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     Abstract 

 

We show that accretion disks around Active Galactic Nuclei (AGN’s) could 

account for the enormous power in observed ultra high energy cosmic rays ≈ 1020 eV 

(UHE’s). In our model, cosmic rays are produced by quasi-steady acceleration of ions in 

magnetic structures previously proposed to explain jets around Active Galactic Nuclei 

(AGN’s) with supermassive black holes. Steady acceleration requires that an AGN 

accretion disk act as a dynamo, which we show to follow from a modified Standard 

Model in which the magnetic torque of the dynamo replaces viscosity as the dominant 

mechanism accounting for angular momentum conservation during accretion. A black 

hole of mass MBH produces a steady dynamo voltage V ∝ √MBH giving V ≈ 1020 volts for 

MBH ≈ 108 solar masses. The voltage V reappears as an inductive electric field at the 

advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless 

runaway acceleration allows ions to be steadily accelerated to energies ≈ V, finally 

ejected as cosmic rays. Transient events can produce much higher energies. The predicted 

disk radiation is similar to the Standard Model. Unique predictions concern the 

remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH 

and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) 

the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the 

maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) 

electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These 

qualitative successes motivate new computer simulations, experiments and data analysis 

to provide a quantitative verification of the model. 
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1. Introduction 

This paper builds on Ref. [1] in which it was hypothesized that ultra high energy 

cosmic rays ≈ 1020 eV (UHE’s) arise as electric currents created by Active Galactic 

Nuclei (AGN’s). Accumulating evidence supports this hypothesis. Only the gravitational 

energy of supermassive black holes inside AGN’s could sustain the enormous power in 

the measured cosmic ray energy spectrum for the duration of radiolobes τ ≈ 108 yrs, 

yielding 1060 ergs per galaxy spacing volume [1]. Synchrotron radiation from jets creating 

radiolobes indicates the presence of strong magnetic fields [2]. New experimental 

evidence supports the contention that an AGN accretion disk can act as a dynamo [3]. 

Direct attempts to correlate UHE’s with known AGN’s are limited by statistics but may 

yet pin down UHE origins [4].  

As further support for the cosmic ray hypothesis of Ref.  [1], this paper presents a 

new model of cosmic ray acceleration by AGN’s producing a dynamo. In our model, the 

dynamo voltage V ejects a steady current I, mainly in a central column where most of the 

gravitational power is deposited (see sketch in Figure 1). At the advancing “nose” in 

Figure 1, where the current begins its return to the disk, the voltage V reappears as the 

inductive electric field that causes ions to “stick” to advancing field lines. The inductive 

field also accelerates ions radially to produce UHE cosmic rays if there exists a turbulent 

diffusion coefficient D driving ion current perpendicular to magnetic field lines. The 

required D ≈ rLiωCi (ion Larmor radius rLi, cyclotron frequency ωCi) is shown to arise 

naturally from electrostatic instability of the non-Maxwellian ion distribution created by 

runaway acceleration of the ions. 

Secondary themes of the paper, adding credibility to the cosmic ray acceleration 

model, are: (a) mechanisms creating a dynamo by accretion from an external reservoir 

[5], as in Figure 1; (b) the role of jet ejection in recycling essentially all of the angular 

momentum entering the dynamo back to the reservoir via the jet and its return current, 

giving an accretion model considerably different from the “Standard Model” discussed in 

Ref. [2]; and (c) the diffuse pinch current outside the main jet column in Figure 1, whose 

stability properties account for collimation over the observed jet length L, and the 

formation of radiolobes at the end of the jet.  
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As with many earlier efforts, our model treats dynamics as a succession of quasi-

equilibria, in our case justified by the slow rate of expansion of the jet compared to 

Alfven speeds governing plasma motion. We are looking at a quasi-steady “snapshot” 

toward the end of this process. Like all “Poynting” models, we must assume the existence 

of coherent magnetic fields when a dynamo is created by accretion, justified by 

experiments and computer modeling demonstrating the growth of coherent fields.  

What appears to be new is that, given a coherent field, the conservation of 

canonical angular momentum of ions accreting in this field becomes the governing 

mechanism that both gets rid of all excess angular momentum as found by other authors, 

and also introduces several simplifications allowing a complete analytical solution for 

disk and jet parameters. We obtain quasi-steady radial profiles for 7 accretion disk 

variables: the line density, the disk height, the surface temperature, the accretion velocity, 

the disk rotation frequency, the dynamo poloidal magnetic field, and the dynamo current. 

Also the jet magnetic field and current profiles, which match those of the disk.  

 The predicted disk temperature and radiation are similar to the Standard Model. 

The unique predictions concern the jet and emissions from the jet/radiolobe structure. 

With just the 2 inputs of the Standard Model – the black hole mass and the accretion rate 

– the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the 

jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in 

this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron 

wavelengths; and (7) the power in synchrotron radiation.  

The paper is organized as follows. The magnetic accelerator structure is discussed 

in Section 2, cosmic ray acceleration in Section 3, the cosmic ray energy spectrum in 

Section 4, other model predictions and signatures including jet collimation, radiolobe 

formation and synchrotron radiation in Section 5, and a summary of results in Section 6. 

To maintain narrative flow, detailed discussions of magnetized accretion disks creating 

dynamos are given in Appendices. Appendix A develops an accretion model with strong 

magnetic fields; Appendix B derives the magnetic profiles of Figure 1, using this model; 

and Appendix C discusses transport by the magneto-rotational instability essential to the 

model. More details are given in Ref. [6].  
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We use cylindrical coordinates r, φ, z fixed in the black hole, with z along the axis 

of rotation of the accretion disk. Except as noted, units are cgs, often introducing c, the 

speed of light.  

 

2. Accelerator Structure 

Figure 1 closely resembles “spheromak” plasmas created in the laboratory [1]. To 

understand astrophysical spheromaks, imagine a conducting disk connected by a shaft to 

a source of rotation, with coils generating a poloidal magnetic field Bz perpendicular to 

the disk. Let this assembly rotating at angular frequency Ω be mounted at one end of a 

metal chamber, as in Figure 2. If the chamber were evacuated, in the laboratory reference 

frame rotation would produce surface charge so that the disk acts as a capacitor with 

electrostatic field Er = c -1 rΩBz across the face of the disk. Gas supplied to the disk would 

break down to create a fully ionized plasma ejected from the disk.  

As discussed in Ref. [7], the homopolar generator in Figure 2 is identical with 

actual experiments creating “spheromaks” in which a capacitor-driven plasma gun 

replaces the generator. Spheromak experiments for magnetic fusion research inject 

current into a metal chamber for a time long compared to transit times across the 

chamber, with the goal of building up magnetic fields inside the chamber to values 

sufficient to confine high temperature plasmas [8]. Experiments devoted to astrophysics 

may focus on the formation and ejection of jets resembling the astrophysical structures in 

Figure 1[9]. 

 Here we will model the final stage of AGN accretion and jet ejection keeping in 

mind lessons from laboratory experiments and computer simulations of these 

experiments, and recent simulations of astrophysical jets discussed below [10]. As in the 

Standard Model mentioned in the Introduction, we treat the final stage of accretion as a 

quasi-steady state in which dynamo properties are fixed, while the jet length L continues 

to expand. The main difference from the Standard Model is the dominant role of 

magnetic torque ejecting disk angular momentum into the jet, as in Ref. [11], whereas in 

the Standard Model all angular momentum is dissipated by a viscosity of uncertain origin 

[2]. In Appendix A, we provide a self-consistent estimate of the accretion velocity vr  and 

other relevant quantities yielding a sustained dynamo.  
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 We are primarily interested in features of the magnetic structure leading to ion 

acceleration. Since initially ions ejected from the disk follow magnetic field lines, the 

initial stage of acceleration requires E| |  parallel to B, forbidden by the ideal Ohm’s Law 

but made possible by MHD turbulence in the central column of Figure 1, producing E| |  

parallel to the symmetrically-averaged mean magnetic field. However, as discussed in 

Section 3, E| | acceleration in the central column is limited by ion synchrotron radiation 

and cannot achieve the enormous energy of UHE’s. The final stage of acceleration to 

UHE energies turns out to be driven by the large inductive electric field in the advancing 

nose, requiring acceleration perpendicular to field lines due to a non-MHD plasma 

turbulence process inherent in the runaway ion beam emerging from the central column. 

Thus explaining UHE’s reduces to calculating the inductive electric field in the nose.  

In this section, we are mainly concerned with the central column of Figure 1, 

where magnetic relaxation by internal kink modes extending into the disk, discussed in 

Appendix B, can lead to a relaxed magnetic field with known profiles, hence describable 

by a 0-D model with the radius a, poloidal field Bo and current I as parameters. The 

system evolution in time is dominated by inductance, the jet mass density being very low, 

just that needed to carry current ejected by an electrostatic sheath that forms at the disk 

surface at a location where the sheath voltage equals the energy required to escape 

gravity [6].  If collisions are negligible in the sheath, for a positively-charged disk the 

sheath current is a “runaway” ion beam with density ni given by: 

 

 ni = (I/e<v>A)       (1) 

 

where <v> is the average ion speed carrying the current (→ c, the speed of light) and A 

the cross-sectional area. If collisions remain negligible in the jet, the runaway ion beam 

continues to carry the current in the jet, since relativistic electron (or electron-positron) 

current tends to be canceled in our fixed reference frame centered on the black hole, due 

to two-stream instability [6,12,13]. Higher density in laboratory jets is due to gas sources 

beyond the sheath. Such sources are largely absent in an AGN jet (see Appendix B), and 

hydrodynamic jets that might add to gas loading from the disk are likely to polarize and 
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pass through the current jet without adding to its mass [6]. The exact ion density does not 

matter for our purposes, as long as collisions are too weak to inhibit ion acceleration.  

Inductance-dominated jet/radiolobe dynamics is described by: 

 

d/dt (1/2 I 2Λ) = IV - ∫dx j⋅E  ≈ (1 - αACCEL) IV   (2) 

 

V = - c -1 aΩ(a) aBo       (3) 

 

where Λ ∝ L is the jet/radiolobe inductance with jet length L and V = aEr with Er above. 

In  Eq. (2), ∫dx j⋅E is dissipation by ion and electron acceleration, parametrized as 

αACCEL(IV). In Eq. (3), the minus sign follows from negative rotational velocity vφ = rΩ to 

yield positive Bφ for positive Bz.  

 Next we note that I saturates at a constant value, verified below. For a chamber of 

finite length, I grows until limited by dissipation in the plasma [14]. In unbounded space, 

L grows while I saturates when Bφ = (2I/ca) first equals Bz near the black hole, giving: 

  

I = (c/2) aBo      (4) 

  

Eq. (4), which was verified in the simulations in Ref. [10], is known in the laboratory  as 

“bubbleburst,” occurring when current is first ejected from a magnetized plasma gun. 

It remains to calculate the inductance Λ, and from this the inductive electric field 

at the nose. To calculate Λ, we note that in quasi-steady state the magnetic field of the jet 

is independent of time except at the advancing nose. Since current is concentrated in the 

central column, in the diffuse pinch we expect Bφ(r) ≈ (2I/cr), while Bz is determined by 

maching Bz(r) in the jet with that in the dynamo.  At large r, Bz in the dynamo  is 

determined by the conservation of canonical angular momentum of falling ions. For 

constant canonical angular momentum Pφ = (mir2Ω + erAφ) with ion charge e, mass mi and 

vector potential Aφ, taking ∂Pφ/∂r = 0 yields:  

 

Bz = r -1 ∂(rAφ/∂r) = - (mi/e) r -1 ∂(r2Ω)/∂r   (5) 
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Eq. (5) is a robust result implying the dominance of dynamo torque over viscosity 

in accounting for angular momentum conservation, leading to the angular momentum 

equation of our modified Standard Model of accretion in Appendix A.  Eq. (5) fails only 

if there exists a competitive viscosity with a “collision” frequency greater than the 

poloidal cyclotron frequency, not likely and not true for the Standard Model, which 

postulates a viscosity corresponding to a collision frequency cS/H for sound speed cS and 

disk height H [2]. 

Like the Standard Model, we make the thin-disk approximation, by integrating 2D 

equations over the disk height. Then we can take Br = 0 inside the disk whereby the 

dynamo field matches onto a force-free jet having the same Bz(r), Bφ(r) as those at the 

dynamo/jet interface. In Appendix A, we show that Ω ∝ (a/r)3/2  (Keplerian scaling) 

giving, by Eq. (5), Bz(r) ∝ Ω ∝ (a/r)3/2 at large r, while the toroidal component Bφ(r) ≈ 

(2I/cr) ∝ 1/r. Applied to the jet, this shows that Bφ dominates the inductance, giving: 

 

 Λ = ∫0
R 2πLrdr [(Bz

2 + Bφ

2
 )/8π]/(I2/2) ≈ L[2 ln(R/a)/c2]  (6) 

 

whereby, for constant I, Eqs. (2) - (4) give: 

 

 dL/dt = (1 - αACCEL)(V/I)[c2/ln(R/a)]  = 2(1 - αACCEL)[(-aΩ)/ln(R/a)] (7) 

 

 L = 2(1 - αACCEL)(-aΩτ/ln(R/a)) ≈ (-aΩτ/ln(R/a))  (8) 

 

where R is the radiolobe radius in Figure 1. 

By Eq. (8), L → 0 as αACCEL → 1, indicating that 100% efficient acceleration 

would leave little excess energy stored as the magnetic energy of the jet/radiolobe 

structure. In Ref. [6], we argue that αACCEL ≈ 1/2, giving L on the far right in Eq. (8). Then 

half of the IVτ is stored as magnetic energy at the nominal end of life of the system of 

duration τ. By Lenz’s Law, this stored magnetic energy would continue to drive 

acceleration as the field decays, eventually dissipating all of IVτ, mainly as cosmic rays 

as we shall see.  
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This simple model is confirmed by Figures 3 and 4 discussed in Appendix B and 

by MHD simulations in Figure 5. Fig. 5a gives the 2D mean field similar to Figure 1; in 

Fig. 5b, the actual 3D field from which this mean field was constructed; and in Fig. 5c the 

dominant Bφ(r) ∝ 1/r despite weak instability partially filling the volume between the 

central column and the return current [10]. By Eq. (6), the inductance is dominated by the 

large volume of the radiolobe, with radius R occurring where (Bφ(R) 
2

 /8π) = pAMB, the 

ambient pressure [10, 15, 16]. Typically, we will find ln R/a ≈ 20, giving a significant 

slowing of the jet expansion as is needed to account for observed lengths L ≈ 1024 cm ≈      

1 Mpc [1, 2, 6]. Why kink instability is weak outside the central column is discussed in 

Sections 3 and 5, and Appendix B. 

 To determine the inductive electric field accelerating cosmic ray ions in the nose, 

we note that radial hoop forces in the nose ∝ ∇B2 compete with length expansion to 

create a blunt nose, as shown in Figure 1, discussed in Appendix B and verified in       

Figure 5a. Then field lines are nearly radial, giving nose forward motion vz(r) ≈ dL/dt 

approximately independent of r, giving Er = c-1vzBφ = C/r. Since we will find little voltage 

drop along the central column, most of the voltage reappears at the nose, giving V =       

∫a
Rdr Er = C lnR/a, hence C = V/lnR/a and: 

  

 Er = (V/r lnR/a)       (9) 

 

Given vz(r) = dL/dt independent of r (a 1D problem), we can show why the 

current hovers around the “bubbleburst” value, Eq. (4), using Eq. (2) and a simplified 1D 

equation for the ion dynamics:  

 

ρ dvz/dt =     ρ(d2L/dt2)  = c-1jr Bφ    (10)  

 

Substituting Bφ = (2I/cr) and ρ = (jr/ec)mi from Eq. (1) gives: 

 

 (mi/e) d2L/dt2 =  (2I/cr)       (11) 
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Always I cannot be less than that in Eq. (4), this being the condition for current ejection. 

With this constraint, numerical solutions of Eqs. (2) and (11) show that, starting from this 

minimum value of I, dL/dt grows rapidly by Eq. (11), which for constant V causes I to 

fall by Eq. (2) [6]. Since this would disrupt the jet, I hovers at the value in Eq. (4) and 

dL/dt satisfies Eq. (2) with dI/dt ≈ 0 and Λ in Eq. (6), giving Eq. (8). See Appendix B for 

the 2D version of this proof.  

We conclude this section with example values of a, Bo and Ω appearing in Eqs. 

(3) and (4), to be used to evaluate quantities in later sections. We require both a mass and 

a time scale, for which we take a typical AGN black hole mass MBH = 2 x 1041 gms equal 

to 108 Sun masses and a lifetime τ = 108 yrs = 3 x 1015 sec typical of jet/radiolobes for a 

range of black hole masses [1, 2]. Results are insensitive to the radiolobe radius R. As 

noted above, we take constant R giving ln R/a = 20, and, anticipating results of Appendix 

A, we assume a ≈ 10 RG (with RG = 2 MBHG/c2 for Newtonian gravitational constant G). 

Finally, we set IV = f(1/2M*c2) = f(3 x 1046 erg/s) with M* ≡ MBH/τ, f being the estimated 

efficiency of converting gravitational power (1/2M*c2) into magnetic energy. Taking f = 

0.25 (25%) as estimated in Appendix A, we obtain, with Keplerian - Ω = (MBHG/a3)1/2 and 

using Eqs. (3), (4) and (8): 

  

a = 3 x 1014    cm      (12)  

aΩ = - 0.2 c 

Bo  = 5 x 103  gauss 

 V = 9 x 1019  volts 

 I = 7 x 1018 amps 

 L = 1024   cm 

 

where B0  is an average value of Bz inside the central column. Parameters for other values 

of MBH can be obtained by scaling, giving for fixed τ , fixed a/RG,  fixed aΩ/c and fixed 

efficiency, IV ∝ (aBo)2 ∝ MBH, hence a ∝ MBH and Bo ∝ MBH
 -1/2 and I ∝ V ∝ MBH

 1/2.  

The efficiency f could be greater inside the central column, which receives a 

fraction (1 – RG/2a) (95%) of the gravitational energy. Energy not converted to IV or 

radiation flows into the black hole, perhaps producing still more current and IV power, as 
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in Ref. [11]. In Section 3, we will conclude that only 5% of the IV power in the central 

column produces synchrotron radiation, the rest being ejected as cosmic rays in the nose, 

both in quasi-steady state and during the decay of the stored magnetic energy as noted 

above.  

 

3. Cosmic Ray Acceleration 

Next we discuss how the accelerator structure of Section 2 might produce UHE 

cosmic rays. Briefly, cosmic rays are created by the dynamo-driven jet/radiolobe 

structure because the jet density in Eq. (1) is so low that collisions are irrelevant, thus 

allowing accelerated ions to run away to high energies.  

As in Section 2, we will assume a voltage polarity accelerating ions out of the 

disk into the central column of Fig. 1. For the quadrupole field of Refs. [17] and [18], the 

polarity is the same for both sides of a two-sided pair of jets. The opposite polarity gives 

similar results, with a “virtual” anode injecting ions into the nose [6].  

 We begin our discussion of ion acceleration by considering magnetic relaxation 

due to MHD instability of current due to internal kink modes, discussed in Section 5 and 

Appendix B. As is well known from theory confirmed by simulations [19], a 3D 

magnetic perturbation δB of the 2D mean field (averaged over φ) creates an electric field 

parallel to the mean field, given by [6, 19]: 

 

 E| | ≈ (voB/c)(< δB 2>/B2) < (a/ct)Bo   (13)  

 

where δB2
 is appropriately averaged over time and vo < vA, the Alfven speed. Eq. (13) 

represents magnetic relaxation by hyper-resistive current diffusion [6,14], giving in the 

middle expression E| |  = ηHj| |  ≡ c-1(DB/a) with D = (c2ηH/4π) = voa(<δB2>/B2). That 

instability occurs only inside the central column is shown in Appendix B. That magnetic 

relaxation is very limited in expanding jets, giving the bound on the right hand side of Eq. 

(13), comes from the following quasi-linear estimate of D, whereby the free energy 

driving instability is due to diffusion D spreading the central column current channel to a 

radius R1 = √(a2 + Dt) [6]. The free energy arises from a slight increase in B (and I) above 

the bubbleburst value Bo  in Section 2 [14]. Then energy conservation (per unit length) 
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requires B2a2  = [Bo
2 + <δB2>)]R1

2. Dividing by B2a2 and replacing <δB2> = D(B2/voa), we 

obtain an equation for D: 

  

1 = [(B0
2/B2) +  (Dt/a2)(a/vot)][1 +  (Dt/a2)]   (14) 

 

with B0
2/B2 < 1. For t ≈ τ in steady state, we can assume (a/vot) << 1, giving (Dt/a2) ≈         

[1 -  (B0
2/B2)] < 1 independent of vo and from this <δB2>/B2  = (D/voa) < (a/vot) which 

gives the right hand side of Eq. (13). For vo ≈ c and t ≈ τ, δB/B ≈ 10-6 for numbers in Eq. 

(12).  

Eq. (13), together with Eq. (8), gives:  

 

ΔV  =  LE| |   <  (-aΩt/ln(R/a))(a/ct)Bo  =  (V/ln(R/a)) (15) 

 

This  ΔV could accelerate ions to high energies in the central column.  However, actually 

the energy saturates when ecE| |  = 2/3 (e2α2γ4/c3) [20], the synchrotron radiation with α = 

c2/RC for ions following field lines with curvature radius RC, giving for rest mass energy 

γ: 

 

 γ ≤ (3/2 E| | RC
2/e)1/4       (16) 

 

For numbers in Eq. (12), and using E| |  = ΔV/L in the central column, this limits the 

energy of ions entering the nose to γ ≈ 107 (1016 eV), far below γ > 1010 for UHE’s.   

 As field lines spread out in the nose (where RC ≈ r), synchrotron radiation 

diminishes, giving finally ion orbits with Larmor radii equal to the current channel 

thickness Δ ≈ a [6]. Then ions escape too soon, unless the flux width Δ expands to 

contain the ions. That Δ probably does expand, due to ion pressure, can be seen as 

follows. Due to synchrotron radiation, ions lose energy until a further loss of v⊥ 

perpendicular to B would cause the ions to leave the field lines. Then the ion beam 

pressure perpendicular to B tends to be just that corresponding to the minimum v⊥ 

necessary for ions to follow curved field lines, yielding β⊥ (pressure perpendicular to B in 

ratio to magnetic energy) given by: 
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β⊥ (nose) = (8πnimiγv⊥

2/Bφ

2)   = 2(v⊥/<v>)(rL/Δ) (17)  

 

where we use ni = (I/e<v>A) from Eq. (1) with A = 2πΔr in the radially fanning return 

current channel in the nose, with width Δ; Bφ = Bo(ao/r) for Bo in the central column; and 

Larmor radius rL = (mγcv⊥/eBφ). As rL → Δ, the tendency to escape also gives v⊥ → <v> ≈ 

c so β⊥  → 1. Then the field is no longer force free; Δ grows with rL; and the poloidal flux 

expands, leaving Bφ as the dominant field component. Since the current flows radially in 

the nose, the current must flow perpendicular to Bφ. This requires some kind of turbulent 

diffusion, giving: 

  

 (jr)NOSE   = - eDDC (dni/dr)      (18) 

 

The necessary diffusion can arise from a known instability of the ion beam, the 

non-MHD electrostatic “drift cyclotron” (DCLC) instability derived from kinetic theory 

[21]. This instability is resonant with ions only and acts like an ion “collision” causing 

diffusion in space and energy [22]. The expected quasi-steady diffusion rate is [6]: 

 

 DDC ≈ crL if  |rLn-1∇n|   =   (rL/Δ) >  0.4(2v⊥

2/c2β⊥)2/3  (19) 

 

The instability condition on the right is derived from rL/Δ  ≥ 0.4(ωC
2/ωP

2)2/3 with 

relativistic ion cyclotron frequency ωC and relativistic ion plasma frequency ωp [Eq. (148) 

of Ref. [21]]. As rL → Δ and ions try to escape, v⊥ → <v> ≈ c as noted above, and β⊥ → 1 

by Eq. (17). Thus, just in time, the instability condition needed to sustain the current is 

satisfied.  

The radial current jr represents a new kind of quasi-steady ion acceleration, in 

which the power jrEr is provided by the steady inductive electric field Er in the nose (Eq. 

(9)). Related ideas are discussed in Ref. [23].  

We conclude this section with a comment on the ratio (∫dx j⋅E /IV) approximated 

as 1/2 in Eq. (8). Since the dominant dissipation is due to cosmic rays generated in the 

nose, the factor 1/2 is a measure of where DCLC acceleration commences along the 
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voltage drop V over a < r < R. This issue is explored in some detail in Ref. [6] with the 

conclusion that 1/2 is a reasonable estimate. 

 

4. Cosmic Ray Energy Spectrum 

To calculate the quasi-steady cosmic ray intensities, we note that DCLC 

instability causes leakage across the current channel at about the same diffusion rate as 

that driving the current [6, 22]. The cosmic ray energy distribution N(E) is given by: 

 

N(E)  =   ∫aRdr ∫0Hdz (-D ∂2F(r,z,E)/∂z2)  =   ∫R(E)
Rdr (I/e<v>) f(E) (κ*D/Δ2) (20)  

 

where F(r,z,E) ≈ n(r,z)f(E) is the ion Vlasov distribution function with variables r, z and 

ion energy E. In the second step we approximate ∫dzn = (I/e<v>), the line density from 

Eq. (1), and ∂2/∂z2 ≈ κ*/Δ2 with dimensionless factor κ* to be adjusted to insure energy 

conservation. We approximate the time-averaged ion energy distribution f(E) due to drift 

cyclotron diffusion downward in energy by constant f(E) = E(r)-1 over 0 < E < E(r), E(r) 

= ∫ar dr Er = e(V/ln R/a) ln(r/a) being the maximum energy at r due to acceleration by Er in 

Eq. (9). There are no ions with energies > E(r) at r, giving as the correct lower limit of 

integration R(E), the smallest radius at which E(r) > E. Changing variables from r to E(r) 

gives dr = d(E(r))[r ln(R/a)/eV]. Also we approximate <v> = D/r and we take Δ ≈ rL in the 

nose, as argued in Section 3, giving Δ(r) = (miγcv⊥/eBφ) ≈ r(E(r)/5eV) using Bφ = Bo(a/r) = 

0.2(V/cr) by Eq. (3). Then r’s and D’s cancel, giving:  

  

N(E)  ≈     (I/e) [κ* 25 ln(R/a)] ∫EeVdE(r)(eV/E(r)2) f(E) 

=     (I/e)[κ(eV)Γ - 1] E - Γ   ,   Γ = 1+ k  (21)  

 

where κ absorbs κ* and other numerical factors. For f(E) = E(r)-1, the integral yields k = 1 

giving Γ = 2. Setting k = 1.7 gives the measured value Γ = 2.7, implying some deviation 

from f(E); kinetic simulations could determine f(E) and k.   

The observed intensity is (1/km2 yr) at energies > 1019 electron volts ≡ E1, from 

472 sources < 240 Mlyr away [4]. For spherically uniform sources within RC = 240 Mlyr, 

this implies an average source density S satisfying ∫0Rc4π r2dr(S/4π r2) = SRC = (1/km2 yr), 
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giving a total source strength IS = ∫0Rc4π r2drS =  2 x 1017 amps for hydrogen. We found in 

Section 2 that a single cosmic ray source with MBH = 108 MSUN yields 7 x 1018 amps, but 

not all at energies capable of reaching Earth. The fraction I19 above energy E1 is: 

 

 I19  =  ∫E1
eVdE N(E) = I (κ/1.7)[(eV/E1)1.7 – 1]    ≤   2 x 1017 amps (22) 

 

where V = 9 x 1019 volts and I = 7 x 1018 amps from Eq. (12), and the adjustable 

parameter κ = 1.2 x 10-3 to satisfy ∫dx j⋅E = 1/2 IV = ∫E2
eVdE EN(E) (by Eq. (2)) for E2 = 

1016 electron volts entering the nose (γ ≈ 107 by Eq. (16)). While not all AGN’s produce 

jets [2], we see that just a few massive black holes with jets could account for observed 

UHE cosmic ray intensities, and the dynamo voltage V ≈ 1020 volts by Eq. (12) accounts 

for maximum energies in the quasi-steady spectrum [1].   

Transients for times t << τ in Eq. (13) could account for a few cosmic rays >> 

1020 eV [1,6]. Such transients would represent a local, rapid injection of helicity into the  

lobe(s), forbidden on average by the tendency of the current to hover at the current given 

by Eq. (4), as discussed in Section 4. Then transients at speed ≈ c only recur after a time 

sufficient to replenish the energy, giving a duty cycle ≈ c-1(dL/dt) ≈ 1%, hence an 

intensity much lower than the quasi-steady intensity of Eq. (21).  

 Note that ion losses discussed above must be made consistent with retaining a 

supply of hot ion current carriers and sufficient electrons to neutralize space charge. This 

is accomplished by inward transport recycling plasma from the ambient pressure wall 

pushed ahead of the nose.  Transport includes magnetic drifts mentioned in Appendix B 

that add to DCLC losses. However, whereas magnetic drifts only act to eject hot ions, 

DCLC spatial transport out of the nose is due to turbulent E x B drifts acting equally on 

all ions and electrons [21, 22]. Thus DCLC transport - D∂F(x,v)/∂z for ions and for 

electrons can both maintain current carriers and charge neutrality through differences in 

∂F(x,v)/∂z, which can be positive for the cold ambient ions and electrons in the 

distribution but just enough negative for hot ions to do in detail what adjusting κ does in 

our model. This implies recycling of cold ions from  the ambient pressure wall being 

pushed ahead by the jet, giving a recycling rate IRECYCLE  = ∫E2
eVdE N(E) > 1000 I.   
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5. Jet Collimation, Radiolobes, Electron Synchrotron Radiation 

As derived in the Appendices, black body radiation from the accretion disk would 

be similar to that derived from the Standard Model, in agreement with data [2, 24]. The 

main difference in our model is that radiation is weaker than the Poynting vector power at 

large r but becomes comparable to Poynting power as r → a, disk radiation then 

accounting for about 25% of the 95% of the gravitational power that enters the central 

column. A fixed 25% of the gravitational power in radiation could in fact determine the 

lifetime τ ≈ 108 yrs otherwise taken as an input parameter in our calculations. In our 

model, the portion of the disk at r < a radiates as an approximate sphere of radius a, 

subject to the Eddington limit on the lifetime given by: 

 

 τ ≈ 0.25 (.95)(1/2 MBHc2/LEDD) =   1.6 x 1015 ≈    108 yrs  (23) 

 

where LEDD = 1.3 x 105 MBH giving τ independent of MBH as observed [1,2]. With this 

interpretation, our quasi-steady snapshot of an accretion dynamo, in Appendix A, is the 

final stage of a process that burns itself out in a time τ, at an ever faster accretion velocity 

near the black hole that prevents replenishing the dynamo after that time.  

The unique predictions of our model concern emissions from the highly visible 

jet/radiolobe structure. Note that the cosmic ray acceleration model of Sections 2-4 is 

independent of the jet length L. Yet the most striking feature of AGN jets is their 

apparent collimation over a very long length L before radiolobes form, despite the well-

known tendency of current columns to undergo “kink” modes such as those observed in 

Fig. 5b [25]. As it turns out, the long length is probably due to the well-known stabilizing 

effects of the diffuse pinch in Figure 1, though the diffuse pinch has negligible effect on 

cosmic ray acceleration.  

Kink modes can be divided into internal modes and external modes. Internal 

modes, discussed in Appendix B, are mainly important in driving E| | in the central 

column, Eq. (13). External modes are rigid motions of the entire current profile, 

potentially destroying collimation, described by 3D perturbations around the mean 

magnetic field B given by δB  = ∇ x (ξ  x B) ∝  exp i(mφ + 2πnz/L) for a radial 

displacement ξ  of the current boundary of a diffuse pinch of length L. Instability occurs 
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if the external mode free energy δW is negative, requiring, for a pinch isolated from 

nearby walls, qn < 1 with q defined below. This condition is always satisfied for a long 

diffuse pinch surrounded by a vacuum or a plasma that is too resistive or too low in 

density to support the currents implied by δB, but the corresponding δW can be very 

small. Shafranov derived an approximate formula for δW for a diffuse pinch, giving 

stability for m ≥ 2, and for the most unstable case with m = 1 [25]: 

 

δWKINK =   - Lξ2Bφ(Ro)2 qn(1 – qn),    q  = (2πRo/L)(Bz/Bφ)Ro   (24)  

 

where Ro is the diffuse pinch radius in Figure 1. 

The assumed large radial extent of the diffuse pinch current, supported by our 

discussion of radial magnetic profiles in Appendix B, may explain the collimation of the 

jet. Radiolobes are likely to form where magnetic perturbations of the diffuse current jet 

first grow to appreciable amplitude. The criterion of Eq. (24) gives instability if qn < 1 

where, for the diffuse pinch profile of Appendix B (Bφ ∝ (a/r) and Bz ∝ (a/r)3/2), we 

obtain:  

 

qRo =  (2πRo/L)(Bz(Ro)/Bφ(Ro)) = (2πRo/L)(a/Ro)1/2  (25) 

 

This always gives instability for a long pinch, but with weak free energy, δW. The only 

unstable external modes are rigid displacements (constant radial ξr, azimuthal m = 1, 

axial mode number n), with growth rate γKINK given by [25]: 

 

 γKINK =    [- δW/∫2πrdrdzξ2ρ]1/2  ≈   2 (c/Ro) (nqRo)1/2  (26) 

   

To obtain the expression on the right, we note that the kink mode probably terminates at 

the electrostatic sheath at z = H, giving ∫2πrdrdzξ2ρ ≈ ξ2Lπa2ρ(a), and we use                  

δW = - ξ2LqRonBφ(Ro)2 from Eq. (24). Then, using Bφ(Ro)2 = Bo
2(a/R0)2, the ratio in […] in 

the middle expression becomes (Bφ(Ro)2/πa2ρ(a))(nqRo) = 4(vA(a)/R0)2(nqRo) = 

4(c/R0)2(nqRo) for the low density of the central column.  
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Despite kinking, the jet would retain the good collimation derived in Appendix B 

up to the nose which experiences the maximum number of growth periods γKINτ, typically 

requiring 20 or more growth periods to create radiolobes out of noise at the nose. For qRo 

from Eq. (23) and Bφ(Ro) = Bo(a/Ro) and Bz(Ro) = Bo(a/Ro)3/2, we obtain: 

 

γKINKτ  = 2 (cτ/Ro) [(2π Ro/L)(a/Ro)1/2]1/2 ≈ 50 (27) 

 

where we take n = 1 for kink modes with wavelength ≈ L; cτ/Ro = 10 4, Ro/L = 10-2 and 

(a/Ro) = 10-8 for Ro below and a in Eq. (12). Higher n modes may affect structure along 

the jet.  

In Appendix B, we show that the diffuse pinch joins smoothly onto the disk so 

that the diffuse pinch radius Ro is also the O-point radius of the dynamo where Bz and jz 

change sign, hence the boundary of power supplied to the jet. Also the O-point radius is 

effectively the edge of the accretion-sustained dynamo, which grows radially until the 

gravitational energy is exhausted, by jet ejection, disk radiation and energy falling into 

the black hole – all estimated in Appendix A. Then, for the accretion velocity vr = 

r(MG/r3)1/2 in Appendix A, Eq. (A19b), we estimate for numbers in Eq. (12):  

 

RJET  = Ro = ∫0τdt vr  ≈  (cτ)(RG/2RJET)1/2   ≈     10-2 L (28)  

 

where on the far right we solve RJET
3/2 = cτ(RG/2RJET)1/2 using L from Eq. (8) and         

(aΩ/c lnR/a) = 0.01 from Eq. (12) and lnR/a = 20. Eq. (28) agrees with our model values 

for Ro and L giving RJET roughly consistent with observations [26].   

Note that at first sight an accretion disk this large could not provide current 

carriers at large radii for the field solution of Figure 3 yielding field line lengths ≈ 

L(Bφ/Bz) >> ct at large r. Yet there is no other likely source, since the density in Eq. (1) is 

too low to ionize neutrals and inward diffusion of ambient ions is too weak [6]. The most 

likely resolution is analogous to the existence of closed 2D flux surfaces in laboratory 

spheromaks even when kinking 3D field lines remain connected to power from the gun 

[8,14]. Here also, the 2D solution of Figures 1 and 4 is probably due to kink instability 

producing 3D field lines of length < cτ, as in Fig. 5b [6].   
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Concerning electron synchrotron radiation from the jet, we first note that, while 

radiation from the runaway ion beam discussed in Section 3 is due to field line curvature, 

two-stream instability mentioned in Section 2 scatters electrons which then radiate due to 

Larmor radius curvature, giving the microwave and higher frequency radiation 

illuminating radiolobes [6]. Since in our model the power is concentrated in the central 

column, a natural explanation of synchrotron radiation from the radiolobes might be kink 

instability of the diffuse pinch as it creates a radiolobe, causing the pinch with its 

constricted central column to wander, loosely filling the radiolobe volume defined by the 

return current, as in the MHD simulation of Fig. 5b. That is, the apparent diffuse glow of 

a radiolobe would actually be produced by a glowing filament – the central column – 

which appears straight in 2D but loosely fills the radiolobe volume in 3D, with a number 

of turns of order (cτ/πL) ≈ 30 [6]. With sufficient resolution, this filamentary structure 

could be detected.  

Since both ions and electrons are accelerated, the power in electron synchrotron 

radiation should be of order 1/2 IΔV [6], where ΔV is the voltage drop along the central 

column that we estimated to be ΔV < V/ lnR/ao = 0.05V by Eq. (15). Electron 

synchrotron wavelengths would be determined by the field Bo in the central column. For 

Bo = 5 x103 gauss in Eq. (12), the predicted fundamental wavelength λSYN = 104 (γe/Bo) is 

in the cm range over the central column, as often observed, since γe is small due to 

radiative cooling [6]. This Bo corresponds to MBH ≈ 108 Suns. For other values of MBH, 

λSYN ∝ Bo
 -1 ∝ MBH

1/2 by the scaling of Section 2. The observed spectrum would include 

harmonics of the microwave fundamental and x-rays due to the high energy tail of the 

electron energy distribution. 

We conclude with four additional comments on observables. First, the magnetic 

profiles derived in Appendix B imply synchrotron wavelengths increasing with r in the 

quasi-stable portion of the jet, perhaps accounting for observed illumination patterns with 

radial extent increasing with wavelength [27]. Secondly, synchrotron damping in the jet 

of magneto-rotational fluctuations propagated out of the disk may account for intense 

luminosity near the disk (see Appendix C). Thirdly, the spheromak-like magnetic field of 

Figure 1 is subject to rotationally-augmented “tilt” modes that could give rise to 

precessional motion accounting for rapid periodic changes in electromagnetic emission of 
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jets observed end-on, with polarization characteristic of synchrotron emission in the 

coherent magnetic field of the jet [28]. Precession rather than disruption might be 

expected for parameters close to marginal stability. For an isolated disk (no jet), the 

stability condition is (Ω/kzvA) ≈ 0.2 for the m = 1 tilt mode (with Alfven speed vA) [29], 

similar to the stability criterion for the m = 0 magneto-rotational mode discussed in 

Appendix C. Finally, the asymmetric shape of some jet-radiolobe structures (as in Ref. 

[26]) can result from intergalactic “winds” pushing on the return current boundary, the jet 

inside always conforming to the boundary, as discussed in Appendix B [6].   
 

6. Summary 

We have arrived at a self-consistent accretion-driven magnetic structure 

producing UHE cosmic rays. In Appendices A, B, and C we show how accretion sustains 

a self-excited dynamo driving current that creates the observed jet/radiolobe structures 

that serve as the accelerator in Section 3, illustrated in Figure 1 and MHD simulations in 

Figure 5. In Section 2, we argue that dynamo torque dominates the accretion process, 

giving in Appendix A a magnetically-dominated modification of the viscosity-driven 

Standard Model of accretion [2, 30]. Macro-stability of the configuration is shown to 

arise from a tendency of the current to hover at just the value required to eject a jet.  

The new feature of our cosmic ray model is quasi-steady acceleration of cosmic 

ray ions, mainly in the central column and its return current in Figure 1 that are 

insensitive to accretion details outside of the compact central column radius a ≈  10RG. 

Achieving high energies in the UHE range requires a new mechanism, the DCLC 

velocity-space instability caused by runaway acceleration creating a non-Maxwellian ion 

beam, discussed in Section 3. The model also may explain the remarkable collimation of 

jets, discussed in Section 5.  

The predicted disk radiation, in Appendix A, is similar to the Standard Model. 

Unique predictions concern the jet/radiolobe structure created by the dynamo. As with 

the Standard Model, we take the black hole mass MBH and the accretion rate as input 

parameters. From these 2 inputs, the model makes 7 predictions roughly consistent with 

data: the length of the collimated jet in Section 2; the steady state cosmic ray energy 

spectrum, the maximum energy in this spectrum and the cosmic ray intensity reaching 
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Earth in Sections 3 and 4; and the jet radius, the synchrotron wavelength, and the 

synchrotron power in Section 5. The magnetic fields predicted by the model are also 

consistent with inferred field magnitudes in radiolobes, which account for the radiolobe 

radius at which magnetic pressure balances ambient pressure [16].  

Based on these qualitative successes, we offer our model as a speculative but 

potentially self-consistent linkage of  UHE cosmic rays to dynamo activity around black 

holes. Detailed verification of all features simultaneously requires new computer 

simulations and laboratory experiments. We have shown that it is essential to include in 

simulations kinetic instabilities needed to accelerate the cosmic ray ions. Understanding 

cosmic ray acceleration requires also collisionless experiments and kinetic simulations 

allowing ions to run away in the expanding nose in Fig. 1. Kinetic simulations at the level 

of sophistication currently available in plasma physics can calculate the cosmic ray 

spectrum estimated in Section 4. Kinetic transport coefficients introduced into 3D MHD 

simulations can provide a more accurate mapping of the evolving magnetic field.  

 

Appendix A. Accretion-Driven Dynamo Model 

In Appendices A, B and C, we attempt to justify the cosmic ray accelerator 

magnetic structure of the main text, illustrated in Figure 1, characterized by a dynamo-

driven central column of current with a large inductance due to the surrounding diffuse 

pinch and radiolobe. To do so, we amend the accretion disk model of Shakura and 

Sunyaev [30], sometimes called the Standard Model, to include the effects of the dynamo 

magnetic field. Having developed a 0-D model for the dynamo driving the central column 

in Sections 2 and 3, as in the Standard Model the domain of interest here will be the 

extended dynamo driving the diffuse pinch, covering a < r < Ro = RJET. As defined in 

Section 5, Ro is the dynamo O-point radius (where jz and Bz change sign), growing for the 

lifetime of the system, Eq. (23). Like the edge of the rotor in Figure 2, Ro defines the 

boundary of power outflow from the dynamo. Though the jet current returns somewhere 

beyond r > Ro, this portion of the accretion disk where Ω(r) is small has little effect on 

the magnetics of the dynamo/jet, serving mainly as an accretion reservoir and electric 

potential reference point giving V12 = ∫R1
R2dr rΩ(r)Bz ≈ ∫R1

Rodr rΩ(r)Bz as the voltage drop 
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between a current path leaving the dynamo at r = R1 < Ro and returning at r = R2 > Ro  

[6].  

In developing our accretion model, we follow the discussion of the Standard 

Model in Ref. [2], Chapters 5 and 8, and its adaptation to AGN’s in Appendix A of Ref. 

[17]. We begin with conservation laws for mass, momentum and heat, now adding 

Maxwell’s equations and Ohm’s Law: 

 

∂ρ/∂t +  ∇⋅ρv = 0      (A1) 

 

ρ(∂v/∂t)  -  c-1j x B =    F  ≡   E(∇⋅E/4π)  - ρ(∇VG + v⋅∇v)   -   ∇⋅P   (A2) 

 

      ∂(3nkT)/∂t  = PVISC  +  c-1j ⋅ E   -    (PRAD/H)  (A3) 

 

∂B/∂t  = - c ∇ x E     (A4) 

 

c-1∂E/∂t = ∇ x B  -  (4π/c)j    (A5)   

 

E  +  c-1v x B = 0      (A6) 

 

where E is the electric field, B is the magnetic field with current density j, v is the fluid 

velocity, ρ = nmi is mass density, VG is the gravitational potential, PRAD is surface 

radiation power, and P  is the pressure tensor including radiation pressure PRAD/c. In Eq. 

(A3), as in the Standard Model we neglect heat transport out of the disk but retain the 

viscous heating PVISC of the Standard Model and surface radiation, H being the disk 

height. While we have omitted Spitzer resistivity η giving timescales (4πH2/ηc2) > τ, E, 

B and v will be understood to include both the mean fields and perturbations as needed, 

for example, a symmetrically averaged hyper-resistivity term  <v1 x B1> in Ohm’s Law, 

discussed in Section 3 [14]. Poisson’s equation and ∇⋅B = 0 must be satisfied at t = 0, 

preserved thereafter by (∇⋅) operating on Eqs. (A4,A5).  

As in the Standard Model, we neglect collisional transport processes, so that 

hyper-resistivity and most especially the accretion velocity vr arise only from turbulence 
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processes due to magneto-rotational instability (MRI), discussed in Appendix C. The 

neglect of collisions will  be justified by the plasma density derived from the accretion 

disk model. That vr plays the crucial role in creating a dynamo can be seen from Eq. 

(A4), which, together with Ohm’s Law, yields the toroidal field equation ∂Bφ/∂t = 

rΩ∇⋅BPOL with poloidal B, now verified experimentally [3], and the poloidal field 

equation ∂Aφ/∂t = (-vrBz + <v1z B1r >) which requires vr to sustain growth of the dynamo 

field Bz (while <v1z B1r > maintains quasi-steady state).  

The electrostatic ∇⋅E in Eq. (A2) is important only in the sheath that dominates 

the ejection of ion current against gravity, giving  Eq. (1) (see Ref. [6], Appendix A1). 

Otherwise, we can neglect ∇⋅E in F, even though the dynamo voltage is produced by 

electrostatic polarization charge. Comparing the electric force term Er(∇⋅Er/4π) with Er = 

(vφBz/c) to the magnetic term c -1jφBz = ∂(Bz
2/8π)/∂r gives at r > a inside the dynamo the 

ratio ≈ 2(vφ/c)2  ≈ 0.1(a/r), hence small; and, projecting Er into the jet, the ratio (aΩ/c)2 <  

0.04 inside the central column, with (aΩ/c) = 0.2 from Eq. (12), again a small effect. 

  We also construct from these equations the conservation of angular momentum, 

given by the z component of (r x) operating on Eq. (A2), and the conservation of energy, 

given by operating on Eq. (A4) by (B⋅), operating on Eq. (A2) by (v⋅) and adding the 

results to  Eq. (A3) to obtain, with flux ψ = ∫0r2πrdr Bz = 2πrAφ for vector potential Aφ: 

 

∂/∂t (ρr2Ω) +    ∇⋅ρv r2Ω - (rx∇⋅P)z =  c-1r(jzBr - jrBz)  =  -c-1∇⋅j(ψ/2π) (A7) 

 

∂/∂t [(B2/8π) + 3nkT + ρ (v2/2)] +  ∇⋅ (cExB/4π)   =  v⋅F  -  (PRAD/H) (A8)   

 

Note that j⋅E (including hyper-resistivity) and also PVISC only exchange energy, hence 

cancel out in Eq. (A8). Eq. (2) in Section 2 is the volume integral of Eq. (A8), giving the 

inductance from (B2/8π) and gravitational power from v⋅F.  

In Eq. (A7), on the far right we add to the torque c-1(ψ/2π)∇⋅j = 0, giving c-1∇⋅jψ 

which represents the conversion of rotational angular momentum into magnetic canonical 

angular momentum. Integrating Eq. (A7) over the surface of the disk gives, from           

∇⋅ρvr2Ω, the radial accretion of angular momentum, and, from ∇⋅jψ, the axial ejection of  
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angular momentum into the jet, ∫dS⋅jzψ. In the absence of dissipation, ∇⋅jψ would 

conserve angular momentum, finally recycling all of it where current returns to the disk 

somewhere beyond r > RJET. In the outer portion of the return path carrying the central 

column return current, where DCLC instability satisfying Eq. (19) ejects cosmic ray ions, 

acceleration converts jψ into kinetic angular momentum whereby each escaping ion 

carries with it a diamagnetic angular momentum arising from jφ = nevφ ∝ (-∇zp/B2)Br  with 

pressure p giving mγrvφ ∝ (rL∇zβ)eψ → eψ in the nose, giving also dψ/dt =                       

- (n-1∇z⋅D∇zn)ψ which kills ψ, leaving ∇⋅j = 0 (not flux surfaces) as the proper 

description of the return current channel. The DCLC instability criterion, Eq. (19), cannot 

be satisfied over the large dimension of the diffuse pinch, so that deep inside the diffuse 

pinch angular momentum may continue to be recycled. Since most of the angular 

momentum is extracted far out in the diffuse pinch, it follows that most of the angular 

momentum, but little of the energy, may be recycled to the outer region of the disk, 

beyond the active dynamo. 

As in the Standard Model, we will apply the Thin Disk approximation in order to 

reduce 2D Eqs. (A1)-(A8) to 1D, by averaging over the disk height [2]. We first recover 

the main results of the steady state Standard Model by dropping all time derivatives and 

integrating Eqs. (A1), (A7) and the z-component of Eq. (A2) over the disk height H, 

giving, with Σ = ρH and M* ≡ dMBH/dt: 

 

M*  = - 2πΣrvr     (A9)  

 

(IBz/c)  = - M* r -1∂/∂r r2Ω[1 – ν(vrΩ)-1∂Ω/∂r]  (A10) 

 

 1/2 ΣH(MBHG/r3)   =  P   ≡  2nikT + c-1PRAD + Pz ,      Pz =  αz(M*Ω/2πr)(H/r)  (A11) 

 

In Eq. (A9), we neglect mass ejected into jets by assuming vz = 0 in Eq. (A1), whereby 

integrating Eq. (A1) over 2πrdz and dropping ∂M*/∂t gives r -1∂M*/∂r = 0 with M* = 

2π∫0Hdzρvr = 2πΣrvr, hence the constant accretion rate in Eq. (A9). In Eq. (A10) obtained 

from Eq. (A7), ν is the viscosity coming from ∇⋅P [2] and we anticipate the discussion in 

Appendix B justifying Br ≈ 0 inside the dynamo (except near the midplane for the 
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quadrupole field of Refs. [17, 18]). Then we can drop Br in the torque r(jzBr - jrBz), giving 

on the left hand side of Eq. (A10)  ∫0H2πrdz(-c-1jrBz) = - (IrBz/c) = (IBz/c) where Ir(r) is 

the downward-flowing dynamo current jr integrated across the disk, and Ir = - I, shown by 

integrating ∇⋅j = 0 (obtained from the divergence of Eq. (A5) with ∂E/∂t = 0) giving 

∫0
H2πrdz[r -1∂/∂r(rjr) + ∂/∂z jz] = ∂/∂r (Ir + Iz) = 0 giving - Ir = Iz ≡ I = ∫0r2πrdrjz. Eq. (A11) 

is the integral across the disk height of the z-component of Eq. (A2). On the left hand 

side, we drop (v⋅∇v)z and take (∇VG)z  ≈ (MBHGz/r3) with black hole mass MBH and 

Newtonian gravitational constant G [2]. On the right hand side ni = (Σ/miH), c-1PRAD is 

radiation pressure and Pz is axial pressure due to magneto-rotational (MRI) turbulence, 

derived in Appendix C. Another condition is obtained by integrating Eq. (A3) over the 

disk height, giving [2]: 

  

PHEAT   ≡   H[PVISC  + PH]   = PRAD  ,   PHEAT = vr H ∂/∂r (Bz
2/8π) (A12) 

  

where PHEAT is MRI heating derived in Appendix C. 

For the Standard Model, taking MBH and M* as known and dropping magnetic 

terms and our MRI turbulence-derived terms leaves 4 equations, Eqs (A9) – (A12), with 

4 unknowns, vr, H, Σ and T, if we guess Ω (say, Keplerian). Then angular momentum is 

conserved only if, following Shakura and Sunyaev, one postulates a viscosity ν large 

enough to satisfy [1 – ν(vrΩ)-1∂Ω/∂r] = 0 in Eq. (A10). This approach is used to obtain 

concrete parameters in discussing the stellar-collisional magnetic pumping method of 

helicity ejection to create a self-excited dynamo, in Ref. [17], it being assumed that the 

growth of the dynamo field will not much perturb the accretion process.  

In Appendix C, we will find that the disk parameters obtained in Ref. [17] would 

be unstable to magneto-rotational instability (MRI), a currently-favored alternative means 

of conserving angular momentum [2, 31]. Another candidate – Rossby vortex instability 

– may be important in the accretion reservoir of Figure 1 [5] but this instability may be 

suppressed by the strong magnetic fields in the dynamo [32]. Here we will show, in 

Appendix C, that MRI transport sustaining magnetic jets can fully account for angular 

momentum conservation, thus prompting us to take ν = 0, which also turns out to 

simplify the model considerably.  
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 In the remainder of this Appendix, we will complete the set of equations required 

for our model, 7 in all, including the 4 above for the Standard Model, but retaining the 

magnetic terms and setting ν = 0. Our 7 equations yield seven variables, the Standard 

model set vr, H, Σ and T together with I, Bφ and also Ω, which is determined by the 

model. As in the Standard Model, physical plausibility rests on explaining the accretion 

velocity vr, in our case by magneto-rotational turbulence shown to be the surviving MHD 

instability in Appendix B. A complete justification for setting ν = 0 would require 

showing also that non-magnetic modes are either stable or contribute negligible transport, 

true for the Standard Model ν = cS/H as noted in Section 2. 

Our three additional equations are energy conservation, Eq. (A8); the radial force 

balance, obtained from the r component of Eq. (A2); and a new closure to replace the 

assumed viscosity of the Standard Model. The useful form of energy conservation is 

obtained by integrating Eq. (A8) over the disk height, now retaining v⋅F and Ohm’s Law 

in the Poynting vector to obtain: 

 

{Ω(IBz/2πc) + HrΩFφ }  -  PRAD =  - HvrFr    (A13) 

 

 Fφ =    - ρ[vr∂(rΩ)/∂r  +  Ωvr] = (M*/2πH)[∂(rΩ)/∂r +  Ω] (A14) 

  

{Ω(IBz/2πc) + HrΩFφ } =  - (ΩM*/2π)[r -1∂(r2Ω)/∂r - ∂(rΩ)/∂r  - Ω]  =  0 (A15) 

 

where on the left hand side of Eq. (A13) the Poynting vector term gives ∫dz(rΩBzBφ/4π) =       

(rΩBz/4π)(2I/cr) = Ω(IBz/c), showing that the jet power is just Ω times its angular 

momentum ejection rate, Eq. (A10). For any quasi-steady rotation profile Ω(r), Eq. (A15) 

gives exact cancellation of the Poynting term with HrΩFφ , confirming that it is rΩFφ that 

performs the work extracting the stored rotational energy that is ejected by the non-

radiative contribution to the Poynting vector. Substituting Eq. (A15) into Eq. (A13) 

gives: 

 

Fr =  - ρ[( MBHG/r2) - rΩ2 + ∂/∂r (vr
2/2)] - ∂P/∂r    = (Hvr)-1PRAD (A16) 
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We will find that PRAD is negligible compared to terms in Fr, giving Fr ≈ 0. Introducing Fr 

= 0 into the radial component of steady-state form of Eq. (A2) gives: 

  

 - c-1(jφBz – jzBφ) =   (1/8π)[∂/∂r Bz
2  +  r -2 ∂/∂r (2I/c)2 ]   =   Fr    = 0 (A17) 

 

This key result, coming from dropping both ∇⋅P (ν = 0) and Br  in Eq. (A7), is 

quite robust, the omitted torque ∝ jzBr giving (jzBr/jrBz) = (HI-1∂I/∂r)(Br/Bz) = 

(a/r)1/2(Br/Bz)    << 1 for any likely corrections for finite Br. Eq. (A17) is the principal 

simplification of our Thin Disk model, giving however only the z-averaged Bz etc. inside 

the dynamo, while the actual Bφ satisfies ∂Bφ/∂z = - (4π/c)jr. Otherwise, approximations 

giving Eq. (A17) will be found to follow if we set Br  = vz = ∂/∂z(vφBz) = ∂/∂r(rρvr) = 0.  

The field solution obtained from Eq. (A17), in Appendix B, is the exact solution for the 

jet where, except at the nose, we can take Br = 0 exactly, a manifestation of pinch forces 

causing collimation of the jet. In this way our dynamo solution provides the correct field 

from which the jet/radiolobe inductance was calculated in Section 2.   

Finally, as closure, we use the fact that unstable plasmas typically achieve steady 

state by hovering near the marginal condition for instability, giving for the magneto-

rotational mode: 

 

 (π/H)2(Bz
2/4πρ) =    (π/4)(Bz

2/ΣH) = - r∂/∂r Ω2   (A18) 

 

with wavenumber kz = (π/H). Instability occurs if the left side is smaller than the right 

hand side [31].  

The seven Eqs. (A9) - (A12) and Eqs. (A16) – (A18) with ν = 0 form a complete 

set to describe a steady state accretion disk at the margin of magneto-rotational 

instability. We rewrite these model equations as:  

 

[ΩKEP
2 - Ω2 + r -1 1/2 ∂/∂r vr

2]    = 0 from Eqs. (A16) (A19a)   

 

vr       =   - 1/2 r(ΩKEP
2/αzΩ)  from Eqs. (A9,A11) (A19b) 

 



 28 

Σ =   - (M*/2πrvr)  from Eqs. (A9) (A19c) 

  

(IBz/c)  =    - M*r -1∂/∂r (r2Ω)  from Eq (A10)  (A19d) 

 

ΣH                  =   (π/4)[Bz
2/(- r∂Ω2/∂r)] from Eq. (A18) (A19e)  

 

   PHEAT  ≡   Hvr ∂/∂r (Bz
2/8π) =  (σT4/τOP) from Eq. (A12) (A19f) 

 

∂/∂r Bz
2  +  (1/r2) ∂/∂r (2I/c)2  =  0  from Eqs. (A17) (A19g) 

  

where ΩKEP
2 = MBHG/r3 is Keplerian rotation, σ = 5.7 x 10-5 in cgs units is the Stefan-

Boltzmann coefficient, and τOP = 1 + ΣκR with Thomson opacity κR = 0.4 [17]. Eq. 

(A19c) is just mass conservation, Eq. (A9). As justified below, we drop radiation and 

thermal pressure in the axial force balance, Eq. (A11), whereby using Eq. (A9) to 

eliminate M* in Eq. (A11) gives vr in Eq. (A19b). 

Eqs. (A19) have been organized to facilitate finding asymptotic solutions of 

greatest interest. The radial force balance Eq. (A19a), together with vr ∝ Ω-1 in Eq. 

(A19b), suggests Keplerian scaling for Ω. In fact, for any asymptotic power law               

Ω2 ∝ r -K, solutions of Eq. (A19a) exist only if K = 6 – K = 3 giving Keplerian K = 3. 

Letting Ω2 = C/r3 = XΩKEP
2 , Eq. (A19a) becomes a quadratic equation with solutions:  

 

  X  = 1/2 [1 +/- √[1 – (1/2αz
2)]      (A20) 

 

Real solutions exist only if the MRI axial pressure parameter αz
2 > 1/2, or kzH <               

√2(-ω/Ω) < √2, - Ω being the maximum MRI growth rate [31]. This violates our nominal 

boundary condition kzH > π. However, given the strong tendency toward quasi-steady 

state by the arguments in Section 2 and Appendix B below, we interpret this result as 

another indication of marginal stability by taking αz
2 = 1/2. Then X = 1/2, giving Ω =          

- (1/√2)ΩKEP and vr = 1/2 r(ΩKEP
2/Ωαz) = - rΩKEP. From Eqs. (A10,A13), the 

corresponding Poynting vector power (- rΩBzBφ/4π) = ΩM*(r -1∂(r2Ω)/∂r = 1/8 M*ΩKEP
2 
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which is 25% of the gravitational power, hence an efficiency f = 25% in converting 

gravitational power to jet power, the remainder being convected inward toward the black 

hole (as vr and rΩ kinetic energy). We also used f = 25% for the Central Column in 

Section 2 

Substituting vr = - rΩKEP into Eq. (A19c) gives Σ. The remaining asymptotic 

parameters can be found from an expectation, verified in Appendix B, that I should 

approach a constant value at large r. Then Bφ = (2I/cr) ∝ 1/r and, by Eq. (A19d), Bz ∝ Ω 

∝ ΩKEP ∝ 1/r3/2  as anticipated in Eq. (5), giving the inductance in Eq. (6). With Bz = Bφ = 

Ba at r = a, we can write Bz = Ba(a/r)3/2 and I = (caBo/2), whereby Eq. (A19d) yields a 

value for Ba and Eq. (A19e, A19f) yield H and T, while Eq. (A19g) only gives details of 

I(r) near r = a, in Appendix B. For MBH = 108 MSUN and τ = 108 yrs giving M* =            

(MSUN /τ) yielding the central column parameters in Eq. (12), we obtain: 

  

Ω  =         - 0.7 ΩKEP      (A21a)  

vr = - rΩKEP       (A21b) 

 Σ = 5 (a/r)1/2      (A21c) 

H = 0.7 a (r/a)1/2      (A21d) 

T = 6 x 104 (a/r)1/2      (A21e) 

   

We expect Ba < Bo due to additional toroidal current inside the central column. 

The ratio Bo/Ba is related to our estimate a/RG,= 10 in deriving numbers in Eq. (12), 

Section 2. The derivation in Section 2 gives IV = 1/2 (aΩKEP)(aB0)2 = f[1/2 M*c2] while 

the derivation from Eq. (A19d) yields (IBz/c) = ½ aBa
2 = -1/2 M*Ω =                                 

1/2 (0.7)M*ΩKEP, all quantities evaluated at r = a.  Eliminating the radius a gives: 

 

(aΩKEP/c)2     = (RG/2a)    = (f/0.7)(Ba/B0)2    ≈  0.09f  (A22) 

 

Then a/RG is determined by choosing a reasonable Ba/B0 matching the Keplerian zone 

and the central column at r = a in Figure 3. The numbers above correspond to Ba/B0 = 

1/4. For f = 0.25 above, this gives a ≈ (5/f)RG = 20RG rounded to a = 10RG in Section  2.  
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The line density Σ in Eq. (A21c) is about 104 times smaller than that for the 

Standard Model in Ref. [17], while, assuming black body radiation, the surface 

temperatures are comparable due to a large τOP for the Standard Model (τOP ≈ 1 for our 

model). Since we neglect radiation, of greater importance is the MRI-derived power 

driving radiation in Eq. (A19f), of order Ω(Bz
2/8π) ∝ Ω/r3 while the jet Poynting power is 

asymptotically larger, of order Ω(BφBz/8π) ∝ Ω/r5/2. Radiation pressure and thermal 

pressure are also small, as assumed. Dropping ∂P/∂r in Eq. (A16) is similarly justified by 

P ≈ Pz ∝ (ΩH/r2) ∝ (1/r)3/2(1/r)1/2(1/r) = 1/r3, giving ∂P/∂r ∝ (1/r4) while all other terms 

are ∝ (1/r3).  

Radiation is not negligible at r < a, the fraction radiated determining τ by Eq. (23). 

Near r = a, the ratio of surface heating power ΩH(3Bo
2/8π) (from Eq (A19f)) to the 

Poynting power is: 

  

(Heating/Jet Power) =  [ΩH(3Bo
2/8π)]/[Ω(aBo

2)/4π]  =  3/2 (H/a)  ≈ 1    (A23)  

 

where, at r = a, H/a = 0.7 by Eq. (A21). Thus inside the central column, heating converted 

to radiation is comparable to the jet power, so that radiation is also about 25% of the 

gravitational power entering the central column, as we assumed in deriving τ in Eq. (23).   

 Note that, though vr derived in Appendix C exists only by virtue of MRI 

instability, the results of Eq. (A21) do not depend explicitly on perturbation amplitudes, 

subsumed here in vr (or M*), as discussed in Appendix C.  

Note also that integrating Σ(r) in Eq. (A21c) over the disk of radius RJET in           

Eq. (28) gives a mass that already equals MBH at r = 0.2 RJET. This violates our model 

assumption that MBH dominates gravitational attraction, requiring some adjustment of the 

model near the dynamo O-point at r = RJET.   

Otherwise, Eqs. (A9) - (A12 ) and (A16) – (A18) constitute a complete model, 

including a calculation of Ω(r), down to r ≈ a few RG where internal kink modes and 

finally general relativity must be taken in account. Even without these complications, as 

shown in Appendix B our asymptotic results giving Keplerian rotation finally fail, at a 

radius that we will identify with r = a, the radius of the central column in Figure 1.  
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Appendix B. Magnetic Profiles, Inductance 

In this Appendix, we calculate magnetic profiles at r > a, still resorting to the 0-D 

model of Section 2 to describe the central column, at r < a. We begin by applying              

Eq. (A19g) and Eq. (A10) with ν = 0 to derive the field inside the disk, rewritten as:  

 

∂(Bz
2)/∂r + r -2 ∂(rBφ)2/∂r   =   ∂(Bz

2)/∂r + r -2 ∂(g/Bz
2)/∂r  =   0 (B1) 

 

   g(r)      = [2(M*r -1∂/∂r r2Ω)]2    (B2)  

 

Changing variables to dimensionless quantities F = (BZ
4r2/g) and x = (r/R1) gives: 

  

dF/dx = [F/x(F – 1)][(K+2)F + (K-2)]     (B3) 

 

where K = (- dlng/dlnx) = 3 for Keplerian rotation. Further transforming to variables lnF 

and ln x yields, for Ω2 ∝ x-K  with any constant K, an integrable form with solution: 

 

 x = F-k [(K + 2)F  +  (K – 2)]p     (B4) 

 

where k = (1/(K - 2)), and p = [2K/(K2 - 4)]. Plotting F versus x discloses two branches, 

the lower one being the physical solution for an isolated disk producing its own magnetic 

field (a “spheromak”, while the upper branch requires an external toroidal field, giving a 

“tokamak” or “reversed-field pinch”). The physical solution lies to the right of a value xo 

found by differentiating Eq. (B4) by d/dF. This gives dx/dF ∝ (F – 1), hence a turning 

point where F = 1.  

The lower physical branch is plotted in Figure 3 for Keplerian K = 3. Physically, 

ro = 8.6 R1 is the radius inside which Keplerian rotation is no longer possible, not 

determined here since the scaling number R1 is not determined. We will identify ro = a, 

the radius of the central column carrying most of the current, taken as a = 10 RG in 

Section 2. As justification, we note that, at r = ro, I is a fraction 1/1.7 = 60%  of its 

asymptotic value, indicating that current continues to flow radially downward through the 
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dynamo and out through the central column. Angular momentum can continue to be 

extracted at r < a, as is required to eject power, but not at the Keplerian rate.  

As noted in Section 2, the Thin Disk magnetic profiles in Figure 3, describing a 

dynamo, match perfectly onto a force free jet, also described by Eq. (B1).  With this 

interpretation, the fact that I is concentrated in the central column, giving B ≈ Bφ = (2I/cr) 

for r > a in Figure 3, justifies the inductance in Eq. (6) giving slow expansion of the jet in 

Eq. (7), giving then the cosmic ray accelerator electric field, Eq. (9), if also the nose 

maintains its shape during expansion of the jet (constant vz at the nose, giving Er = 

(vzBφ/c) ∝ r-1). That the blunt nose of Figure 1 should persist is due to jet dynamics, as 

follows.  

Jet dynamics including the nose is described by Eqs. (A2) - (A4). For slow 

expansion, dynamics can be approximated as a succession of force-free equilibria 

satisfying: 

 

λB = (4πj/c)  = ∇ x B     (B5) 

 

where λ must match the corresponding quantity at the surface of the dynamo. Unbounded 

solutions yield “pre-bubbleburst” current levels concentrated near the black hole (I < that 

in Eq. 4), as in the spherical self-similar solutions of Refs. [33,34].  Higher currents yield 

the cylindrical jet solution of Figure 1 inside the return current boundary, uniquely 

determined by introducing into Eq. (B5) the λ(ψ) for the disk magnetic field [35] 

(asymptotically λ ∝ r -3/2 ∝ ψ -3 for the field in Fig. 3, where ψ = ∫0r 2πrdrBz). Mapping 

λ(ψ) by Eq. (B5) is equivalent to “winding out flux” as in Ref. [15], except that plasma 

dynamics plays a key role in determining the evolving boundary shape. Figure 4 plots 

flux surfaces ψ = ∫0r2πrdrBz(r) for an equilibrium similar to Figure 3. Note that straight 

flux surfaces launched with Br = 0 at the disk remain straight up the nose. 

For typical laboratory spheromaks (and MHD simulations), field dynamics is  

determined by the Alfven speed. For the density of Eq. (1), vA → c >> d<L>/dt so that   

inside the boundary a small net j x B force (together with electromagnetic wave 

propagation into vacuum regions) continuously adjusts B as needed to maintain 

approximately the equilibrium solution of (B5) inside the return current boundary. 
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Evolution of the boundary is determined by its interface with ambient pressure pAMB 

pushed ahead by the advancing nose, described approximately by:  

 

nmi d(γv⊥)/dt  = c-1jxB  -  ∇ pAMB     (B6) 

 

d(B2/8π)/dt =    -  v⊥⋅ ∇pAMB       (B7) 

 

Eq. (B6) is an approximate version of Eq. (A2) including a relativistic Lorentz factor γ 

introduced inside the convective derivative d/dt. We ignore gravity; also shocks in the 

ambient gas, found unimportant in Ref. [10], as expected for an inductively-limited dL/dt. 

For a thin return layer, we can approximate c-1j x B ≈ - ∇(B2/8π) giving the “hoop force” 

characteristic of confined poloidal current loops. In metal coils, the hoop force is taken up 

by material forces inside the coils. Here the hoop force matches inertia and/or ambient 

pressure. Inside the return current channel where the pressure is small, ∇(B2/8π) ≈ 0 

whereby Bφ = (2I/cr) falls to zero and BPOL increases, finally giving BPOL = (2I/cr) at the 

junction with the pressure wall. This BPOL induces jφ inside the pressure wall, thereby 

transferring the hoop force as  - ∇(BPOL
2/8π). Thus, inside the pressure wall:  

  

nmi d(γv⊥)/dt   = - ∇[(BPOL
2/8π) + pAMB]    (B8) 

 

with boundary condition BPOL = (2I/cr) at the junction with the return current.  

In Figure 1, the radial boundary r = R occurs where the right hand side of              

Eq. (B8) becomes zero [10, 15, 16], while hoop forces overwhelming pressure at the nose 

tend to stretch the nose into the blunt shape of Figure 1. This occurs if, wherever the nose 

might be temporarily indented, (v⊥)r >> <dL/dt>, the average axial speed of the advancing 

nose. For numbers in Eq. (12), no matter what the shape of the nose, <dL/dt>  << c while, 

like Eq. (11), Eq. (B8) yields v⊥ = vA, now determined by the ambient pressure. The 

pressure balance at r = R determines pAMB in terms of I (actual ion pressure or effective 

pressure if collisions couple ions and neutrals), giving at smaller radii vA = (v0√(R/r)/γ) 

→ c with typical ambient thermal speed vo  ≈ 108 cm/sec (Kev) [5]. Then over most of 
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the nose v⊥ = vA >> <dL/dt>, giving time for hoop forces to straighten the nose, as in the  

simulation of Figure 5a. As expected, artificially modifying the flux-generator “gun” to 

enhance vz >> vr  near the axis yielded a focused jet of small radius on axis.  

This fluid description must be tested against particle dynamics, giving “drift” 

motions in the non-uniform magnetic field of the nose that would cause ions to escape 

axially. Drift speeds ≈ v⊥(rL/r) add a hot ion loss nominally comparable to DCLC loss, but 

only DCLC also recycles ambient cold ions inward as we found to be essential in Section 

4. 

Taken together Eqs. (B7,B8) are the 2D equivalent of 1D Eqs. (2,11) which we 

found to give a stable jet at constant current I in Eq. (4), due to competition of dI/dt and 

dΛ/dt in constant V = IdΛ/dt + 2(dI/dt)Λ in Eq. (7) with variable inductance dΛ/dt ∝ 

dL/dt and dL/dt → vA for free expansion in Eq. (11). Integrating Eq. (B7) over the 

volume bounded by the return current gives an equation analogous to Eq. (7), now with 

inductance Λ = (2∫dxB2/8πI2) ∝ an average value <L> responsive to the shape of the 

nose. In Appendix C, we will find that the fluctuation levels required to sustain the quasi-

steady state are comparable to the mean field, giving a “noisy” system. Nonetheless, the 

powerful tendency to maintain current flow in an inductively-dominated circuit should 

maintain on average the quasi-steady state current in  Eq. (4). 

Though not important for inductance, details of the diffuse pinch equilibrium in 

Figure 1 are important for our discussion of jet collimation and stability in Section 5. 

Solutions of Eq. (B5) always yield a collimated jet with a radius determined by pinch 

forces, and a return current conforming to the boundary [35]. As with laboratory guns, 

this jet must be matched to the dynamo “gun” whose properties are determined by 

angular momentum ejection, giving the solution of Figure 3. However, for Br = 0, the 

disk solution of Figure 3 is also a solution in the jet (out to the nose), giving a perfect 

match. At large r, at any time t this solution has field line lengths t(dL/dt)(Bφ/Bz) = 

0.01ct(r/a)1/2 > ct for r/a > 104 so that at large r the disk would not be accessible as a 

source of ions. Yet ion current carriers in the diffuse pinch must come from the disk, 

since the density in Eq. (1) is too low to ionize ambient neutrals penetrating the 

jet/radiolobe structure, and inward diffusion of ions from the ambient pressure wall  (for 

example, by DCLC instability in Eq. (19)) cannot penetrate to large distances. Yet the 
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persistence of  MRI accretion driving the dynamo to r ≈ RJET ≈ 108 a in Appendix C, and 

the robustness of arguments giving Figure 3 as the unique field solution accounting for 

angular momentum conservation during accretion, argue strongly for this solution. The 

most likely resolution, analogous to the existence of closed 2D flux surfaces in laboratory 

spheromaks even when 3D field lines maintain contact to the gun [8,14], is kink 

instability producing 3D field lines of length < cτ, also the explanation of the 3D 

simulation, Figure 5b, versus the 2D structure in Figure 5a.  

The most likely instabilities facilitating connection of the diffuse pinch to the disk 

are the external kink modes discussed in Section 5. The internal kink modes tend to be 

stable. To see this, we apply the following approximate stability criterion [36,37]: 

 

(L/2π)q2|λʹ′/qʹ′| < 1   stable, internal kink  (B9) 

  

where λ = (4πjz/cBz) and q = (2πrBz/LBφ), and (n – m/q) ≈ qʹ′/q2 with qʹ′ = dq/dr 

approximates the resonance at q = m/n for azimuthal mode number m and axial mode 

number n [36]. For r > a, integrating Eq. (A17) with Bz = Bo(a/r)3/2 gives I(r) =           

1.7I√(1-0.75a/r), hence jz = (I(r)ʹ′/2πr) = (Ia/3πr3) and λ = (4/3a)(a/r)3/2. Substituting this 

into Eq. (B9), along with q = (2πr/L)(a/r)1/2 with Bφ = Bo(r/a), we obtain stability if r/a > 4 

which is satisfied over most of r > a in the diffuse pinch. Internal modes can be unstable 

in the central column (r < a) and probably drive E| | ∝ δB2 in Eq. (13). Since L cancels in 

Eq. (B9), internal modes can have short axial wavelength, allowing growth to saturate 

over a short distance whereas the external modes discussed in Section 5 grow 

exponentially over L, yielding δB too weak to drive E| | over most of the jet length. 

 We conclude this section with an additional comment on how Br = 0 in the field 

solution of Figure 3 persists in Figure 4. Figure 4 was calculated by the Corsica code 

[35], which solves the Grad-Shafranov equation for zero pressure, equivalent to Eq. (B5), 

given by: 

  

 r∂/∂r(r -1∂ψ/∂r) + ∂2ψ/∂z2  =  - [(rBφ)∂(rBφ)/∂r](∂ψ/∂r)-1 =  - λ∫0ψdψ λ   (B10) 
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where ψ = rAφ (dropping 2π). On the far right we use rBφ = ∫0rr dr (4πjz/c) = ∫0rr dr λBz = 

∫0ψdψ λ. Setting Br ∝ ∂ψ/∂z = 0 and multiplying Eq. (B10) by (Bz /r) = r-2(∂ψ/∂r) gives 

exactly Eq. (A19g) giving Eq. (B1) that we solved to obtain Figure 3. In Corsica, ψ(r,0) 

at z = 0 is a boundary condition, and the functional form λ(ψ) must be prescribed. 

Requiring λ(ψ) to match Figure 3 at z = 0 means that λ(ψ) satisfies Eq. (B10) at z = 0 

with ∂ψ/∂z = 0, which remains the soltuion up to the nose. 

  

Appendix C. MRI-Driven Accretion 

In this Appendix, we show that the Standard Model as applied to AGN’s in Ref. 

[17] would be unstable, which motivated our alternative model developed in Appendix A 

based on the magneto-rotational instability (MRI), supplementing the stellar collision 

mechanism of Ref. [17]. We then derive MRI accretion rates and other processes needed 

for the model.  

We begin by establishing the ordering for the v x B term in Ohm’s Law, Eq. (A6). 

Even at the modest temperatures of Eq. (A21e), or the Standard Model [17], Spitzer 

resistivity η would give Ohmic decay times (c2η/a2) >> τ, giving then ηj << c-1(v x B) 

and an Ohm’s Law in which only turbulence provides dissipation of the mean fields E 

and B. Dropping Spitzer resistivity, we apply an ordering in which the unperturbed vr = vz 

= Br = Eφ = Ez = 0 and (1/kzr) ∝ H/r and ∂/∂r are small, consistent with our thin disk 

solution, Eqs. (A19), giving: 

 

r (Er  + c-1 vφBz)  +  c-1 [- φ  <v2r>Bz  +  <v1 x B1 >] = 0  (C1)  

 

with unit vectors r and φ . For simplicity, we will apply quasi-linear theory to estimate 

perturbations v1 and B1. Note that the accretion velocity vr ≡ <v2r> is a transport quantity, 

reflecting the fact that accretion requires transport across the dynamo magnetic field. 

Eq. (B9) showing that internal kink modes with azimuthal mode numbers m ≥ 1 

are stable at r > 9/4 in the diffuse pinch applies also in the disk having the same field 

profiles. Then the m = 0 MRI mode is likely to be the dominant instability, most simply 

analyzed omitting Bφ and taking Bz to be locally uniform in WKB approximation, with 
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wavenumber kz along z and both v1 and B1 perpendicular to the z axis. Solving the 

linearized Faraday’s Law for v1, for perturbations ∝ exp (-iωt + ikzz), gives: 

 

v1r = - (ω/kz)(B1r/Bz)       (C2) 

 

v1φ = - (ω/kz)(B1φ/Bz)       (C3) 

 

Combining Eqs. (C2) – (C3) with the linearized momentum equations including rotation 

gives the MRI dispersion relation [31]: 

 

ω4  -  ω2[κ2 +  2 k2vAz
2]  + k2vAz

2{ k2vAz
2 + r ∂Ω2/∂r}  =    0   (C4)    

 

where κ = √(4Ω2 + r ∂Ω2/∂r) is the epicyclic frequency [2]. Setting B = vAz = 0 gives the 

Rayleigh stability criterion, κ2 > 0, which is satisfied for our Keplerian disk (the 

Keplerian value being κ2 = Ω2). With a magnetic field, instability requires that the 

quantity {…} < 0, giving instability if [31]: 

 

kz
2vAz

2 + r ∂Ω2/∂r  ≤  0       (C5) 

 

We assume localization to the disk, giving kz ≥ (π/H), whereby Eq. (C5) yields 

the marginal stability condition Eq. (A18) in Appendix A. To show the importance of 

MRI, we introduce into Eq. (A18) the Standard Model of Ref. [17], adding our magnetic 

parameters in Eq. (12) and Appendix B, and Keplerian rotation. Ref. [17] gives different 

results above and below a radius rab ≡ 236RG = 23.6a Then Eq. (A18) yields                  

(π/4)( Bz
2/ΣH) = 0.9 x 10-12(a/r)4.5 ≤ - r∂/∂r Ω2 = 1.5 x 10-9(a/r)3 for r < rab  (with Σ =                        

3 x 104 (a/r)3/2 and H = 2.6 x 1013), and the same result with (a/r)4.5 → (a/r)2.35 for r  > rab; 

hence instability for r < 2700a = 2.7 x 104 RG compared to a range of interest r < 1000RG 

for the dynamo mechanism of Ref. [17].  

We are now ready to calculate MRI transport quantities used in Appendix A. For 

quasi-linear transport quantities, which are quadratic in the perturbations, we require v1z 



 38 

and B1z in which kz is replaced by ∂/∂r (higher order in 1/kzr). These are obtained from         

- iω B1z = ∂/∂r (- v1rBz), and:  

 

-ikz(v1zBφ) - ∂/∂r (v1rBφ) = 0     (C6) 

 

yielding: 

 

B1z = (iω)-1∂/∂r (- v1rBz) = (ikz)-1 ∂B1r/∂r   (C7) 

 

v1z = - (ikzBφ)-1∂/∂r (v1rBφ)      (C8) 

   

We first calculate the accretion velocity, using Eq. (C1). For the perturbations 

above, the z-component of <v1 x B1>  is zero, while the toroidal component gives:  
 

vr  ≡  <v2r>  =     - <(v1zB1r - v1rB1z)>φ /Bz   

=    <Re{- iv1r  (B1r /kz)[(Bφ

-1 ∂Bφ/∂r) - (Bz
-1 ∂Bz/∂r)]}>/Bz  

≈  - <1/2 (ω/kz
2r) (B1r/Bz)2>     (C9) 

 

In the second line, we use v1z  and B1z from Eqs. (C7) and (C8), whereupon terms ∝∂v1r/∂r 

cancel, and we calculate the quantity in […] using the asymptotic limit of the field 

solution of Appendix B. In the third line, we use v1r from Eq. (C2). As noted earlier, vr in 

Eq. (C9) is the only quantity in the accretion model of Appendix A that requires turbulent 

perturbations for its existence, the reason being that only vr requires transport 

perpendicular to B. Another quadratic term that arises in taking <…> over the mass 

conservation equation, of the form <ρ1v1r>, is identical to Eq. (C9), so we drop it here.   

We can express the turbulence pressure in Eq. (A11) in terms of vr in Eq. (C9) 

using v1z ≈ (v1r/ikzr) = (-ω/ikz
2r)(B1r/Bz) from Eq. (C2,C8), giving: 

  

Pz  =    1/2ρ<v1z
2>   =   - αzρHvr  =   αz(M*Ω/2πr)(H/r)   (C10) 

 

where αz = (ω/Ωkz
2H)2 is an approximation to the proper average over modes.  
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Next we compute MRI “hyper-resistive” heating [14], appearing in Eq. (A12). We 

can calculate this directly in terms of Eφ = c -1vr Bz and jφ = - (4π)-1(∂Bz/∂r) giving: 

 

(PHEAT)MRI  = jφ[-c-1<v1 x B1>φ] = vr  ∂/∂r (Bz/8π)2     (C11) 

 

Eqs.  (C10) and (C11) provided closure in Appendix A, without knowledge of 

perturbation amplitudes, giving results in terms of vr (or M*). We obtain the amplitudes 

starting from Eq. (C9), giving; 

 

(B1r/Bφ)2    = (Bz/Bφ)2(B1r/Bz)2    = (a/r)(-2vr/rω)kz
2r2 =  (π/5)2 ≈  1 (C12)   

 

where we use (Bz/Bφ)2 = a/r for the asymptotic result from Appendix B; (-2vr/rω) = 1 for 

vr in Eq. (A21b) with ω ≈ ΩKEP; and kzr = (πr/H) with H/r = 5√a/r) from Eq. (A21c). Near 

marginal stability B1φ ≈ B1r [31], so also B1φ/ Bφ ≈ 1. Combining Eqs. (A21d,C7,C12) gives 

B1z ≈ (kzr)-1B1r ≈ (H/πr)Bφ ≈ (a/r)1/2 Bφ  ≈ Bz. Thus, all perturbations are comparable to their 

unperturbed counterparts: 

 

 (B1r/Bφ)  ≈ (B1φ/Bφ)  ≈ (B1z/Bz) ≈ 1 (C13)  

 

The corresponding large MRI Torque <- rjr1B1z> is merely additive to its 2D counterpart, 

both serving to extract energy from rotation. 

Though such magnitudes marginally violate quasi-linear assumptions, we can get 

some idea how perturbation amplitudes saturate at the values in Eq. (C13) using quasi-

linear energy conservation, given by:  

 

 ∂/∂t (ΣkB1k
2/8π) = 2iω(ΣkB1k

2/8π)  +  ∂/∂z (Σk[(ω/k)B1k
2/8π] (C14) 

 

where Σk sums over modes and the term on the far right is a damping term due to the 

perturbed Poynting vector propagating fluctuation energy into the jet. Note that both 

mean field and perturbation quantities serve to eject angular momentum from the disk, 

the main difference being that the implied velocity perturbations for the fluctuation-
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driven angular momentum should be strongly damped by synchrotron radiation in the jet, 

perhaps accounting for the intense synchrotron luminosity observed near the disk. 

In steady state, Eq. (C14) simply gives kH ≈ π. But the dynamic coupling of Eqs. 

(C14) and Eq. (A1) contributes to the system stability causing dynamo current I to hover 

around the steady-state value in Eq. (4). If fluctuations increase too much, mass 

conservation cuts off the accretion supply. If they decrease too much, Eq. (C14) stores 

angular momentum that increases the instability producing accretion.  

The required MRI fluctuation levels are diminished if an external source of 

helicity helps sustain the accretion-driven dynamo. The stellar collision model of Refs. 

[17,18] is such a process, giving the following modification of Eq. (C8): 

 

vr =   - HΩ { <B1rB1φ/Bφ

2)>MRI + <δB2/B2>COLLISION }   (C15) 

 

where we take ω/kz = HΩ, also characteristic of the stellar collision process active up to r 

< 1000RG [17]. Thus δB2 due to stellar collisions reduces B1
2

 due to MRI required to 

achieve a given accretion rate M*. According to Ref. [17], this reduction in MRI 

turbulence should be especially effective at r < 1000RG.  

A complete resolution of how dynamos are created by accretion requires ever 

more sophisticated experiments and computer simulations. Progress to date supports the 

existence of dynamos, experimentally in Ref. [3], and by computer simulation in Ref. 

[18] employing the stellar-collision mechanism and in Ref. [38] with helicity injection by 

a Poynting-Robertson battery. Other simulations focus on the near neighborhood of the 

black hole [39]. In Ref. [38], the dynamo ejects a jet.  
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NOTES 

Section 1: 

Rather than the black hole itself, τ in Eq. (23) could be due to  radiation from  the 

reservoir if MRES is a relatively independent body (if MRES >> MBH, probably true [5]) 

which can radiate to the point that its mass comes to be in equilibrium orbit relative to the 

black hole. Either way, up to a time τ while mass is falling into the black hole, the 

dynamo radius grows, starting near the black hole and growing for a time τ determined 

by reservoir and/or central column radiation. In Section 5, this assumption gives the 

roughly correct jet radius associated with the “active” dynamo radius out to the O-point. 

The predicted disk radiation at r < a is a fixed fraction of the gravitational power entering 

the central column (25%), giving an Eddington-limited lifetime.  

  

Section 2: 

Eq. (1) The main argument for an electrostatic sheath to eject current is that, given a 

dynamo with large voltage V, E = V/d for sheath thickness d is the biggest force around. 

A Poisson’s equation evaluating d is given in Appendix A1, Ref. [6]. 

The argument that electron current cancels in our reference frame fixed in the black hole 

follows from the fact that both ions and electrons are accelerated, in opposite directions. 

This would cause their currents to add. However, 2 stream instability tries to flatten the 

distribution in momentum space. Relavistically, this gives f(v) peaked at the ion speed c 

and the electron speed – c distributed symmetrically about  a minimum at v = p = 0, 

hence zero net electron current. 

  

Eq.(2) This is the standard electrical engineering formulation of energy conservation, 

given by integrating the energy conservation Eq. (A8) over the volume including the 

dynamo, the jet, radiolobe and return current in Figure 1. See notes to Appendix A. 

 

Eq. (3) This is just the radial integral of Er = c-1 rΩ Bz 

 

Eq. (4) As stated in the text, the limiting I in a plasma gun (or the accretion disk dynamo 

which is equivalent) comes from Bφ = (2I/ca) = Bz near the black hole. This is the 
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approximate maximum value found in exact spherical self-similar solutions in Refs. 

[31,32]. In the laboratory spheromak with a flux conserver of fixed size, increasing V can 

cause the current to grow beyond this limit, until limited by either collisional resistance, 

or turbulent hyper-resistivity causing relaxation to fill the volume (see Ref. [13]). This 

“bubbleburst” current threshold is well established by experiments and simulation codes. 

In the astrophysical case with unlimited volume, the current tries to hover at the threshold 

(see Section 2 and Appendix B).        

 

Eq. (5), (7), (9) - (11)  See text 

 

Eq.(6) 1/2 ΛI2   ≡ ∫aR2πrLdr(Bφ

2/8π) = ∫aR2πrLdr (2I/cr)2(1/8π) = (I2 /c2)L lnR/a 

Could add 1 to get (1 + lnR/a) as approximation including r < a (central column) 

but not important since lnR/a ≈ 20. 

Λ  =   2L(lnR/a / c2)   

Eq. (8) For constant I = (caBo/2): 

d/dt 1/2 ΛI2 = dL/dt [(lnR/a / c2)(caBo/2)]I  

= (1-αACCEL)IV = I(1-αACCEL)[(aΩ/c)(aBo)] 

 dL/dt = 2(1-αACCEL)(aΩ/ln R/a) 

  

Eq. (12) (numbers): 

Let MBH = 108 MSUN =  2 x 1041, τ = 108 yrs, M* = (MSUN/τ) = 6.7 x 1025 

G = 6.7 x10-8 , RG = (2MBHG/c2) = (2 x 2 x 1041 x 6.7 x10-8/9 x 1020) = 3 x 1013  

Keplerian: ΩKEP(a) = (MBHG/a3)1/2 = [2 x 1041 x 6.7 x10-8/(3x1014)3]1/2  = 2.2 x 10 -5 

   

a = 10RG = 3 x 1014   

 

For Keplerian rotation (Ω < 0):  

 

- (aΩ/c) = [(3 x 1014)(2.2 x 10 -5)/( 3 x 1010)] = 0.22 

  

and from Eq. (8), with lnR/a = 20: 
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 L   = - (aΩτ/lnR/a) = (0.22 x 3 x 1010 x 3 x 1015/20) = 1024       

 

We calculate IV = 0.25 PCC from gravitational power PCC deposited in the central column 

at r < a, and ejected with an efficiency 25% (see Appendix A). Gravitational power 

deposited in a central column occupying RG < r < a is:  

PCC = M*[VG(a) - VG(RG)] = M*(MBHG/RG)(1 - RG/a) = (0.95)(1/2 M*c2) = 2.7 x 1045 cgs 

where VG =    MBHG(1/RG - 1/r). Then, using Eqs. (3) and (4) with Bz(a) ≡ Bo and  for 

efficiency f:  

IV  =  [(c/2)aBo][- c-1(aΩ aBo]  =  f PCC  =  f (0.9)(1/2 M*c2)  

 (aBo) =  (M*c)1/2[0.9 f/(aΩ/c)]1/2 =  (6.7 x 1025 x 3 x 1010)1/2 [0.9 f/(aΩ/c)]1/2        

=  (1.42 x 1018)(0.9 f/0.22)1/2  =  √f 2.9 x 1018 

Bo   =   (aBo/a)  =  √f (2.9 x1018/3 x1014) = √f 0.97 x 104   

For f = 0.1 (10% efficiency): 

aBo   =  0.92 x 1018 , Bo = 3.07 x 103 

I  =  [(c/2)aBo]  =  [3 x 1010 x 0.92 x 1018/2] = 2.03 x 1028    cgs 

→ 2.03 x 1028 x (1.6 x 10-19/4.8 x 10-10) = 4.57 x 1018 amps 

 V  =  [- c-1(aΩ aBo] = (.22)(0.92 x 1018)  =  0.202 x 1018      cgs 

→ 0.202 x 1018 (300volts/stat)  =  6.06 x 1019   volts 

 

 For f = 0.25 (25% efficiency), multiply by √(.25/.1) = 1.58: 

 Bo = 1.58 x 3.07 x 103 = 4.85 x 103 

 I   = 1.58 x 4.57 x 1018 = 7.22 x 1018    amps 

V  = 1.58 x 6.06 x 1019 = 9.57 x 1019  volts 

 

Section 3: 

Eq. (13) E| | is a standard quasi-linear estimate. The limit on the far right is described in 

the text, using a quasi-linear diffusion coefficient D. The novel feature is the use of free 

energy conservation to estimate the fluctuation level δB giving: 

 

  (Bo
 2 + <δB2>)R1

2 =  B2a2 
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The right hand side is proportional to the energy per unit length of the central column for 

B ∝ I somewhat above bubbleburst. The left hand side is the energy after turbulent 

diffusion increases the radius a to R1 > a and reduces the field back to the bubbleburst 

level. This is related to helicity conservation in a slightly different formulation in Ref. 

[6], Appendix A6 showing that it is helicity conservation for the mean field that causes L 

to increase rather than I in a system of infinite extent. Relaxation driving helicity into the 

closed flux between the central column and the return current in Figure 1 requires the 

current to increase above bubbleburst as resistance and hyper-resistivity does in the 

laboratory [14].  

 

Eq. (14):  

Write Eq. (14) as x = (Dt/a2), Y = (vot/a), G = B0
2/B2  < 1 

 1 = (G + x/Y)(1 + x)  →  x2  +  (GY + 1)x  =  Y(1 – G) 

 x = 0 if G = 0, consistent with the comments above  

In general: 

x = 1/2 (GY + 1) {[1 + 4Y(1 – G)/(GY + 1)2] 1/2 – 1} 

 If G = 1, x = 0 << 1 any Y 

 If Y >> 1, x ≈ (1 – G)/G  In text we take G ≈ 1, giving (1 – G)/G ≈ (1 – G) < 1  

If Y << 1, there is not enough time for diffusion to occur, which drives D up, the 

solution D ∝ x ∝ 1/√Y 

  

Eq. (15) See text 

 

Eq. (16) Solve ecE| | (heating) ≥  2/3 (e2α2 γ4/c3) = 2/3 (e2cγ4/RC
2)with centrifufgal α = 

c2/RC. The c’s cancel giving: 

 γ ≤ [(3/2) E| |RC
2/e]1/4 

 

For E| | = ΔV/L =   [(ΔV/V)(6 to 9 1019)/L /300 (volt/stat)]/L  

= [0.05(2 to 3 1017]/1024 = cgs and RC = a = 3 x 1014 cm 
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γ ≤ [3/2 0.05(2 to 3 1017)10-24(3 x 1014)2/ 4.8 x 10-10]1/4 = (0.28 - .42 x 1031)1/4   

= (2.3-2.5) x 107    Energy emerging from central column: not enough 

Eq. (17):   

 β⊥  =  (8π niγm⊥v⊥

2/Bφ

2) = 8π (I/e<v>2πrΔ)e(γmiv⊥

2/Bφ)(rc/2I)  

= 2(v⊥/<v>)(γmicv⊥/erBφ) =  2(v⊥/<v>)(rL/r) 

 

Eq. (18)  See text 

 

Eq. (19) DCLC criterion  

  Relativistic (ωC
2/ωC

2) = (e2B2/c2m2 γ2)(mγ/4πne2) 

   =  (v⊥/c)2(2B2/8πnmγc2)  =  2(v⊥/c)2(1/β⊥) 

 

Section 4: 

Eq. (20): N(E) = ∫aRdr ∫0Hdz (-D ∂2F(r,zE)/∂z2) =  ∫R(E)
Rdr (I/e<v>) f(E) (κ*D/Δ2) 

  The first integral is axial transport out of the nose. 

  For the second simplified form, see text. 

  

Eq. (21):  

 Change variable r → E(r) = (eV/ln R/a) ln(r/a) 

 Limits: R becomes E(R) = eV, R(E) = E(R(E)) = E.  (See Notes on file, Ref. [6]) 

Let:  <v> = D/r      V = (aΩ/c)aB0  = 0.2 aB0 

Δ(r) = (miγcvr/eBφ) (with vr ≈ c) ≈ r(E(r)/eBoa)  = 5 r (E(r)/eV)  

dr = dE(r)[1/dE(r)/dr] = dE(r)(r/eV)lnR/a 

dr (D/<v>Δ2)  = dE(r)(r/eV){(r/D)(D/[5r(E(r)/eV)]2} 

  = dE(r) E(r)-2 (eV/r2)          independent of r, D 

  f(E) = 1/E(r)  
 

N(E)  = ∫R(E)
Rdr (I/e<v>) f(E) (κ*D/Δ2)   

= (I/e)(κ*lnR/a)∫EeVdE(r)(r/eV)(I/e)(r/D) f(E)(D/[5r(E(r)/eV)]2) 

=  (I/e) κ ∫EeVdE(r) (eV/E(r)2) f(E)     ,    κ = (κ* (lnR/a)/25)   
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Eq. (22):    To calculate κ using Eq. (21): (eV/E2) = 9000 

  IV =  ∫dE E N(E) = (I/e) κ ∫E2
eVdE E[(eV)1.7/E2.7) 

       =  κ(I/e)(eV)(1/0.7)[(eV/E2)0.7 -1]  =  κIV(1/0.7)[(9000)0.7 -1] 

  κ   =  {(0.7)[(9000)0.7 -1]}-1 =  1.19 x 10-3 

 

Comment on recycling from the ambient pressure wall at the nose: 

IRECYCLE  = ∫E2
eVdE N(E) = (I/e) κ ∫E2

eVdE [(eV)1.7/E2.7) 

  =  κ(I/e)(1/01.7)[(eV/E2)1.7 -1]  =  I (1.19 x 10-3)(1/1.7)[(9000)1.7 -1] 

 =  3.69 x 103 I 

 

Section 5: 
Eqs. (23) – (27)  See text and references 

 

Eq. (28) dr/dt  =  vr  =  - c (RG/2r)1/2    from Eq. (A21b) 

  2/3 dr3/2 /dt  =  - c (RG/2)1/2 

  r   =  [Ro
3/2 - ct (RG/2)1/2]3/2 

  Ro  =  - ∫0τ dt vr    =  - ∫0τ dt [- c [RG/2([Ro
3/2 - ct (RG/2)1/2]3/2)]1/2  

        ≈     ∫0τ dt c (RG/2Ro)1/2    ≈     cτ (RG/2Ro)1/2 

In the next to last paragraph: 

  λSYN  = (2π/k) = (2πc/ωCe) =  [2πc/(eB/meγec)] 

  = [2π x (3 x 102) x 0.9 x 10-27 gm/4.8 x 10-10](γe/B) =  1.06 x 104 (γe/B)   

 

Appendix A 

See THIN DISK MODEL assumptions below 

 

Collisionality: see end of this section of notes 

 

Eq.(A1)-(A6)  Textbook   

 

Eq. (A7) This is r x φ-component of Eq. (A2) with vφ = rΩ        

Left hand side                 ←   = 0      →    ← r x φ-component of Eq. (A2)  
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∂(ρrvφ)/∂t + ∇⋅ρvrvφ = rvφ[∂ρ/∂t + ∇⋅ρv] + rρ[∂vφ/∂t + r -1v⋅∇rvφ] 

  Right hand side         ← = 0→ 

  - ∇⋅jψ  =  -jz∂(ψ/2π)/∂z – jr r -1∂(ψ/2π)/∂r   +    ψ∇⋅j  

   =   r[jzBr -  jrBz}] r.h.s. r x φ-component of Eq. (A2) 

 

Eq. (A8) (4π)-1 B⋅ Eq. (A4) 

(4π)-1B ∂B/∂t =    - (4π)-1c B⋅∇xE   =   - c ∇⋅(ExB/4π) - c E⋅(∇xB/4π)  

  =    - c ∇⋅(ExB/4π) - j⋅E 

v⋅ Eq. (A2) 

vρ∂v/∂t + v⋅[ρv⋅∇v]   =  v⋅ c -1jxB + v⋅F  =   - j⋅ c -1vxB + v⋅F 

  = j⋅E  + v⋅F      using Ohm’s Law 

Eq.(A3) ∂(3nkT )/∂t =  PHEAT – PRAD/H  neglecting heat flu 

 

Adding cancels j⋅E, giving Eq.(A8) 

 

THIN DISK MODEL: 

Eq. (A9) Definition of M*, taken as constant (see text) 

  

Eq. (A10)  Integrate Eq. (A7) over ∫0H 2πrdz using Eq. (A9). L.h.s. as in text. 

 

Eq. (A11) l.h.s. is ∫0Hdzρ(-∇[MGz/(r2 + z2)3/2] with z/(r2 + z2)3/2 ≈ z/r3 (see [2],Chap.5) 

 

Eq. (A12) This is PHEAT – PRAD/H = 0  

 

Eqs. (A13, 14, 15)  

 In-text integral shows the jet power is Ω x jet ang. mom. 

 The cancellation giving Eq. (A15) follows using Eq.(A10) with ν = 0 
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THIN DISK MODEL ASSUMPTIONS: 

The cancellations in Eq. (A15) are only exact for the 1D equations given 

by integrating 2D equations over the disk height H (the “thin disk 

approximation” [2]). In 2D the thin disk approximations are: 

 1. We set Br = 0 inside the disk as it is in the force-free jet so they match. 

 To preserve divB = 0 this requires Bz constant in z. However: 

  ∂Bφ /∂z = - (4π/c)jr ≠  0  

 so our asymptotic field solution of Eq. (A19g), Bz∝ Ω, is some kind of z 

average <…>: 

 Integrating (A19g) gives:  

<Bz
2>  = - ∫02dr r -2∂(r2 <Bφ

2
 >)/∂r 

  and angular momentum conservation can be written as 

<Bz> = - <cr -1∂/∂r(rρvrrvφ)/rjr> 

 2. Otherwise the approximations giving the 1D model are: 

 For the Standard Model: 

For whatever viscous force FT that applies the torque getting rid of angular 

momentum, in quasi-steady state :   

z⋅r x FT = r (FT) φ = r -1∂/∂r [rρvrrvφ]    rate of arrival of angular  

                momentum 

  Associated power vφ(FT) φ = vφ r -2∂/∂r [rρvrrvφ]   

= r -2 [(rρvr)vφ + (rρvr)r∂vφ/∂r + rvφ {∂(rρvr)/∂r}] 

=  ρ[(v⋅∇)v]φ + r -2 [rvφ {∂(rρvr)/∂r}]  (*) 

 If all mass accretes, the model approximates {∂(rρvr)/∂r} = 0 at all z 

within the disk. Then vφ(FT) φ = ρ[(v⋅∇)v]φ steady-state energy conservation 

equation becomes: 

 0 = v⋅F   +  PRAD/H  =   vr[Fr + (FT) r]  +  PRAD/H (**)  

  Fr = -  ρ[(MG/r2) - rΩ2 +1/2 ∂vr
2/∂r] 

 The viscous term (FT) r and and vr in vr are small (vr ∝ viscosity ∝ cS , 

sound speed), but since nominally PRAD equals gravitational power in the 

Standard Model, Ω can only be near-Keplerian to the extent that this is not 

quite true, the actual value being undertermined, and the magnetic field 
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has been assumed small. But given a dynamo field with poloidal cyclotron 

frequency > the viscous “collision frequency” cS/H (sound speed), the 

Standard Model disk is unstable to MRI, leading to our modified model.  

 

For our modified model: 

Viscosity is replaced by FT = c-1 jxB again giving (*) above, but vr(FT) r  

 giving viscous dissipation is replaced by the Poynting vector ejecting 

power into the jet:     

∂/∂z (vφBzBφ/4π) = vφBz∂/∂z(Bφ/4π) + (Bφ/4π){∂/∂z (vφBz)}     

=  - c -1jr(vφBz) + (Bφ/4π){∂/∂z (vφBz)} 

Dropping the term in {…} (as we do in averaging over the disk height), 

this shows that, like the viscous counterpart, the Poynting vector also 

contains  (FT) φ = - c -1jrBz so also (**) holds. But now we can show after 

the fact that radiation can be dropped, so (**) implies Fr = 0, Eq. (A17), 

and we have a precise MRI-derived formula for vr, Eq. (A19b), so the 

model is fully closed including the magnetic field, giving vr near 

Keplerian (i.e. “free fall”). 

 

3. The above cancellation says that, ignoring radiation, energy 

conservation gives: 

   

  vrFr  + {vz}Fz =   0 

 where again dropping the term in {..} gives our 1D model 

So our thin disk model giving a perfect match of the field inside the disk 

to that in the jet assumes that, inside the dynamo: 

 

  Br  =  vz   =  ∂/∂z (vφBz)  = ∂/∂r(rρvr) = 0 

 The toroidal field inside the dynamo satisfies: 

   ∂Bφ /∂z = - (4π/c)jr ≠  0  

 but in the axial pressure balance matching gravitation to pressure we drop 
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 jrBφ which is first a pinch force near z = 0, then an expulsive force 

promoting bubbleburst, and finally nil at the disk boundary where jr = 0 in 

steady state.  

 

Eq.(A16) This is the full expression for the radial force Fr including gravity, 

centrifugal force and convective r derivative (from v⋅∇v). Fr = 0 by the 

arguments in text at Eq.(A13). 

  

Eq. (A17) Radial force balance given Eq. (A16) 

 

Eq. (A18)  MRI – as in text – with kz = (π/H) 

 

Eq. (A19) Reshuffle of Eqs. (A9 - A12) and (A16 – 18) as in text. 

  From Eq. (A9), M* = - 2πrΣvr, rewritten as Eq. (19c). 

 Substituting Eq.(A9) into Eq. (A11) (dropping thermal and radiation 

pressure) gives:     

 1/2 ΣH(MBHG/r3) = 1/2 ΣHΩKEP
2 = (αzM*Ω/2πr)(H/r) = - (ΣHvrΩ/r)  

 Solving for vr gives Eq. (A19b). 

 

Eq. (A20) Introducing Eq. (A19b) into Eq. (19a) with ΩKEP
2 = C KEP/r3 and Ω2 =         

C /rK and X = (C/C KEP)2 , we obtain: 

  0  =  ΩKEP
2 -  Ω2  - (1/8αz

2) r -1∂[(rΩKEP
2)2/Ω2)]/∂r     

=  ΩKEP
2{r -3 -  X r –K +  [(K – 4)/8αz

2X] r –(6 -K)} 

 Solution: 3 = K = 6 – K → K = 3; 1 – X + [(3 – 4)/8αz
2X] = 0 giving 

  X2 – X  + (1/8αz
2)  =  0  →  X  =  1/2 {1 +/-  √[1 - (1/2αz

2)]}  

 Let αz
2 = 1/2 (see text). Then X = 1/2. 

Eq. (A21): Ω  =   - ΩKEP √X = - (1/√2) ΩKEP  =  - 0.7 ΩKEP  Eq. (A21a) 

  vr  =  - 1/2 r(ΩKEP
2/αzΩ) = - - 1/2 r(ΩKEP

2/0.7 x 0.7 ΩKEP) = - rΩKEP  

Eq. (A21b) 

Using numbers above (Section 2 notes):   

By Eq. (A19c): 
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Σ  =  -(M*/2πr vr) = - [6.7 x 1025/2π x (3 x 1014)2 (r/a)2 x (2.2 x 10-5)(a/r)3/2 ] 

   Σ     =  5 √(a/r)     Eq.(A21c) 

By Eq. (A19d), with constant I = (caBo/2) and Bz = Ba(a/r)3/2 we obtain at r = a: 

 (IBz/c)  =  (aBa
2) =  - M*[r -1∂/∂r r2 Ω]a = M*c (1/2 aΩ/c) 

 Multiply by a, giving result similar to central column in Section 2: 

(aBa) = [M*c(1/2 aΩ/c)]1/2 = 1.4 x 1018 (1/2 x 0.7 x 0.22) 1/2 = 4 x 1017 

   Ba      =   (4 x 1017/3 x 1014)  =  1.33 x 103    
 Why this value is less than the average central column value in Eq. (12) is 

discussed in Appendix A. 

Given Bz = Ba(a/r)3/2 = 1.33 x 103(a/r)3/2, we can calculate H from Eq. (A19e): 

 H/a  =  (π/4Σ)[Bz
2/(-r∂Ω2/∂r]/a  =  (π/4Σ)(Bz

2/3Ω2)/a 

      =  [π/4 x 5 √(a/r)][(1.3 x 103)2/(3 x (2.2 x 10-5/√2)2(3 x 1014)]  

     =  0.65 √(r/a)      Eq. (A21d) 

Also using Bz , H and vr above in Eq. (19f) gives T. We set τOP = 1 (see text), and 

σ = 5.7 x 10-5 giving: 

 

T  =  [Hvr(∂(Bz
2/8π)/∂r)/σ]1/4 =  {[H/r][-vr][3(Bz

2/8π)](1/σ)}1/4 

     =  {[(0.65 (a/r)1/2][0.7(3x1014)(2.2 x 10-5)(a/r)1/2] 

x   [(3(1.3 x 103)2(a/r)3/8π x(5.7 x 10-5)}1/4 

→ T  =  { 0.106 x 1020}1/4(a/r) 

       =  5.7 x 104(a/r)     Eq. (A21e) 

 

Eq. (A22) From the IV derivation:  

a2 =  M*c(1/B0
2)[f/(aΩKEP/c)] 

From the asymptotic solution: 

a2 =  M*c(1/Ba
2)(aΩ/c)] = 0.7 M*c(1/Ba

2)(aΩKEP /c) 

Equating these expressions using (aΩKEP/c) = (RG/2a)1/2 gives Eq. (A22). 

 

Whether black body or not, the surface radiated power equals the MRI-derived heating 

power given by: 

 



 54 

PRAD =  - Hvr ∂(Bz
2/8π)/∂r =  (0.46a(r/a)1/2)(rΩ)[(3Bo

2(a/r)3/r] 

        =  Ω(Bo
2a) [1.38 (a/r)7/2] 

   

 

The justification for neglecting radiation (except to calculate T) comes from a 

comparison with the Poynting vector power: 

 Ω(IBz/c) =   Ω(Bo
2a)[1/2 (a/r)3/2]  

=    0.7 x (2.2 x10-5)[(1.3 x 103)2 x 3 x 1014/2](a/r)3   

Ω(IBz/c) =    3.9 x 1015 (a/r)3 

Thus radiation, omitted in deriving the key equation Eq. (19a), is asymptotically small as 

assumed.  

 

Similarly, the thermal and radiative pressures can be ignored. The thermal pressure is: 

nkT = (Σ/Hmi)kT = [(7.6(a/r)1/2)/0.5a(r/a)1/2mi][k x 0.52 x 105(a/r)] 

        = [(7.6/0.5 x 3 x 1014 x 1.7 x 10-24)][(1.4 x 10-16 x 0.52 x 105](a/r)2 

        = 0.02 (a/r)2  

The radiation pressure is: 

  PRAD/c =  [0.4 x 1015 (a/r)4 / 3 x 1010]  =  1.33 x 104 (a/r)4   

The axial pressure balancing gravity is (Eq. (A11): 

 Pz  = 1/2 ΣHΩKEP
2  

  = 1/2 [7.6(a/r)1/2]0.5(3 x 1014)(r/a)1/2][(2.2 x 10-5)2(a/r)3] 

  = 2.8 x 105 (a/r)3 

Thermal pressure could perhaps compete at r = a(2.8 x 105/0.02) ≈ 0.1RJET. 

 

Collisions: 

Collisions matter only to maintain a fully ionized plasma in the disk. Accreting material 

probably enters the dynamo already ionized. Any neutrals entering by the 

shortest path = H would be ionized if, for ionization cross section                

σion > 10-16:  

(Σσion/mi) > [7.6 (a/r)1/2/1.7 x 10-24] 10-16 >> 1  surely true 
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The disk ion density, collision frequency and cyclotron frequency are: 

n =  (Σ/mi H) =  [5 (a/r)1/2/1.7 x 10-24]/(0.7(r/a)1/2 3 x 1014]  =  1.4 x 1010(a/r) 

νCOLL = [n/(1010 TKeV
e/2 )]  = [1.4 x 1010(a/r)/(1010 TKeV

e/2 )] = 1.4 [(a/r)/TKeV
e/2 )]   

for T in KeV 

ωC =  (eBφ /mic) = [4.8 x 10-10 x 3 x 103(a/r)/1.7 x 10-24 x 3 x 1010] = 2.8 x 107 (a/r)  

Then the plasma is “magnetized” (νCOLL << ωC) giving diffusion coeffients D ∝ rL
2 

Numbers are like laboratory plasmas (but lower than typical density) so that D is 

irrelevant on astrophysical dimensions 

The density n ∝ jφ ∝ r -5/2 . Integrating gives the density in the Central Column = about 2 

sun Masses (neglibible). 

  

Appendix B 

  See FLUX MAPPING, Time-Dependent Grad-Shafranov Eq.  below 

Eq. (B1) Derived from Eq. (A19g) using I = (c/Bz)(M*r -1∂/∂r r2Ω) 

 from Eq. (A10) with ν = 0 

∂/∂r Bz
2  +  r -2∂/∂r (2I/c)2 

=  ∂/∂r Bz
2 + r -2∂/∂r (2M*r -1∂/∂r r2Ω/Bz)2  =  0 

∂/∂r Bz
2 + r -2∂/∂r (g/Bz

2)  =  0 

Eq. (B2) g  =  (2M*r -1∂/∂r r2Ω)2 

 

Eq. (B3) Multiply Eq. (B1) by 2Bz
2. Let Ω2 ∝ r -K giving g ∝ r –K and ∂g/∂r = - 

K(f/r). 

 ∂(r2/g)/∂r = r -1(K+2)(r2/g) etc. Eq. (B1) becomes:  

2Bz
2[∂/∂r Bz

2 + r -2∂/∂r(f/Bz
2)]  

= ∂Bz
4/∂r + 2Bz

2[- r -2g Bz
-4∂Bz

2/∂r + (rBz) 
-2∂g/∂r] = 0 

∂Bz
4/∂r [1 – (g/r2Bz

4)] =  -2r -2∂g/∂r =  2 r -1 K(g/r2) 

 

Change variable to F = (Bz
4r2/g)  (dimensionless) 

∂F/∂r =  (r2/g)∂Bz
4/∂r + Bz

4∂(r2/g)/∂r  = (r2/g)∂Bz
4/∂r + r -1(K+2)(r2Bz

4/g) 
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∂Bz
4/∂r = (g/r2)[(∂F/∂r) + r -1(K+2)F] 

Substitute into (from above): 

∂Bz
4/∂r [1 – (g/r2Bz

4)] =  2 r -1K(g/r2)F + (K-2)]p 

 Test by taking dx/dF and inverting: 

  dx/dF = - kF-(k+1) [(K+2)F + (K-2)]p  + p(K+2)F-k[(K+2)F + (K-2)]p-1 

       = F-(k+1)[(K+2)F + (K-2)]p-1{p(K+2)F - k[(K+2)F + (K-2)]} 

 

dF/dx  = [F-k[(K+2) + (K-2)]p]-1[(K+2) + (K-2)][p(K+2)F - k[(K+2)F + (K-2)]-1 

 = x -1[(K+2)F + (F-2)] (F/ [(K+2)(p-k)F – k(K-2)]) 

 This recovers Eq. (B3) if: 

  k(K-2) = 1 →   k = 1/(K-2) 

 (K+2)(p – k) = (K+2)[p – (1/(K-2))] = 1  

→  p =  [(K-2)(K+2)]-1[(K+2) + (K-2)] = 2K/(K2-4) 

 

Eq. (B5) Definition of λ 

Eq. (B6) - (B8)        See text. 

Eq. (B9): 

This shows that internal kink modes are stable in the diffuse pinch but can occur 

in the central column and probably drive E| | with saturation at δB/B = 10-6 

(text after Eq. (13)).  

External kinks give much weaker δB/B. For growth ξ ≈ R over 50 growth times 

(Eq. (27)): 

ξ(z=0) = R[Rexp (-50)] =  2 x 10-22 R 

ξ(z) = ξ(z=0)exp(50z/L) → R at z = L  

 δB   =  (kzξ)B = (2π/L) 2 x 10-22 exp (50 z/L)       

 δB/B(external)  < 10-6(internal) if z < .7L. 

  

δW = ∫0
Ldzξ2(Boa/R)2q(R)   

= ∫0
Ldz[R exp (-50) exp(50z/L)(Boa/R)]2(2πR/L)(a/R)1/2 

 = L(Boa)2 (a/R)1/2 (2π/50) ∫050dx exp (- x)      x = 50 (1– z/L)   

 = (0.2 x 4/lnR/a)(a/R)1/2 [1/2I2Λ]   
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δW  <   4 x 10-6 [1/2I2Λ]  

using   <R/a> > 108 ,Boa = 2I/c  ,  Λ = 2Lc-2 lnR/a  ,  lnR/a = 20 

 

Comments on particle dynamics, text after Eq. (B8): 

1. In Sagitta approximation, minimum Larmor radius to keep ion on field line is: 

 rL/d = d/RC for curvature radius RC and d = v| |/ωC (forward travel along field line 

during one cyclotron period) and rL = v⊥ /ωC  with ωC = (eB/mγc). 

 rL  = v⊥ /ωC = d2/RC = (v| |/ωC)2/RC 

Magnetic moment µ = mγ rLv⊥ = mγ (rL
2ωC) = [(mγv| |)4/(eB)3RC

2] – increasing as  

γv| | increases during acceleration 

2. Drifts in nose return current channel  

 j  =  - r(∂Bφ/∂z)  + z(∂Bφ/∂r + Bφ/r)  

 vD =   1/2 v⊥rLB-2 (B x∇B)        B is magnitude of B         [25] 

=   1/2 v⊥rL B-1 [(r ∂Bφ/∂z)  - z∂Bφ/∂r ]  

           vD x j   =   - φ  1/2 (Bφ/B) v⊥(rL/r) ∂Bφ/∂z   

      

Note that, applied to the central column where ∂Bφ/∂z = 0, vD x j = 0 showing that there 

are no drifts perpendicular to j; drifts are along z doing no harm.  Applied 

to the nose where ∂Bφ/∂z ≈ - Bφ/H there is a drift component perpendicular 

to j (due to the Bφ/r  term in j) which ejects ions just as DCLC does. On 

first sight, drifts and DCLC transport out of the nose are comparable:  

  (vD)DRIFT  ≈ 1/2 (rL/Δ)v⊥ ≈1/2 v⊥ 

  (vD)DCLC  ≈  v⊥ 

 However drifts are one way while DCLC transport can transport cold ions 

in (due to positive dn/dz in ambient pressure front) but hot ions out. The 

recycling influx of cold ions, calculated in our model by the adjusting the 

parameter κ in Section 4 to conserve energy, is an essential feature 

allowing j to be sustained despite the hot ion loss.  

 

Figure 4: pillbox-0302.pdf file  

Corsica Pill Box solution of ∇xB = λB  
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Rewritten as Grad-Shafranov equation. 

For the case in Figure 4, ratio of confined toroidal current to the total, (ΔIφ/Iφ) = 13% 

found by trial and error starting from a boundary condition that ψ = 0 up the axis, at the 

top and down the outer boundary, and ψ(r,0) at z = 0 given by: 

 

ψ(0,z) = ψ(L,r) = ψ(R,z) = 0 

 

ψ(r, 0) = √r exp (- 0.1r) [1 – exp (-r3/2)] 

 

which gives Bz about flat for 0 < r < 1 (central column), Bz = 0 at r ≈ 10, and Bz ∝ r -3/2 

from 1 < r < 10 to match the asymptotic Bz in Figure 3. We could not reproduce exactly 

the corresponding asymptotic λ(ψ) ∝ ψ -3 using the fitting formula in Corsica of the form 

Σan xn where x = (1 - ψ/ψMAX). Fig. 4 was derived from a single term λ = a4 x4 where 

Corsica adjusts a4 as the total toroidal current is varied at fixed ψ at the boundary. For the 

reduced dimensions and fixed gridding of Corsica, we were unable to get solutions 

making the corresponding jz as steep as it should be, which caused Br to be non-zero in 

the range 0 < z <10 (on sscale z = 0 to 240). Yet the diffuse pinch flux surfaces were 

straight as expected above z = 10. To obtain Figure 4, we kept the λ = a4 x4 but altered the 

boundary condition so that ψ(r,0) = ψ(r,-120) (as caculated) from 0 < r < 10 

(approximately) matched to the above formula for  r > 10. This then gave Figure 4 with 

Br = 0 and straight surfaces for r < 10 -- the expected result. 

    

FLUX MAPPING (“Flux Winding”), Helicity Injectionm, Time-Dependent Grad-

Shafranov equation, Corsica 

  

1. Solving ∇xB = λB is the correct way to do quasi-static evolution of the  

field, the same procedure as that applied approximately by Lynden-Bell in  

 Ref. [15] who talks about “winding” but actually solves equilibria.  

 The problem is that solving ∇xB = λB requires knowing the boundary. 

This requires coupling Faraday’s Law and the momentum equation.  
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Equilibria neglect the convective derivative dv/dt. When v is Alfven speed 

>> dL/dt, one can set dv/dt = 0 giving a quasi-static field. But this does not 

determine the boundary. 

For ideal MHD, the energy equation and helicity equation derived from Faraday’s Law 

have the same content, though for Bz ∝ r -3/2 and Bφ ∝ r -1 the energy is concentrated near 

the central column whereas (like angular momentum) the helicity is not. The equations 

come from:   

 

∂/∂t(B⋅B/8π)   = - c∇⋅(ExB/4π)  -  j⋅E     energy 

 

∂/∂t(A⋅B/8π)   = - c∇⋅(ExA)  -      B⋅ 2∇φ    helicity 

  

where j ∝∇xB so the energy equation depends only on E and B and B = ∇xA so that the 

helicity equation depends only on E and A. For helicity, we use E = - ∇φ - c-1∂A/∂t and 

for ideal MHD, E⋅B = 0 (or with turbulence, if the above are “mean” fields <E⋅B > is 

hyper-resistivity that can transport helicity between mean field flux surfaces but not out 

of the box if the box is a flux-conserver). The momentum equation provides E = - c-1vxB 

and also ∇φ if the external voltage source is a dynamo (homopolar generator), otherwise 

a capacitor bank. For energy, the Poynting vector propagates power out of the dynamo 

and through the jet, while the (ExA) propagates helicity. The energy source is j⋅E. For 

dynamos, the helicicty source is B⋅ 2∇φ [Boozer, Ref. [34] in Feb. 9 short version draft].   

 

The Thin Disk model fixes asymptotic values: 

 

  Bz(r) = B0(a/r)3/2 ;  Ω(r) = Ω0(a/r)3/2   ;   Bφ(r) = B0(a/r)   

      

For a flux surface width Δ, and using 2πrAφ = ψ (real flux) and the fact that AφBφ 

dominates the helicity K (as Bφ dominates the energy, or inductance):  

 

δψ   =  (2πrΔ Bz(r))  = 2πaΔ B0 (a/r)-1/2   
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δK    ≈   L(r) ∫rr+Δ 2πrdr (AφBφ) = L(r)ψaBφ ln[(r + Δ)/r] 

 

where we have assumed flux surfaces are straight as in our model. Then, using Boozer’s 

result above, dK/dt = 2Vψ giving for a single flux surface: 

 

d/dt (δK) =  dL(r)/dt ψaBφ ln[(r + Δ)/r]  = 2δψδV  =  2δψ(Ωψ/2π)  

 

where δV = (Ωψ/2π) is the voltage drop between footprints derived in my previous 

memo (now with 2π that I now retained in ψ). Then, using ln[(r + Δ)/r] ≈ Δ/r: 

 

dL(r)/dt  =   {2δψ/aBφ ln[(r + Δ)/r]}(Ω(r)/2π)  ≈ 2(aΩ0 )(r/a)1/2 = 0.4c(r/a)1/2 

 

for (aΩ0 ) = 0.2c in Eq. (16) of the Feb. 9 draft.  

 

Thus, with no other constraint, outer field lines would stretch faster than inner lines (at 

large r, stretching  at a speed > c except for inertia in the relativistic momentum 

equation). That there is a constraint is shown by adding up the δK’s to obtain the total 

helicity which must not exceed the source. I have done this using energy instead, giving 

the lnR/a in inductance if the dynamics creates a blunt nose, as contended in our paper. 

 

2. Time-Dependent Grad-Shafranov (GS) Equation 

 The momentum equation when mass is conserved is: 

 ρ[∂v/∂t + (v⋅∇)v]  =  F  + j x B  - ∇p  

 where F is gravity etc. The standard Grad-Shafranov Eq. in 2D cylinder 

geometry is: 

 j x B   =   (Δ*ψ)∇ψ + I*∂I*/∂ψ =   (dp/dψ)∇ψ, I* = rBφ , ψ = rAφ (no 2π) 

 Δ*ψ =   r∂/∂r (r -1∂ψ/∂r)  +   ∂2ψ/∂z2 

 The term ρ∂v/∂t can be approximated as, keeping only Eφ: 

 v =   c(ExB/B2)  =  -  (r -1∂ψ/∂t)(φxBPOL/B2)  =    (r -1∂ψ/∂t/B2) ∇ψ  

ρ∂v/∂t  =   - ρ∂/∂t (r -1∂ψ/∂t/B2) ∇ψ  ≈   - (1/4πvA
2)∂2ψ/∂t2  

Then the approximate time-dependent GS equation is, omitting (v⋅∇)v:  
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(1/4πvA
2)∂2ψ/∂t2 =  (Δ*ψ)∇ψ  + I∂I/∂ψ  -  dp/dψ 

Together with Faraday’s Law and dynamo I* from angular momentum 

conservation, this describes jet evolution including evolution as quasi-

steady states with blunted nose since vA >> dL/dt.  

 

3. GS equation in Corsica: I*∂I*/∂ψ  = λ ∫0ψ ∂ψ λ 

Using (4π/c)j =λB, for p = 0 we can write: 

I* =  ∫0r rdr(4πjz/c)  =   ∫0r rdr λBz = ∫0r rdr λ (r -1∂ψ/∂r) = ∫0ψ ∂ψ λ  

For open line  boundary condition, - λ ∫0ψ ∂ψ λ includes the dynamo 

through (2πI*Bz /c) =  [2π∫0ψ dψ λ) Bz /c]  =  M*r -1∂/∂r (r2Ω)  

Code failure: 

 We are using Corsica in the “spheromak mode” giving a closed spheromak. This 

determines the field topology required, this mode being one with a magnetic axis for the 

closed surfaces around r ≈ R/2 and z = 0 for a cylindrical flux conserver radius R, z (we 

are taking boundary at  r = R = 60, z = L = 240). There also may be “private flux” near 

the bottom where the accretion disk dynamo attaches to the flux conserver. Private flux is 

a failure of “bubbleburst” in that region. 

 The condition for flux closure in the main volume of the flux conserver is that the 

bias field from the disk cancel the fringe field (4πΔIφ/cL) due to ΔIφ inside the closed 

spheromak, at a distance D < R/2, this being the radius of the fringe field. Taking a dipole 

approximation to the field of radius Ro (the O-point radius of the disk), the condition is:  

  

B0 (Ro/D)3  = (4πΔIφ/cL)        

 

We can express the peak bias field B0 in terms of the total Iφ in the flux conserver using:  

 

 (Iφ/L)  =  ∫0Rdrjφ = ∫0R dr(c/4π)(-∂Bz/∂r) =  (c/4π)Bz(0) ≈ (c/4πC)Bo    

 

where C is the ratio of B(0) at z = 0 to that at z = 120 midway up the flux conserver. Then 

achieving D < R/2 requires: 

 



 62 

(ΔIφ/Iφ)    >     C (2Ro/R)3          

 

This is marginally satisfied for our accretion disk which should achieve  straight flux 

surfaces giving C = 1 since in Section 3 we found (ΔIφ/Iφ) ≈ δB/B ≈ 10-6 and in Section 5 

(R/Ro) ≈ (1/3L/Ro) ≈ 30. Hence we are correct in seeking the closed surface solution from 

Corsica.  

 

Appendix C 

Eq. (C1)  Collisional resistivity is negligible, giving a current/field diffusion coefficient 

and diffusion time t: 

 D  =  (ηc2/4π)  =  [1.3 x 10-3 TeV
-3/2/(µo=(4π/107)]MKS x 104 

= 1.04x107 TeV
-3/2  cm2/s   

 t   =   H2/D  = [(.46 x 3 x 1014)2(r/a)]/[1.04x107 TeV
-3/2]  

    =   1.8 x 1021 (r/a) TeV
3/2  >  τ  >>   Ω-1  =  0.5 x 105 (a/r)3/2     

 

Eq. (C2 – C8) MRI scaling, keeps only vφ, constant Bz to lowest order, φ and r 

components of perturbations v1 and B1 to first order, vr to second order to 

obtain accretion. Linearized Faraday’s Law and dispersion relation from 

Ref. [29]    

  

r (Er  + c-1 vφBz)  +  c-1 [ φ  <v2r>Bz  +  <v1 x B1 >] = 0 (C1) 

 

Setting the r term equal zero givers the zero order dynamo electric field. 

Setting the term in […] equal zero gives the accretion velocity due to 

turbulence as discussed below. Perturbations are:  

 

 First order 

 ∂B1r/∂t = - iωB1r =  [∇ x (v1 x Bz)]r = - ikz (-v1rBz)φ 

∂B1φ/∂t = - iωB1φ =  [∇ x (v1 x Bz)]φ = ikz (v1φBz)r 

 

v1r = - (ω/kz)(B1r/Bz)      (C2) 
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v1φ = - (ω/kz)(B1φ/Bz)      (C3) 

 

Next order (involving ∂/∂r): In the ∂B1φ/∂t equation, having set the zero 

order terms equal to zero, additional terms give:   

ikz(-v1zBφ)r - ∂/∂r (v1rBφ)z = 0    (C6) 

In the z equation omitted in the MRI dispersion relation:                       

∂B1z/∂t =  - iωB1z =   ∂/∂r (- v1rBz)φ .  

These expressions yield: 

 

B1z = - (iω)-1∂/∂r (-v1rBz)     (C7) 

 

v1z = - (ikzBφ)-1∂/∂r (v1rBφ)     (C8) 

 

MRI Transport, using Eqs. (C2,C3,C7,C8): 

Accretion velocity 

 Having set - ∂Aφ/∂t = 0 (steady state) in Eq. (C1) and also having set the 

zero order radial terms in equal to zero (giving the dynamo electric field), 

we now set the remaining azimuthal term […] equal zero, giving: 

 - <v2r > Bz  +  <(v1zB1r - v1rB1z)>φ  = 0   (*) 

 v1zB1r =  - (B1r/ikzBφ) ∂/∂r (v1rBφ)   =  - (B1r/ikz)[∂v1r/∂r  +  v1r (Bφ

-1∂Bφ/∂r)] 

-v1rB1z =  (ω/kz)(B1r/Bz)(1/iω)∂/∂r(v1rBz)    =  (B1r/ikz)[ [∂v1r/∂r  +  v1r (Bz
-1∂Bz/∂r)] 

Adding and introducing the result into the <v2r > equation above gives: 

vr  ≡ <v2r >   =   Bz
-1 Re{v1r (B1r/ikz) [ - (Bφ

-1∂Bφ/∂r) +  (Bz
-1∂Bz/∂r)]] 

 

vr  =  - (3/2  -  1)(ω/kz
2r)( B1r/Bz)2    =   1/2 (Ω/kz

2r)(B1r/Bz)2  (C9) 

 

Here we use the asymptotic results (Bz
-1∂Bz/∂r) = -3/2 and (Bφ

-1∂Bφ/∂r) = -1, 

and we use Eq. (C2) to obtain v1r = - (ω/kz)(B1r/Bz) = (Ω/kz)(B1r/Bz) where 

Ω < 0 by our convention giving also an accretion velocity vr < 0 as it 

should be.  
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Axial pressure due to turbulence 

  Using Eq. (C8), we take: 

   v1z =  Re (ikzBφ)-1∂/∂r (v1rBφ) ≈ (1/kzr)v1r    =   (ω/kz
2

 r)(B1r/Bz)  

  Pz = 1/2 ρv1z
2 = 1/2 ρ[(ω/kz

2
 r)(B1r/Bz)]2 

Using vr above and Eq. (A8) giving M* = - 2πrΣvr = - 2πrρHvr and kz = 

π/H we obtain, for negative Ω:   

   

Pz =  - ρωr (1/kz r)2[1/2 (ω/kz
2r)(B1r/Bz)2]  

=  - ρωrvr (1/kz r)2  

= -  αzΩ(2πrHρvr /2πrH)(H2/r)  =    - αz(ΩM*/2πr)(H/r)  (C10) 

   

where αz = (ωΩ/kz 
2H2). 

Hyper-resistive heating 

  PHEAT = jzEz + jφEφ 

- cEz = [v1rB1φ - v1φB1r]     

= [-(ω/kz)(B1rB1φ/Bz)  + (ω/kz)(B1φB1r/Bz)]  =  0 

  - cEφ = [v1zB1r - v1rB1z]  = (vr Bz)    from (*) above 

  PHEAT = - c-1 jφ(-cEφ)  

= (1/4π)(∂Bz/∂r)(vr Bz)  = vr ∂(Bz
2/8π)/∂r   (C11) 

MRI Torque:  - rjr1B1z Additive to 2D counterpart, both serving to extract energy   

from rotation. Magnitude of fluctuations, Eqs. (C12) – (C15): see text 
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FIGURE CAPTIONS 

 

Figure 1:  

Snapshot sketch of current paths in a jet/radiolobe stucture ejected from an 

accretion disk dynamo, showing the advancing “nose” of the jet where cosmic 

rays are accelerated.  

Figure 2: 

Sketch of current paths in a spheromak plasma created by a homopolar generator, 

analogous to the accretion disk dynamo and jet structure in Figure 1. 

Figure 3: 

Predicted radial magnetic profiles in an accretion disk dynamo, showing the 

poloidal field Bz, the toroidal field Bφ = (2I(r)/cr) and the z-current I(r) = ∫0r 2πrdrjz 

within a radius r. Note that B asymptotes to Bφ ∝ (1/r) >> Bz ∝ (1/r3/2 ) used to 

calculate the inductance in Section 2 and Er ∝ (1/r) that accelerates cosmic rays in 

the “nose” of Figure 1.  

Figure 4: 

Equilibrium solution of  ∇xB = λB inside the return current boundary of Figure 1 

using the Corsica code [35]. In Figure 4a, the poloidal flux ψ(r,0) at z = 0 and 

λ(ψ) ∝ (jz/Bz) approximate the accretion disk fields of Figure 3. Figure 4b shows  

jz , λ and ψ profiles at the halfway point, z = 120.  

Figure 5: 

Taken from MHD simulations of jet ejection from an accretion disk, Ref. [10], 

showing the “mean-field” cross-section of flux surfaces in (a), the underlying 3D 

field lines in (b), and the mean field Bφ(r) in (c) approximating the asymptotic 

form ∝ 1/r in Figure 3. 
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