
LLNL-JRNL-468333

LR: Compact connectivity
representation for triangle
meshes

T. Gurung, M. Luffel, P. Lindstrom, J. Rossignac

January 31, 2011

ACM Transactions on Graphics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

LR: Compact Connectivity Representation for Triangle Meshes

Topraj Gurung∗

Georgia Institute
of Technology

Mark Luffel†

Georgia Institute
of Technology

Peter Lindstrom‡

Lawrence Livermore
National Laboratory

Jarek Rossignac§

Georgia Institute
of Technology

Figure 1: The ring (black loop) delineates two corridors of triangles. Normal T1 triangles (cream/orange) have one ring edge, dead-end
T2 triangles (blue) have two ring edges, and T0 triangles (green) comprising bifurcations have no ring edges. Adjacent T0 (gray/red) and T2

triangles (left) are represented internally as inexpensive T1 triangles (right), thereby significantly reducing storage. Our LR representation
supports random access to connectivity, storing on average only 1.08 references or 26.2 bits per triangle.

Abstract

We propose LR (Laced Ring)—a simple data structure for repre-
senting the connectivity of manifold triangle meshes. LR provides
the option to store on average either 1.08 references per triangle or
26.2 bits per triangle. Its construction, from an input mesh that sup-
ports constant-time adjacency queries, has linear space and time
complexity, and involves ordering most vertices along a nearly-
Hamiltonian cycle. LR is best suited for applications that process
meshes with fixed connectivity, as any changes to the connectivity
require the data structure to be rebuilt. We provide an implementa-
tion of the set of standard random-access, constant-time operators
for traversing a mesh, and show that LR often saves both space and
traversal time over competing representations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations

Keywords: triangle meshes, mesh connectivity, Hamiltonian cycle

Links: DL PDF

∗e-mail: topraj@cc.gatech.edu
†e-mail: mluffel@cc.gatech.edu
‡e-mail: pl@llnl.gov
§e-mail: jarek@cc.gatech.edu
Prepared by LLNL under Contract DE-AC52-07NA27344.

1 Introduction

Compact triangle mesh representations that support random access
are of increasing importance, given the rising complexity of meshes
handled by applications and the proliferation of mobile and multi-
core architectures. Compact representations help to reduce 1) the
frequency of page faults, 2) the cost of swapping mesh portions be-
tween processors, and 3) the amount of memory required for storing
a complete scene on a GPU or game console.

Our contributions are best explained as a storage-saving modifica-
tion of the Corner Table (CT) [Rossignac 2001], which for each
triangle stores 3 integer references to its vertices in the V table and
3 references to opposite corners in adjacent triangles in the O ta-
ble. In contrast, the LR (Laced Ring) representation proposed here
for manifold triangle meshes with fixed connectivity can be used
to reduce storage for the connectivity information to either about
1.08 rpt (references per triangle) or to only about 26.2 bpt (bits per
triangle), based on averaging the storage costs for our benchmark
models. In a CT representation with 32-bit references and 16-bit
vertex coordinates, the connectivity accounts for 90% of the total
storage cost. LR does not require any particular compression of the
vertex geometry, but we assume that memory-constrained applica-
tions will favor 16-bit coordinates. Under these conditions, using
LR instead of CT results in a 75% reduction in total storage.

In spite of its compactness, LR supports the full set of standard
random-access operators, including all those supported by CT, plus
the vertex-to-incident-triangle (star) reference. These operators
provide random access from an element (vertex, edge, or triangle)
to adjacent elements, and permit visiting the vertices of a triangle
and the triangles or edges incident upon a vertex in the cyclic order
defined by the orientation of the mesh. We provide the details of
a practical and efficient implementation of these operators, which
each have constant-time complexity.

This significant progress over prior art builds on the following novel
contributions.

http://doi.acm.org/10.1145/1964921.1964962
http://portal.acm.org/ft_gateway.cfm?id=1964962&type=pdf

Ring-based ordering: We build a nearly-Hamiltonian cycle of pri-
mal mesh edges that we call the ring. It divides the mesh in two
parts (Fig. 1) that form triangle strip corridors with bifurcations. To
reduce storage, we classify triangles by the number of edges they
have on the ring (bifurcation T0, normal T1, dead-end T2). We
store the ring vertices and the T1 and T2 triangles in the order in
which they are visited by the ring. The isolated vertices not part
of the ring are stored last. The T0 triangles are stored using the
standard CT data structure.

Omitted V entries for T1 and T2 triangles: Most triangles are
of type T1 or T2. Two of their vertex references (V entries of the
CT) are defined implicitly and need not be stored. Thus, we store
two references, L[v] and R[v], per ring vertex and assume that tri-
angle 2v has vertices (v, L[v], v.n) and triangle 2v +1 has vertices
(v.n, R[v], v), where v.n = (v +1) mod mr is the next vertex af-
ter v on the ring, and where mr denotes the number of ring vertices.
Although this data structure has two entries for each T2 triangle, the
cost of this redundancy is amortized, because typically there are far
fewer T2 than T1 triangles.

Omitted O entries for cheap T1 and T2 triangles: We do not
store O table entries for the “cheap” T1 and T2 triangles that are
not adjacent to a T0, because we can access the opposite corners
directly from neighboring ring vertices in constant time.

RING-EXPANDER construction of the ring: We propose a simple
(linear time and space) greedy approach for computing a ring that,
in all tested cases, either produces a Hamiltonian cycle or leaves a
small proportion of isolated vertices. Our RING-EXPANDER algo-
rithm tends to minimize the number of T0 and T2 triangles.

Wart skipping: To further reduce storage, we conceptually modify
the ring to exclude warts—T2 triangles adjacent to T0 triangles—
which allows the expensive T0 triangles adjacent to warts to be rep-
resented as cheap T1 triangles (Fig. 1).

Short offsets: When differences |L[v]− v| and |R[v]− v| are suf-
ficiently small, we choose to store L[v] and R[v] as short 2-byte
relative offsets. We provide a compact data structure for accommo-
dating exceptions, when the offset is too large.

HYBRID-RING-EXPANDER for increased locality: For large
meshes, LR provides the option of either minimizing the number
of references or the number of bits stored. For the latter option, we
provide a modified RING-EXPANDER that attempts to reduce the
average magnitude of offsets.

2 Terminology and Notation

We assume a mesh with m vertices and n triangles. The vertices,
which are numbered between 0 and m − 1, are stored in a geom-
etry table (array of points). The connectivity captures: (1) trian-
gle/vertex incidence, (2) its reverse (star), (3) triangle/triangle and
vertex/vertex adjacency (access to neighbors), and (4) ordering of
vertices around triangles and of triangles around vertices.

Numerous data structures have been proposed for connectivity so
as to support constant-time operators for traversing the mesh from
one element (triangle or vertex) to adjacent ones in an orderly man-
ner [Guibas and Stolfi 1985; Brisson 1989; Rossignac 1994].

When conventional data structures are used, the storage cost of the
connectivity exceeds the storage cost of the geometry. Indeed, the
triangle/vertex incidence alone amounts to 3 rpt and thus requires
twice the storage of geometry, because in a manifold mesh with
relatively low genus the number of triangles is roughly 2m. Popu-
lar data structures use several additional references per triangle to
encode adjacency, order, and other connectivity relationships.

c.v vertex of corner c
c.t triangle of corner c
c.n next corner around c.t
c.p previous corner around c.t
c.s next corner around c.v
c.o corner opposite of c
c.l left neighbor c.n.o of c
c.r right neighbor c.p.o of c
v.c a corner of vertex v
t.c a corner of triangle t

c.v

c.l c.s c.r
c

c.t

c.p c.n

c.o

Figure 2: Standard set of corner operators.

2.1 Corner Table

We present our work in terms of corners [Rossignac 2001], which
each associate a triangle with a bounding vertex. To facilitate com-
parison with prior art that manipulates half-edges (also called edge-
uses or directed-edges) [Mantyla 1988; Campagna et al. 1998], we
observe that each half-edge h corresponds to a unique facing cor-
ner c and that the next and opposite half-edge operators, h.n and
h.o, map to equivalent corner operators c.n and c.o.

Fig. 2 shows the standard corner operators. Although corner and
vertex references are stored in the LR data structure as integers, we
use an object-oriented notation that interprets the operator based
on the type of the operand. For example, if c is a corner, c.n.v.n.c
means: start with c, go to the next corner c.n around the triangle c.t,
obtain the reference c.n.v to its vertex, go to the next vertex c.n.v.n
around the ring, and retrieve a corner c.n.v.n.c of that vertex.

3 Prior Art

A customization of the popular Winged-Edge (WE) data struc-
ture [Baumgart 1972] to triangles stores connectivity using 3 ref-
erences for each half-edge h: to its starting vertex h.v, to the oppo-
site half-edge h.o, and to the next half-edge h.n around the same
triangle, resulting in a total of 9 rpt.

As suggested by Campagna et al. [1998], the Corner Table (CT)
data structure [Rossignac 2001] sorts the half-edge entries so that
the three entries of a triangle are consecutive and listed in clockwise
order (with respect to the outward pointing normal). This makes
storing c.n unnecessary, since it can be derived trivially using mod-
ular arithmetic. Hence, CT stores only two references per corner c:
its vertex c.v and its opposite corner c.o; see Fig. 2. CT uses two
arrays V and O of integers so that c.v = V [c] and c.o = O[c].

WE and CT do not store any vertex-to-triangle references. One may
add these by storing, for each vertex v, a reference v.c = C[v] to
one of its corners in the C table. Since there are three corners (and
half-edges) per triangle and about twice as many triangles as ver-
tices, with this addition, WE stores 9.5 rpt, while CT stores 6.5 rpt.

The mesh connectivity is completely captured in the V array of per-
triangle vertex references and may be compressed to less than two
bits per triangle [Rossignac 1999; Khodakovsky et al. 2002]. How-
ever, compressed formats produced through sequential encoding
cannot be used for random access mesh traversal, and V alone does
not provide constant-time access to neighboring elements. Some
formats support local decompression [Yoon and Lindstrom 2007;
Courbet and Hudelot 2009], but restrict the access pattern to a hier-
archical or contiguous traversal and execute a complex decompres-
sion code each time a new portion of the mesh is accessed.

Castelli-Aleardi et al. [2006b] prove that a succinct representation
of the connectivity of planar triangulations of n triangles can be

obtained by forming clusters of O(log n) triangles and by using
the connectivity of a cluster to index a catalog of pre-computed
look-up tables from which results of connectivity operators may be
extracted in constant time. They form groups of O(log n) clus-
ters to reduce the cost of storing inter-cluster connectivity infor-
mation. Although this theoretical formulation has not been fully
implemented, a less succinct version restricted to simple catalogs
has been explored [Castelli Aleardi et al. 2006a; Mebarki 2008].

The Star-Vertices of Kallmann and Thalmann [2001] use 3.5 rpt
to store for each vertex v a circularly ordered list of references to
adjacent vertices w, each augmented with an index i that identifies
the position of the reference to v in the list of w. Hence they store
one such (w, i) pair per half-edge. Because i typically fits in a few
bits, w and i can be packed into a single reference. An additional
per-vertex reference locates the beginning of each vertex’s list.

Blandford et al. [2005] use a representation similar to the Star-
Vertices, but reduce storage by ordering vertices according to a k-d
tree, which allows them to take advantage of a variable-length en-
coding of relative vertex indices. They report storage costs of about
5 bytes per triangle. Their representation supports vertex adjacency
efficiently, but does not allow linear indexing of triangles and cor-
ners (e.g. triangles exist only as vertex tuples), and hence does not
support constant-time evaluation of the standard corner operators.

Snoeyink and Speckmann [1999] orient all edges and partition them
into three disjoint vertex-spanning trees so that each vertex (except
the vertices of a seed triangle) has exactly one outgoing edge in
each tree. For each vertex v, they store six references to vertices
w so that (v, w, u) is a triangle of the mesh and (v, u) an outgoing
edge from v. Their Tripod data structure uses 3 rpt.

Gurung et al. [2011] start with the Corner Table, but avoid storing
the vertex-to-corner v.c reference by matching each vertex with a
corner of one or two incident triangles. They order the triangles
so that the reference to the triangle or quad (triangle pair) matched
with vertex v may be trivially recovered from the index of v. Fur-
thermore, they eliminate the need to store the V table, and recover
c.v by walking around the unknown vertex using the c.s swing op-
erator until they reach the triangle or quad corner matched with c.v.
Finally, they avoid storing pointers between corners within a quad.
For efficiency, instead of storing the partial content of the O ta-
ble, they store the equivalent swing references in an S table using
4 entries per matched quad or triangle. Their SQuad representation
stores slightly more than 2 rpt. In contrast to SQuad, LR stores
vertex references from which swing corners are inferred.

4 The LR Representation

In this and the following section, we outline the LR (Laced Ring)
approach, describe its representation, and discuss its construction
and use. We focus here on a simple representation aimed at mini-
mizing the number of references per triangle. A variation aimed at
minimizing the number of bits per triangle is discussed in Section 6.

4.1 Topological Domain

We assume that the triangle mesh is a connected manifold without
borders. Meshes with borders can be converted to closed mani-
folds by adding a dummy vertex v and a fan of dummy triangles
around v that are joined with the border edges. We discuss the
implementation of borders further in Section 4.6. Non-manifold
meshes that represent the boundary of a solid may be converted to
pseudo-manifolds while minimizing vertex replication [Rossignac
and Cardoze 1999], and as such can be represented compactly using
our LR data structure.

s
(5)

(8)

(11)
(14)(16)

(19)

(21)

(24)

1

2
3

4

5

6

7
8

9
10

11
12

13

14

15

16

17

18
19

20
21

22
23

Figure 3: RING-EXPANDER traversal. The corners are numbered
in the order in which they are visited, starting with the seed s.

4.2 The Ring

We first select and orient a manifold loop of mesh edges that visits
most—and ideally all—vertices. We call it the ring and its edges
the ring edges. The remaining edges are called transversal. As-
sume that the mesh has m vertices, out of which mr vertices are
on the ring. We want to minimize the number of isolated vertices
mi = m−mr that are not on the ring.

The perfect solution, i.e., a Hamiltonian cycle of edges, has been
studied in graph theory. Unfortunately, previous studies of Hamilto-
nian cycles for triangle meshes are either focused on the dual graph,
where the nodes represent triangles [Arkin et al. 1996; Gopi and
Eppstein 2004], or are restricted to specific topologies and regular
valence triangulations [Upadhyay 2010].

To construct the ring, we use the following greedy RING-
EXPANDER algorithm. We begin by marking each triangle t and
vertex v as unvisited by setting the flags t.m and v.m to false,
respectively. We then pick a random seed corner s, from which
we perform an invasion that visits most vertices and about half of
the triangles. We ensure that the visited region is edge-connected,
has no interior vertices (surrounded by all-visited triangles), and is
bounded by a single manifold loop of edges (i.e., the ring). The
RING-EXPANDER code, using corner operators, is simple:

c = s; // start at the seed corner s
c.n.v.m = c.p.v.m = true; // mark vertices as visited
do {

if (!c.v.m) c.v.m = c.t.m = true; // invade c.t
else if (!c.t.m) c = c.o; // go back one triangle
c = c.r; // advance to next ring edge on the right

} while (c != s.o); // until back at the beginning

RING-EXPANDER uses corner c to keep track of the current ver-
tex c.v and triangle c.t being considered for invasion. The ring
constructed so far separates the invaded triangles (orange) from the
other ones (cream); see Fig. 3. If c.v has not been visited, we invade
triangle c.t, which has the effect of expanding the ring by replac-
ing the ring edge facing c with the other two edges of the invaded
triangle. Otherwise, if c.v has been visited, we backtrack until we
find a ring edge through which we may continue the invasion. This
backtracking is accomplished without a stack or recursion by slid-
ing along the ring (c = c.o) and by using the t.m and v.m flags as
“breadcrumbs” to keep track of where we have been. These flags
are stored efficiently in two bit vectors.

RING-EXPANDER’s complexity is linear in space and time, since it
visits each corner at most once. The construction is very fast, with
a processing speed of around 30 million triangles per second.

T2

T1

T1

Ti
1

T0

T1

Ti
1

T0

Ti
1

T2

Figure 4: Triangles are classified based on their number of ring
edges and whether they are adjacent to a T0 triangle.

In an attempt to minimize the number of isolated vertices mi, we
run RING-EXPANDER several times with random seed corners and
retain the seed leading to the smallest mi, which usually is negligi-
ble with respect to m and sometimes is zero. The first run yields a
ratio mi/m of 0.005% averaged over our test models. Additional
runs often reduce this ratio.

4.3 Ring-based Classification of Triangles

To simplify exposition, we distinguish several kinds of triangles
(see Fig. 4). T0 triangles (bifurcations) have no ring edges; T1

triangles (the most common kind) have exactly one ring edge each;
T2 triangles (dead-ends of the “corridors”) have two edges on the
ring. Ti

1 and Ti
2 are “expensive,” irregular T1 and T2 triangles

that share an edge with at least one T0 triangle. Finally, we call a
T2 triangle that is adjacent to a T0 triangle a wart. Such pairs of
triangles are denoted Tw

0 and Tw
2 .

A triangle incident upon an isolated vertex must be T0. Clearly a T2

triangle cannot have an isolated vertex, since all of its three vertices
are on the ring. Furthermore, a T1 triangle has two consecutive ring
vertices, v and v.n. If its third vertex w were isolated, then our
construction algorithm would have included w in the ring between
v and v.n, turning the triangle into a T2.

4.4 Representing Incidence

We identify the ring vertices by integers between 0 and mr − 1
assigned in order of appearance along the ring (starting from an
arbitrary vertex). Hence, the references v.p and v.n to the vertices
that respectively precede and follow v on the ring may be computed
as v.p = (v + mr − 1) mod mr and v.n = (v + 1) mod mr .
Vertices with indices between mr and m− 1 are isolated vertices.

Each edge e = (v, v.n) of the ring is associated with a starting
vertex v and with two incident triangles: v.tL on the “left” and
v.tR on the “right.” We order the triangles so that v.tL = 2v and
v.tR = 2v + 1. Triangle v.tL has vertices (v, v.l, v.n), where
v.l is stored in the L table as L[v]. Similarly, triangle v.tR has
vertices (v.n, v.r, v), where v.r is stored in the R table as R[v];
see Fig. 5. T0 triangles, which have no ring edges, are not stored
in the LR table. Rather, they are represented in the regular Corner
Table arrays V and O, and are assigned indices 2mr and above.

We call the corners of the v.tL and v.tR triangles incident upon a
ring edge the ring corners. We label them v.0, v.1, v.2, v.4, v.5,
and v.6, as shown in Fig. 5, and assign to corner v.i the integer
index 8v + i. Thus the offset i of a corner c is determined by the
three least significant bits of c. By shifting the base of this scheme
by eight rather than six for each vertex, we are not using corner IDs

v.2

v.l

v.1

v.tL

v v.0 v.n

v.6 v.4

v.tR

v.5

v.r

v.p v.n

v.p.0 v.p.1

v.p.tL

v.p.2

vv.p v.n

v.1 v.2

v.tL

v.0

v

Figure 5: Left: Left and right triangles v.tL and v.tR are
defined for each ring edge (v, v.n). Their corners are labeled
(v.0, v.1, v.2) and (v.4, v.5, v.6). Right: Redundant (top) and
canonical (bottom) representation of a T2 triangle.

8v + 3 and 8v + 7. This irregular assignment of indices speeds up
some of the corner operators by allowing bit shifts and masks to be
used in place of division and modulo. Although corners 8v +3 and
8v + 7 do not exist, no storage is wasted on these unused indices,
since we do not allocate space to each corner (except in the VO
table; see below). Not using consecutive corner numbers limits the
size of the mesh that can be stored, but using 32-bit references to
opposite corners eliminates this concern for all practical purposes.

Note that there are two possible representations for the corners of a
T2 triangle: one for each of its two ring edges. For many traversal
operations this is not a problem, but when unique corner references
are desired, our convention is to associate the T2 triangle with its
second ring edge. We say that the other three corner references are
redundant. We can easily detect that a reference is redundant and
convert it to the corresponding canonical reference. For example,
given a corner c = v.p.2 (see Fig. 5, top right), we detect that
c is redundant because v.p.l = v.n, and compute the canonical
corner reference as v.0. Mappings of other corners in this and in
the symmetric configuration are handled similarly.

We can obtain a reference v.c to a corner of a ring vertex v as v.c =
v.0 = 8v and visit the triangles incident on v using the c.s operator.
A reference to one corner of each isolated vertex is stored explicitly
in an auxiliary array C.

If all the vertices were on the ring and if all the triangles were in-
cident upon at least one edge of the ring, this representation would
suffice to support all the standard corner operators, and would store
only two references per vertex, or 1 rpt (since there are roughly
twice as many triangles as vertices).

4.5 Representing Adjacency

Triangle adjacency is provided by the opposite corner operator c.o.
Within a quad formed by triangles v.tL and v.tR, v.1 and v.5 are
opposites. Hence v.1.o and v.5.o can be determined directly. In a
T2 triangle, v.2.o and v.4.o may be obtained by first remapping v.2
and v.4 to their redundant counterparts v.p.1 and v.p.5, and then
computing their in-quad opposites (see Figs. 5 and 6).

Opposites that do not lie in a T0 can be obtained for T1 and T2

corners v.0, v.2, v.4, and v.6 by visiting nearby vertices on the
ring. That is, when crossing a transversal edge via c.o, one or both
of the other edges in the adjacent T1 or T2 triangle must be ring
edges. For instance, if v.n.l = v.l, then v.0.o = v.n.2. Otherwise,
v.l.p.l = v.n and v.0.o = v.l.p.0; see Fig. 6. When c.o lies in a
T2 triangle, we must also remap the corner in case it is redundant.

v

v.1

v.5

v.l

v.n.2

v.0
v v.n

v.l v.l.p

v.l.p.0

v.0
v v.n

v.2

v.p.5
v

v.p v.l

O∗[v.l]

v.0
v

Figure 6: Different cases for computing c.o.

If c.o lies in a T0, on the other hand, we cannot reach it via the ring,
and we store in L or R a bit signaling that c.t is an expensive Ti

1 or
Ti

2 triangle. In this case, rather than storing v.l, we store in L[v] an
index into a condensed corner table VO∗ (and similarly for v.r).
VO∗ holds triplets (v.l, v.0.o, v.2.o) and (v.r, v.4.o, v.6.o).

Finally, for corners c in T0 triangles, we consult the O table, which
holds opposites for all three corners of such triangles.

4.6 Meshes with Borders

As discussed previously, LR can handle meshes with borders by
introducing triangles that join border edges to a single dummy ver-
tex v. If there are several border loops, this addition creates non-
manifold edges. We ensure that v is not a part of the ring by initially
marking it as visited, which guarantees that we never invade any of
the dummy triangles incident on v. Any reference to v in the LR
table is replaced with a special null index.

4.7 Implementation of Operators

We summarize here the implementation of the standard operators.

c.v: If c ≥ 8mr , then c.t is a T0 triangle and c.v = V [i], where
i = c− bc/4c − 6mr . (This subtraction of bc/4c restores the base
to six to avoid unused corners in the VO table.) Otherwise, we
compute v = bc/8c and use the relative corner offset c mod 8 to
select among v, v.n, v.l, and v.r (see Fig. 5).

c.o: If c ≥ 8mr , then c.t is a T0 triangle and c.o = O[i], where
i = c−bc/4c−6mr . Otherwise, we let v = bc/8c and distinguish
several cases (Fig. 6). In the first case, v.1.o = 8v + 5 and v.5.o =
8v + 1. In the next three cases, we infer the opposite from the L
and R tables and ring vertices. For example, if v.l = v.n.l, then
v.0.o = 8v.n + 2. When c is in a Ti triangle, we look up c.o using
v.l or v.r as an index into the VO∗ table. The other cases can be
derived by symmetry.

v.c: If v ≥ mr , then v is isolated and v.c = C[v−mr]. Otherwise,
if v.l = v.n.n (redundant T2 triangle), then v.c = 8v.n + 1 (and
similarly for v.r); otherwise v.c = 8v.

c.t: The triangle c.t of corner c is defined as bc/4c.

t.c: The first corner t.c of triangle t is defined as 4t.

c.n: The next operator is defined as c.n = c − 2 if c mod 4 = 2;
otherwise c.n = c + 1.

c.p, c.s, c.l, and c.r are derived from the operators discussed above.

v.p v.n

v.1 v.2

v.tL

v.2.o
v.0

v.1.o

v

u

v.p.2.o v.p.0.o
v.p.1

v.p.tL

v.p v.p.0 v.p.2 v.n

v.1 v.2

v.tL

v.2.o
v.0

v.1.o

v

v.p.l

Figure 7: Wart skipping treats T0 triangles (red) adjacent to T2

warts (blue) as T1 triangles (cream/orange) by excluding the wart
from the ring. The T0 is stored as the first redundant copy of the T2.

5 Wart Skipping

The number of T0 triangles is typically small compared to the num-
ber of T1 triangles. However, the connectivity information associ-
ated with a T0 triangle requires more storage, both for itself and
for its adjacent triangles. Hence, it is important to reduce the num-
ber of T0 triangles. To do so, we identify warts: T2 triangles that
are adjacent to T0 triangles. (When more than one T2 triangle is
adjacent to a T0, only one of them is considered a wart.) Because
each T2 triangle is duplicated, we may reclaim the storage for the
redundant copy and use it to represent the T0. That is, for a T2 tri-
angle (v.n, v, v.p) adjacent to a T0 triangle (v.p, u, v.n), we store
u rather than v.n in L[v.p] (see Fig. 7). We also store a bit in the
entry for the T0 to indicate that it has been paired with a wart, and
use Tw

0 to denote such triangles. Warts are denoted Tw
2 .

To correctly process Tw
0 and Tw

2 triangles, we conceptually modify
the ring by skipping over the wart and its tip vertex v when access-
ing the Tw

0 , which in effect makes (v.p, v.n) a ring edge and turns
the Tw

0 triangle into a regular T1 (Fig. 7). This reclassification of the
T0 also affects any incident Ti

1 or Ti
2 triangles, which unless they

are adjacent to another T0 now become regular (cheap) triangles.

The impact of wart skipping on the corner operators is small: For
c.v and c.o, we let v.p.n = v.n and v.n.p = v.p whenever access-
ing a Tw

0 triangle. Opposites of wart tip corners are also redefined
as v.0.o = v.p.1 and v.6.o = v.p.5, and conversely for Tw

0 tip
corners. Aside from this change, the corner operators for warts stay
the same.

To appreciate the benefit of wart skipping, note that we make ac-
tual use of the redundant reference for the T2 triangle, reduce the
6-reference cost for the T0 triangle to a single entry, and reduce the
4-reference cost of all adjacent Ti

1 and Ti
2 triangles to a single entry,

for a gain of as many as 15 references per skipped wart. In prac-
tice, because T0 and T2 triangles often come in pairs, wart skipping
usually reduces the number of T0 triangles by more than half.

6 Storage Efficient LR Representation

The LR representation discussed so far has been optimized to re-
duce the number of integer references per triangle. Its binary stor-
age efficiency can be improved by carefully considering how these
references are encoded. In particular, by changing the traversal of
RING-EXPANDER to produce a ring with greater locality of refer-
ence, we allow short relative indices to be used even for very large
meshes, though possibly using a larger number of references. This
space-optimized representation is discussed below.

1 3 5 7 9 11 13 15 n0
0%

10%

20%

30%

40%

50%

1 3 5 7 9 11 13 15 n0
0%

10%

20%

30%

40%

50%

1 3 5 7 9 11 13 15 n0
0%

10%

20%

30%

40%

50%

Figure 8: Depth-first (left), hybrid k = 32 (middle), and breadth-
first (right) traversals, with offset distributions in number of signif-
icant bits (1 to 16) and fractions of T0 triangles (green, rightmost
column), which are 0.33%, 0.56%, and 10%.

6.1 Relative Indexing

The LR table, as presented above, stores 32-bit integer references
to vertices. In practice the index difference, or offset, between a
ring vertex v and its left and right neighbors v.l and v.r is often
small enough to fit in 16 bits, even when the mesh has far more
than 216 vertices. We exploit this and store the offsets v.l − v and
v.r − v (modulo the number of ring vertices mr) more compactly
than the absolute indices. For large meshes, however, the depth-
first traversal of RING-EXPANDER often results in very long trian-
gle strip corridors between bifurcations (Fig. 8, left). In general,
more bifurcations, and thus shorter corridors, lead to smaller off-
sets.

A breadth-first strategy for RING-EXPANDER (Fig. 8, right) gen-
erates shorter offsets, but favors bifurcations—i.e. expensive T0

triangles—over long corridors—i.e. cheap T1 triangles. Hence,
we propose a compromise (Fig. 8, center): A hybrid breadth- and
depth-first traversal that balances the number of bifurcations and
the magnitudes of offsets. It modifies RING-EXPANDER to inter-
rupt the depth-first traversal every k steps and resets the traversal
using breadth-first backtracking. Setting, k = 1 results in a pure
breadth-first traversal, while k = ∞ yields a depth-first traversal.
Intermediate values of k may be used to tune the number of bifur-
cations and distribution of offsets.

Our HYBRID-RING-EXPANDER algorithm records backtracking
corners in a double-ended queue d that is initially empty:

c.n.v.m = c.p.v.m = true; // mark vertices as visited
while (true) {

if (!c.v.m) { // has c.v been visited?
c.v.m = c.t.m = true; // invade c.t
d.push_back(c.l); // push left and right...
d.push_back(c.r); // ... neighbors onto deque
n++; // increment triangle count

}
if (d.empty()) break;
if (n % k == 0) c = d.pop_front(); // breadth-first
else c = d.pop_back(); // depth-first

}

Though slightly more complex than RING-EXPANDER, this hybrid
method still achieves a throughput of 25 million triangles/second.

Rings generated with an optimal value of k tend to have offsets that
can be stored as 15-bit signed integers. When this is the case for
both of a pair of v.tL and v.tR triangles, we store the offsets as

v.r
v.l

v.r
v.l

v.r
v.l

v.r
v.l

v.r
v.l

v.r
v.l

v.4.o v.6.o

v.0.o v.2.o
v.4.o v.6.o

v0

v0

v1 v2 o0 o1 o2

v1 v2 o0 o1 o2

v0 v1 v2 o0 o1 o2

v0 v1 v2 o0 o1 o2

- - - - -
- - - - -
- - - - -
- - - - -

- - - - -
- - - - -

- - - - -
- - - - -
- - - - -
- - -

- - -
- - -

LR

VO

VO∗

T1, T2

T0

Tl/Tl

Tl/Ti

Ti/Ti

v.l(14...0) Lw

v.r(14...0) Rw

v.l(14...0) Lw

v.r(14...0) Rw

v.l(14...0) Lw

v.r(14...0) Rw

a(25...13) Li Lw

a(12...0) Ri Rw

regular T1

triangles

Tw
0 on

the left

Tw
0 on

the right

long index
into VO∗

Figure 9: Bit-efficient LR storage. Left: Each row corresponds to a
triangle. Gray shaded vertices and corners are implicit and are not
stored. Right: Encoding of LR table using 16 bits per reference.

16-bit entries in the LR table. LR entries that require more bits are
handled using one level of indirection into the VO∗ table, which
is indexed by combining bits from the L and the R entries into
a 26-bit reference a. VO∗ stores the corresponding v.l and v.r
indices in consecutive locations VO∗[a] and VO∗[a + 1] using 32
bits each. We use Tl to identify triangles that require this extra level
of indirection and specification of v.l or v.r using long references.
As in standard LR, Ti denotes irregular triangles adjacent to a T0

that also require long indexing into VO∗, for which one vertex and
two opposite corners are stored.

One may think of the VO∗ table as a full corner table, but with
references that are already known removed (see Fig. 9). Our im-
plementation discards the unused VO∗ entries and packs this table
into a single linear array of integer references. Because we always
arrive at a sequence of entries in this table knowing the type of each
triangle in a pair—Tl/Tl, Tl/Ti, Ti/Tl, or Ti/Ti—there is no ambi-
guity what the next 2, 4, or 6 integer entries represent. In particular,
the first two references of a tuple always store v.l and v.r.

6.2 Storage Format

For each LR entry we store two bits, Lw and Rw, identifying one
of four configurations: a pair of T1 triangles, a Tw

0 on the left or
on the right, or a pair of Tl or Ti triangles that require long index-
ing. Note that Tw

0 triangles can appear on the left or right, but not
both simultaneously, as the triangle paired with the Tw

0 triangle is
adjacent to a Tw

2 triangle and has at least one ring edge. Thus, the
two bits stored in the LR table indicate whether to skip warts on
the left and on the right, with the unused double-wart combination
signaling the need for a long index (see Fig. 9).

As discussed above, when necessary, we combine the LR entries
into a 26-bit index a into the VO∗ table. With two additional bits
out of the 32 already used, the remaining four bits are used to en-
code left and right wart skips (since a triangle may require a long
index into the VO∗ table and a wart skip) and whether v.tL and/or
v.tR is adjacent to a T0, i.e. if it is an irregular Ti.

The VO table stores first a list of all T0 triangles as six references
per triangle. Any subsequent vertices and opposite corners that can-
not be represented directly in the LR table are stored as variable-
length records, in no particular order, in the VO∗ table. The index
a and the combination of Li and Ri bits, which distinguish T from
Ti triangles, are sufficient to determine the record type.

mesh n %v6
standard LR SQuad bit-efficient LR

mi %T0 %Tw
0 %Ti rpt rpt k mi %T0 %Tw

0 %Tl %Ti bpt
bunny 69,451 75.1 1 0.41 1.74 1.14 1.062 2.054 226 1 0.63 1.49 3.94 1.81 20.27
rocker arm 80,354 65.2 0 0.39 1.73 1.06 1.055 2.054 720 0 0.40 1.79 1.71 1.10 18.37
horse 96,966 66.5 1 0.39 1.48 1.05 1.055 2.046 226 0 0.61 1.53 8.61 1.72 21.59
dinosaur 112,384 57.9 0 0.75 2.30 2.02 1.106 2.072 106 3 1.35 2.34 12.83 3.66 26.21
armadillo 345,944 52.6 3 0.52 2.42 1.41 1.074 2.069 89 10 1.26 2.51 13.72 3.44 26.12
hand 654,666 53.4 11 1.17 3.15 3.12 1.164 2.096 68 16 1.92 3.21 28.84 5.15 33.86
buddha 1,087,716 32.1 180 4.26 3.57 10.95 1.583 2.150 38 273 4.78 3.57 26.12 12.22 45.26
welsh dragon 2,210,378 86.7 4 0.14 0.82 0.38 1.020 2.027 100 5 0.87 1.05 18.84 2.52 26.12
thai statue 10,000,000 44.4 241 1.85 3.12 4.96 1.260 2.111 69 298 2.39 3.12 23.73 6.42 34.35
david 55,514,795 51.6 1143 0.63 3.19 1.64 1.089 2.082 108 1623 1.21 3.10 23.06 3.28 28.89

Table 1: Left: Storage statistics for the standard and bit-efficient LR representation. Right: Meshes color-coded blue-to-red in ring order.

7 LR for Efficient Rendering

Although our LR representation was primarily designed to support
efficient mesh connectivity queries, a leaner version that does not
store corner pointers may find utility in any number of applications
that require only a representation of a static indexed triangle list.
Three such applications include efficient offline or in-memory stor-
age, transmission, and high-throughput rendering.

At its heart, the LR table encodes a coherent sequence of vertices
and triangles. As such, it makes for a lean indexed mesh representa-
tion with exactly one vertex reference per triangle; the ring vertices
are consecutive and need not be specified. (The few T0 triangles
may be represented verbatim.) This simple representation suggests
the possibility of using LR as an efficient rendering primitive.

The LR representation directly rivals the common triangle strip.
Each branch in one of the interlocking LR triangle trees can be
thought of as a generalized triangle strip. Whereas a typical mesh
can be represented as a collection of (non-generalized) triangle
strips using about 1.35 references per triangle, LR requires only
one reference per triangle, and avoids the overhead associated with
strip “swaps” or “restarts.” In addition to being more space effi-
cient, our LR mesh is easier and faster to construct than triangle
strips, which require greedy or more complex construction proce-
dures. As an example, our RING-EXPANDER method is two orders
of magnitude faster than Evans et al.’s [1996] Stripe software.

Efficient rendering is possible by “decompressing” the LR repre-
sentation on the fly, e.g., using a geometry shader, into indexed
triangles that reference a vertex buffer object (VBO). This allows
storing a compressed index list on the GPU that omits the implicit
consecutive ring vertex indices. We may maximize locality of refer-
ence for the GPU post-transform-and-lighting vertex cache by using
a breadth-first LR construction. As in the standard LR representa-
tion, wart skips can be encoded using a dedicated bit that is set only
for Tw

0 triangles. Duplicates of T2 triangles and non-existent trian-
gles across mesh borders can be eliminated by specifying either v
or v.n as the tip vertex, which both result in degenerate triangles.

8 Results

We report in Table 1 statistics for several benchmark models. Let
the mesh have m vertices, n triangles, and a ring with mr vertices,
leaving mi = m − mr vertices isolated. Let n0 be the number of
T0 triangles remaining after wart skipping, and let ni be the number
of Ti

1 and Ti
2 triangles. In the standard LR representation, we store

a total of 2mr references in the LR table, 6n0 references in the VO
table, 3ni references in the VO∗ table, and mi references in the C
table. Hence, the storage cost for the standard LR representation is
2mr + 6n0 + 3ni + mi references, which is 1+f rpt, where f is
about (6n0 + 3ni −mi)/(2m), assuming n ' 2m.

For the bit-efficient LR, we store 16-bit references in the L and R
tables, while the other tables hold 32-bit references. Hence, the
total storage cost in bits is 32(mr + 6n0 + 3ni + nl + mi), where
nl denotes the number of Tl

1 and Tl
2 triangles.

Table 1 reports for the standard LR representation the number of
triangles n and isolated vertices mi, the percentage of valence-6
vertices and T0, Tw

0 , and Ti triangles, as well as the resulting rpt.
The median rpt for LR is 1.08 rpt, which is about half the storage
cost for SQuad. As in SQuad, the storage cost is influenced by the
regularity of the mesh, and increases with fewer valence-6 vertices.

For the bit-efficient representation, we also report the period k be-
tween breadth-first restarts, the percentage of Tl triangles, and the
resulting number of bits per triangle (bpt). The median is 26.2 bpt.
We ran the construction several times and chose the k that resulted
in the lowest storage cost. Given that we can construct LR meshes
from corner tables at a rate of two million triangles per second, we
can afford to explore several k values and seed corners per mesh.

Fig. 10 shows the access time for processing the 55 million trian-
gle David mesh using CT [Rossignac 2001], SQuad [Gurung et al.
2011], and the standard LR using various memory configurations.
(Our unoptimized implementation of the bit-efficient LR is on av-
erage five times slower than standard LR.) Note that the operating
system reserves at least 400 MB for system purposes and, hence,
we are left with the remaining memory. Using sequential loops
over corners and vertices, we report timings for c.v, c.o (for LR
and CT) or c.s (for SQuad), and for operations that compute the
valence and normal of a vertex. As in [Gurung et al. 2011], we also
report the cost per triangle traversed when following the “contour”
where the mesh intersects a plane, which involves a non-sequential,
data-dependent traversal.

Although the sequential c.v and c.o table lookups in CT are faster
than the computations needed by LR when the mesh fits in main
memory, this performance difference is not observed when consid-
ering higher-level tasks that require some level of random access,
e.g. to access neighboring vertices. In this case LR is generally
faster than both CT and SQuad due to its smaller memory footprint
and improved cache utilization. Furthermore, because the storage
needed by LR for most meshes is about half the storage needed by
SQuad, and about 1/6 the storage of CT, LR is significantly faster
than CT and SQuad when processing large models that do not fit
in main memory, because the reduced storage leads to fewer page
faults.

Finally, we evaluated the number of references per triangle needed
for a renderable indexed mesh representation of LR (i.e. with cor-
ner references removed). Using a depth-first traversal with wart
skips, the mean storage required is 1.03 rpt, which increases to
1.10 rpt when wart skips are disallowed. This compares favorably
with Stripe, which requires 1.35 rpt on average.

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.5 GB 1 GB 2 GB 4 GB

ti
m

e
 (

se
co

n
d

s)

(a) c.v

0.5 GB 1 GB 2 GB 4 GB

(b) c.o/c.s

0.5 GB 1 GB 2 GB 4 GB

(c) valence
0.5 GB 1 GB 2 GB 4 GB

(d) normal

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

0.5 GB 1 GB 2 GB 4 GB

(e) contour

Figure 10: Per-element execution time versus available main memory for CT (dashed blue), SQuad (solid green), and LR (dotted black).

8.1 Limitations

Because LR stores vertex references in a contiguous memory array,
and because inserting an array entry would require updating many
of the indices in this array, incremental connectivity changes cannot
be performed efficiently. We recommend LR for use in applications
where mesh connectivity remains fixed, or where constructing a
new LR with the desired connectivity is acceptable.

Our construction algorithm assumes as input a mesh data structure
such as the corner table (CT) that provides constant-time adjacency
queries. A CT can be constructed from a set of indexed triangles in
linear time, but the memory overhead of keeping both the CT and
LR in memory at the same time may be unacceptable.

9 Conclusion

We have described a simple and efficient implementation of the LR
data structure for representing the connectivity of manifold triangle
meshes. It supports a comprehensive set of constant-time, random-
access operators for traversing the mesh and offers roughly the
same performance as the best previously reported solution, SQuad.
Yet LR requires only about half of the storage needed by SQuad,
namely about 1.08 references per triangle, or, with the bit-efficient
variation, only about 26.2 bits per triangle. Hence, LR requires
about 6 times less storage than the corner table and 9 times less
than the winged-edge representation.

References

ARKIN, E. M., HELD, M., MITCHELL, J. S. B., AND SKIENA,
S. S. 1996. Hamiltonian triangulations for fast rendering. The
Visual Computer 12, 9, 429–444.

BAUMGART, B. G. 1972. Winged edge polyhedron representation.
Tech. Rep. CS-TR-72-320, Stanford University.

BLANDFORD, D. K., BLELLOCH, G. E., CARDOZE, D. E., AND
KADOW, C. 2005. Compact representations of simplicial
meshes in two and three dimensions. International Journal of
Computational Geometry and Applications 15, 1, 3–24.

BRISSON, E. 1989. Representing geometric structures in d dimen-
sions: Topology and order. In ACM Symposium on Computa-
tional Geometry, 218–227.

CAMPAGNA, S., KOBBELT, L., AND SEIDEL, H.-P. 1998. Di-
rected edges—A scalable representation for triangle meshes.
Journal of Graphics Tools 3, 4, 1–11.

CASTELLI ALEARDI, L., DEVILLERS, O., AND MEBARKI, A.
2006. 2D triangulation representation using stable catalogs. In
Canadian Conference on Computational Geometry, 71–74.

CASTELLI ALEARDI, L., DEVILLERS, O., AND SCHAEFFER, G.
2006. Optimal succinct representations of planar maps. In ACM
Symposium on Computational Geometry, 309–318.

COURBET, C., AND HUDELOT, C. 2009. Random accessible hier-
archical mesh compression for interactive visualization. In Sym-
posium on Geometry Processing, 1311–1318.

EVANS, F., SKIENA, S., AND VARSHNEY, A. 1996. Optimizing
triangle strips for fast rendering. In IEEE Visualization, 319–
326.

GOPI, M., AND EPPSTEIN, D. 2004. Single-strip triangulation of
manifolds with arbitrary topology. Computer Graphics Forum
23, 3, 371–379.

GUIBAS, L., AND STOLFI, J. 1985. Primitives for the manipu-
lation of general subdivisions and the computation of Voronoi
diagrams. ACM Transactions on Graphics 4, 2, 74–123.

GURUNG, T., LANEY, D., LINDSTROM, P., AND ROSSIGNAC,
J. 2011. SQuad: Compact representation for triangle meshes.
Computer Graphics Forum 30, 2, 355–364.

KALLMANN, M., AND THALMANN, D. 2001. Star-vertices: A
compact representation for planar meshes with adjacency infor-
mation. Journal of Graphics Tools 6, 1, 7–18.

KHODAKOVSKY, A., ALLIEZ, P., DESBRUN, M., AND
SCHRÖDER, P. 2002. Near-optimal connectivity encoding of
2-manifold polygon meshes. Graphical Models 64, 3–4, 147–
168.

MANTYLA, M. 1988. Introduction to Solid Modeling. W. H.
Freeman & Co.

MEBARKI, A. 2008. Implantation de structures de données com-
pactes pour les triangulations. PhD thesis, Université de Nice-
Sophia Antipolis.

ROSSIGNAC, J., AND CARDOZE, D. 1999. Matchmaker: Manifold
BReps for non-manifold r-sets. In ACM Symposium on Solid
Modeling and Applications, 31–41.

ROSSIGNAC, J. 1994. Through the cracks of the solid modeling
milestone. In From object modelling to advanced visualization.
Springer Verlag, 1–75.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualization and
Computer Graphics 5, 1, 47–61.

ROSSIGNAC, J. 2001. 3D compression made simple: Edgebreaker
with zip&wrap on a corner-table. In International Conference
on Shape Modeling & Applications, 278–283.

SNOEYINK, J., AND SPECKMANN, B. 1999. Tripod: A minimalist
data structure for embedded triangulations. In Computational
Graph Theory and Combinatorics.

UPADHYAY, A. K., 2010. Contractible Hamiltonian cycles in tri-
angulated surfaces. http://arxiv.org/pdf/1003.5268.

YOON, S.-E., AND LINDSTROM, P. 2007. Random-accessible
compressed triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics 13, 6, 1536–1543.

