces from the trapping lasers 
launch the atoms along a vertical trajectory.  Figure 2 indicates the geometry of the atom 
launches, Raman beam laser-optic interaction, and the accelerometer measurements. 

Comparison with other atom interferometric approaches
Having already pointed out the clear advantages of cold atom based gradiometers to the 
mechanical alternatives, we now briefly compare the following different atom optic 
techniques6, 12 that also might be applied to the passive detection of mass anomalies: 1) 
free-space optical gratings, 2) free-space mechanical gratings and 3) waveguides.

Figure 2. Atom interferometry based on Raman light pulses: (a) momentum transfer in a stimulated Raman 
transition; (b) simplified scheme of the atomic energy levels involved; (c) a Mach-Zehnder interferometer 
in spacetime plots: the atomic trajectories follow straight lines in the absence of gravity, and the parabolic 
curves in the presence of gravity.

Free-space optical gratings (this work).  Pulses of light manipulate the cold atomic 
sources.  The stability of the laser is used to manipulate the atomic wavepackets, 
guaranteeing sensor accuracy.  The use of optical transitions, and in particular, two-
photon stimulated Raman transitions, provides uniquely enabling capabilities for 
precision sensing: for example, electro-optic devices can dynamically shift the phase 
fronts of the optical fields, which allows sensors to simultaneously attain high dynamic 
range and high sensitivity.  

Free-space mechanical gratings.  Here microfabricated transmission/surface reflection 
gratings of ~100 nm periodicity coherently diffract the de Broglie waves.  It is unlikely a 
de Broglie wave sensor based on this technique can operate in highly dynamic 
environments, since gratings are subject to thermal and mechanical deformations.  
Additionally, the scale factor and bias offset will drift with temperature.  These grating 
are mechanically delicate, and, in contrast with optical gratings, cannot readily be 
dynamically manipulated.

Waveguides.  Unlike free-space sensors, here the atom is caged by a suitably strong 
confining potential, formed through optical potentials or magnetic fields.  The accuracy is 
fundamentally tied to the dimensional stability and to the reproducibility of the 
waveguide geometry.  It is therefore unlikely that this class of sensors will perform at 
levels surpassing existing mechanical or optical sensors, which are limited by similar 
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material considerations.  For BEC-loaded waveguides, atom-atom collisions introduce 
nonlinearities that substantially complicate sensor properties.  Finally, as atoms are caged 
to the sensor over the inertial measurement period, they are expected to be sensitive to 
high-frequency platform rotation and acceleration noise, and difficult-to-model force 
cross-couplings. 
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Work performed under this LDRD Feasibility Study:

Computational models of the Interferometer/Gradiometer responses to test mass 
distribution.
The ’imprinting’ of the local gravitational field on each interferometer’s cold atom 
entangled state trajectories driven by the launch, subsequent coherent beam splitting, 
recombining and readout, is the key to the sensor’s performance.  We therefore require an 
accurate model of the interferometer’s phase shift as a function of the Earth’s field and 
the perturbations due to local mass variations.  

Generally speaking, the cold cesium atom’s phase depends on the coherent dynamics of 
the effective Rabi oscillations of the two relevant hyperfine states (F=3, 4) separated by 
about 9 GHz, the optical Raman pumped/feeder state (about 1 eV higher), and their 
correlation with the atom’s momentum at each stage of the propagation in the 
interferometer.

In the case at hand, the atoms are launched at a time t = 0, undergo F=3, mF=0 state 
selection, and begin to decelerate under gravity. At some time t0, the atoms are coherently 

split into the F=3 and F=4 states by two counter-propagating lasers with a Rabi ‘ pulse.’ 
This state splitting is accomplished by a nonlinear Raman process, which entangles the 
F=3 and F=4 states respectively with momenta differing by kef f= |k1| + |k2|, where k1 and
k2 are the wave vectors of the Raman light pulses and |k1 - k2| is proportional to the energy 
splitting between the hyperfine levels. The atoms, now entangled between two quantum 
states, after propagating for time T, are hit with a ‘π pulse,’ reversing the atomic states, 
transferring momentum keff to the atoms previously in the F = 3 state and –keff to those 
previously in F = 4. The momentum exchange drives the two different spatially coherent 

portions of the atomic wave packet towards one another so that another pulse may 
recombine them at time   t = t0+ 2T (see Figure 3).1, 8, 12

The overall interferometer (semiclassical) phase is nominally composed of three parts:  a 
small phase shift due to the finite (~ 10 s) turn on of each Raman pulse, the free space 
propagation of the atoms between Raman pulses, and finally, the phase shift due to the 
Raman laser wavevector shift of the atom’s momentum at the time of each pulse.  Here, 
treating the Raman pulses as instantaneous, and working to order T2 in the pulse timing, 
we find that the phase shift is dominated by the successive interactions with the Raman 
pulses (equation 1). When the state of an atom is changed by a Raman pulse, it acquires 
an additional phase of - through the momentum transfer. Here, is 
the atom’s position when struck by the pulse.  Remarkably, the free space phase 
accumulation due to the propagation in the Earth’s field cancels out.

1)
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Therefore, the interferometer is sensitive to phase shifts that go as keff·δx(t), where δx(t) 
is the perturbation in the atomic position at time t.  These phase shifts can be summed 
along both paths to find their final difference, essentially due to the Doppler shifts of the 
Raman wave vector along the component of the gravitational field g: 
 ACB   ADB  k eff gT 2

. 

Figure 3

Gravity Modeling
As already discussed in the introduction, the effect of interesting test masses on the 
trajectory of an interferometer atom, for any reasonable experimental setup, is small 
compared to that of the Earth. Therefore, the test mass’s effect can be treated as a 
perturbation of Earth’s gravity, i.e.:

where g0 represents the Earth’s gravitational acceleration, and δg the perturbation due to 
the test mass.  Separating into components z and z, due to the effects of Earth and the 
test mass on atomic position, allows for the isolation of the test mass’s effect:

Note that δg(z) is calculated using the unperturbed system’s values:
z(t)  z0  v 0 t  1

2 g0t
2

Using the acceleration Green’s function the perturbation’s effect on the atomic 
trajectory is:

2)              z(t)  dt '
0

t (t  t ' )g( z(t '))

As discussed above, summing the test mass’s effects at each of the Raman transition 
points yields its total contribution to an atom’s trajectory in interferometers A & B due to 
the perturbation23: 

3)       
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Subtracting the individual interferometer shifts: δzA- δzB, dividing by T2 and the 
separation between the interferometers z0A -z0B then yields the gravity gradient in units 
of 1/s2.
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The required vector perturbation is given by the derivative of the source scalar 
potential.  While we found it useful to apply analytic simplifications for the potentials 
due to specific symmetrical shapes such as spheres, cylinders, and cubes in order to check 
our results for the phase shifts, sufficiently accurate potentials for general mass 
distributions required the careful application of multipole expansions: 

where r’,, and ,  are the coordinates of a source point.  Furthermore, singularities in the 
time integral (eq. 2) for the overall phase shift require attention to spurious singularities 
in various nominally equivalent multipole forms.  For example in the gradient

, otherwise natural forms involving associated Legendre functions are 
problematic near z=0, while simple limits of polynomial combinations in the azimuthally 
symmetric body frame of the cylinder do the trick.
Because the multipole expansion, seen as a function of r'l /Rl1, converges rather slowly for 
our mass configurations of interest, it was necessary to include multipoles up to the 99th

order in order to bound the resulting phase shifts to a part in 1012.

In order to model both earlier experiments and the background due to the containment 
box in the current work, it was also necessary to calculate the potential of a cubic mass.
The potential at the atomic position (xa, ya, za) of a uniform parallelepiped of side lengths 
2a, 2b, and 2c centered at the origin is:13

.
A numerically smooth form for the gradient of V can be obtained via the chain rule with 
the quantity V /za becoming a double integral in u and v with a well-defined analytical 
form.  Interestingly, for the case of a uniform cube, or, given superposition, a cubic shell, 
the potential is very close to a monopole source at the cube’s center.  The first correction, 
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which contributes a negligible amount to the phase shifts in this geometry, is a 

hexadecapole: .

As with rectilinear forms, analytically useful forms for cylinders21 can also be obtained.  
In this case,   

with the radial and axial components of the acceleration given in terms of complete 
elliptic integrals22

via: and 

.

We anticipate that these forms (and the consequent interferometer phase shifts) will play 
a significant future role, not just in analytic checks of our data analysis, but in a gravity
inversion code for mass determinations.

Armed with these analytic and numerical models, we computed predictions for a wide 
array of mass distribution “hypothesis” tests and compared them very successfully with 
experiment.  Two examples, later dubbed cases A2 (left, and blue curve) & A3 (right, and 
red curve), are shown in Figure 4.  As mentioned above, we also computed the 
background due to the aluminum containment box, its ‘foamular’ mass emplacement 
filling, and its support struts.  This (shown in the experimental section), is case “EB” 
(empty box).  

Signal analysis
While the specific signal analysis methods used in this study are detailed in the following 
section, we conclude this section on modeling with some remarks on ‘lock-in’ 
techniques, which, given the (ideal) Allan white phase noise characteristics of this type of 
sensor, are natural for future applications.  The idea is to exploit the imposed periodicity 
(or known time history) of the physics signal to extract that signal from a noisy 
background.  In particular, in this case, with the imposed mass translator ‘experimental 
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period’ TE, and the much longer overall data acquisition time TM, one can extract the 
physics signal in the face of white noise, even when S/N<1, by convolving the data time 
series with an appropriate function of period TE.  Stated in a Fourier basis, for a phase 
signal with (cosine) modes an, arbitrary overall temporal phase ambiguity φ, and (white) 
noise modes bn and cn, the signal is:

   
Convolving this time series (e.g. to obtain the first cosine mode), with the lowest mode of 
period TE, we obtain for a1,(upon maximizing the convolution over χ),up to noise errors 
of order 1/TM:

.
Though the lock-in method was quite useful in our analysis of earlier experimental data, 
in the present work, because of significant non-white ‘technical’ noise, we applied other 
decorrelation and averaging methods.  In a future system, aimed at field operations, we 
will develop a synthesis of both types of data analysis.
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Figure 4.  The top left diagram shows two mass configurations, A2 (cylinders together) and A3 
(cylinders spaced).  The top right plot shows simulations of A2 (blue) and A3 (red) as a function of 



12

vertical distance in meters (x-axis).  The y-axis is in units of 1/s2.  The bottom plot also shows the 
simulations converted into Eötvös as a function of distance (cm), along with measurements (points). 

Hypothesis Testing Method:

For the double blind experiments done as part of this project, and for future field 
applications of the mobile version of the sensor, we analyze the detection implications of 
the sensor data by pre-computing models of the sensor responses (theory + noise) the 
different mass distribution hypotheses as set of probability density functions.  Assuming 
the outcomes for a given experimental situation for hypothesis “j” (same mass 
configurations, same time integration, etc.) are normally distributed (characterized by a 
mean outcome j and standard deviation j coming from the underlying Allan noise 
analysis), we obtain relative probabilities for the different hypotheses after averaging N 
measurements.  In particular, the relative probability for obtaining measurement x at 
given spatial position from the (hidden) hypothesized configuration j is:

Pj ~ eN((x j )/ )2


k

eN ((x k ) / )2

In this simplest version, where we assumed that all the j are equal because they 
come from the same underlying sensor noise characteristics, the Gaussian normalizations 
divide out, leaving this simple form for Pj.

If we want to take into account the data for, say, three positions, the pdf for a 
given hypothesis returning a given set of three positional results is the product of the pdfs 
for each position. The overall relative probability is then the product for the hypothesis 
in question, divided by the sum of these products. If we want to include only a subset of 
the positional data, we correspondingly take only the corresponding pdfs in the products.

The hypothesis (j) with maximum likelihood value Pj is then chosen.
In the blind experiments done under this study, we assumed that the pdf’s for the 

different positions and mass configurations were independent (except for having the same 
noise controlled standard deviation).  In fact, given the physics of the situation and 
different measurement protocols, there could be correlations due, for example, to the non-
white Allan temporal correlations. 

Acknowledgment:
Two of us (SBL and VS) would like to thank David Chambers for his statistical 

insights.

Experimental Work
Background:
The gravity gradiometer measures the population in each hyperfine state after passing 
through the interferometer.  The normalized population difference (NPD) is related to the 
transition probability and is defined as the difference in state population divided by the 
total atom number, so the value can swing from -1 to 1 with 100% contrast.  Plotting the 
NPD from the top interferometer vs. that from the bottom shows that measurements are 
confined to an ellipse even though spurious accelerations cause all angles around the 
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ellipse to be explored.  This demonstrates the highly correlated signal between the 
interferometers and allows an ellipse fit to determine the relative phase.10

A commercial active vibration isolation platform can reduce environmental accelerations 
to ~ 25 gal = 2.5×10-7 m/s2, which is still too large to allow for the detection (in 
gravimeter mode) of small nearby masses relevant to emergency response.  This drives us 
to work in gradiometer mode, where common vibrations are cancelled out, greatly 
increasing our sensitivity to small perturbing masses.
Current work:
The work under this feasibility study consists of operating the interferometer with fixed T
and measuring the phase difference between the interferometers.   Our goal is to show 
that the gradiometer is sensitive to differences in nearby mass distributions when the total 
mass is kept constant.  To that end, it is required to sample a variety of locations around 
the mass distribution.  A box containing various mass distributions is moved between 
three positions along the keff direction (vertical) near the sensor, as shown in Figure 5.  
Three positions were chosen as the minimum set required to differentiate the specific 
mass distributions used in this test, and the specific locations were chosen to maximize
the differences in phase response between these mass distributions.

Figure 5.  A schematic of the system is shown.  The gravity gradiometer is on the left and has the 
launch direction and Raman beam direction labeled by the keff vector.  Red circles separated by 
0.57 m show the location of the atom launches for each interferometer.  The three positions of the 
box (orange, 49.5 cm cube) containing masses are shown, and the box position is defined by the 
center in the vertical direction.   The translation stage on the right runs at 1.7 cm/s.  Some 
additional detail of the mass translation is shown in Figure 10.
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Figure 6.  The vertical position (z) as a function of data number (equivalent to time).  For 
each 150 point window, the first section consists of translation to the location in that 
window.  The time of translation is determined by the distance traveled divided by the fixed 
speed of 1.7 cm/s.

At each position the box is held for 150 measurements.  This procedure is illustrated in 
Figure 6.  A full cycle of the system contains 450 measurements (150 at 3 positions) and 
is repeated multiple times for each mass configuration.   In these measurements only the 
relative phase difference is significant between box locations.  This data collection 
method is different from the ellipse fitting described earlier, and has the advantage of 
higher data collection rate.

To extract the signal, repeated data is wrapped every 450 points and averaged to show the 
phase difference as a function of mass position.  This is essentially the temporal behavior 
of the phase difference.  Since there can be a long term drift in the phase difference, the 
data is either high pass filtered or, as is done in this case, the average value of each 450 
point window is subtracted from that window.  A more complete method of removing 
drifts consists of decorrelating the data with known environmental effects such as 
temperature and laser power.  This was not implemented since the presence of large 
negative spikes in the relative phase when the box was triggered to move, which 
complicated this analysis by introducing effects we haven’t previously quantified.  We 
later learned that these spikes were caused by laser power drifts in different lasers 
associated with a software issue in triggering the translation of the box.  A trivial solution 
is known.

The averaged value over the 150 points at each box position (neglecting the region of the 
spike) is compared to our predicted model in Figure 7.  Since there is an overall phase 
ambiguity, the data is offset to minimize the squared difference between the data and 
model.  Results from other mass configurations are shown at the end in Figure 9.
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Figure 7.  The averaged data from two measurements.  The blue line is our model of the 
response for configuration A5 including a detailed model of the other moving hardware (box 
and support structure).

Measurement uncertainties (not shown in Figure 7) are determined by the number of 
points used in the average at each mass position and the characteristics of the noise.  We 
usually classify noise sources as fundamental or technical.  Fundamentally the atom 
interferometer’s phase noise is white noise that scales like the square-root of the number 
of atoms, and averages down as t1 .  Technical noise sources can have a number of 
causes.  Uncertainties were determined by using a long data set which included the 
software glitch from triggering the mass motion, but with the mass stationary.  The error 
was read off the Allan deviation of that data set, based on the duration of each 
measurement.

Figure 8.  A summary of the mass configurations.  The cylinders are solid tungsten with radius 
7.30 cm and height 15.56 cm.  Any dimensions not shown should be assumed to be symmetric
in the box within 0.5 cm.
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Figure 9.  These plots show the results from measurements of the different mass distributions in Figure 8, 
showing excellent agreement with predictions.  The vertical axis is the phase difference in mrad, and the 
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horizontal axis is the height in cm.  Data sets C1, C2 and C3 were measured when the laser responsible for 
trapping, cooling, launching and detection was experiencing strong feedback from an optical isolator.  This 
increased the detection noise and it is thought, increased the estimate of interference contrast, thereby 
decreasing the signal amplitude.

Figure 10.  More detail of the mass system is shown, including a small tilt of the box, and a 
counterweight made of two 12 kg lead bricks which moves opposite of the box.

Summary and Future Goals:
As can be seen in the results above (Figure 9), we successfully demonstrated the 
capability of this cold atom fountain gravity gradiometer to detect masses in the 10 kg 
range and distinguish their distributions (mainly quadrupolar variations) at distances of ~ 
0.5 m.  We also developed (and experimentally validated) analytic and numerical models 
of the sensor response.  
We have several clear goals for moving toward a mobile, passive, rapid response mass 
sensor for ER and treaty verification.  These are as follows:  1 – design a miniaturized 
version of the sensor (this would likely parallel the AOSense efforts building a portable 
inertial motion sensor), 2 – model and carry out blind experiments with more ‘realistic’ 
mass distributions, 3 – apply our numerical sensor response models to the development of 
a full mass density inversion code20 for field use, 4 – build and test in the field a 
prototype sensor.
Furthermore, we note that the AOSense gradiometer is correspondingly well suited to 
doing fundamental science gravitational measurements that will synergistically further 
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drive our mass imaging and signal analysis capabilities for ER.  These experiments would 
be aimed at both making improved measurements of the gravitational coupling G, and at 
setting bounds on, or even discovering, new mass coupled interactions at the ~ centimeter 
length scale. (Earlier, superb work at the mm scale would be complemented by our 
effort.18, 19, 8)  Our idea for these experiments is to exploit LLNL’s unique imaging 
capabilities (for mass source characterization) and importantly, to recruit a strong post-
doc from the cold-atom community who would work at LLNL and AOSense on the 
fundamental science experiments, but also to play a key role in the development and 
fielding of a prototype sensor in the ER community.
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