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We examine nuclear scission within a fully quantum-mechanical microscopic framework, focusing
on the nonlocal aspects of the theory. Using 240Pu hot fission as an example, we discuss the iden-
tification of the fragments and the calculation of their kinetic, excitation, and interaction energies,
through the localization of the orbital wave functions. We show that the “disentanglement” of the
fragment wave functions is essential to the quantum-mechanical definition of scission and the calcu-
lation of physical observables. Finally, we discuss the fragments’ pre-scission excitation mechanisms
and give a non-adiabatic description of their evolution beyond scission.

Nuclear scission, the process wherein a nucleus breaks
into two or more fragments, poses a fundamental chal-
lenge to quantum many-body theory: scission implies
a separation of the nucleus into independent fragments,
while the Pauli exclusion principle introduces a persis-
tent correlation between the fragments, no matter how
far apart they are. The objective of this paper is to
resolve this paradox by disentangling the fragments in
a fully quantum-mechanical description that is consis-
tent with experimental data. In addition to shedding
light on fundamental aspects of many-body physics, a
microscopic theory of scission is needed to make reliable
predictions of fission-fragment properties, such as their
excitation and kinetic energies, and their shapes. In par-
ticular, we revisit in a microscopic approach the question
of the energy partition between light and heavy frag-
ments which was addressed in a recent letter [1] within
a statistical-mechanic treatment. While many technical
challenges remain in the 70-year quest to develop a pre-
dictive theory of fission, understanding scission, remains
a formidable conceptual obstacle to such a theory.

Previous descriptions of scission have always been for-
mulated within the context of a nuclear density, with an
identifiable neck joining two pre-fragments. The neck
ruptures at some point along its length, and all the mat-
ter to one side or the other of the rupture is relegated
to the corresponding fragment. Despite its usefulness,
this is ultimately a classical view of scission. In 1959
[2], this picture was used to qualitatively account for
the different observed mass divisions in fission and the
well-known “sawtooth” shape of the average neutron-
multiplicity distribution. Later on, a more quantitative
description of the nuclear shape was introduced [3], and
scission was equated with a vanishing neck size. This cri-
terion was later improved [4] by requiring that scission
occurs when the Coulomb repulsion exceeds the attrac-
tive nuclear force between the fragments. Nörenberg [5]
took a step toward a more microscopic description using
a molecular model of fission calculated in a two-center
Hartree-Fock+BCS approach. Bonneau et al. [6] used
separate microscopic calculations of each fragment and
a phenomenological nuclear interaction between them to
define a scission criterion based on the ratio of their mu-

tual nuclear and Coulomb energies. In recent calculations
[7, 8, 10] the entire fissioning nucleus was treated within
a single microscopic framework and the properties of the
nucleus at scission were calculated. In those calculations
however, the identification of scission and calculations of
fragment properties still relied on the nuclear density. In
contrast to previous approaches, we present here a fully
quantum-mechanical description of scission that accounts
for the nonlocality of the many-body wave function of
the nucleus. The need for, and difficulty of disentangling
the fragment wave functions was alluded to in [6]. Our
solution is in the spirit of the Localized Molecular Or-
bital (LMO) technique used in molecular physics [9]: we
localize individual orbitals on the fragments while the
nucleons themselves, described by a Bogoliubov vacuum
built from these states, remain delocalized. This pow-
erful technique has never been used to describe nuclear
scission before.

The work described in this paper is based on con-
strained Hartree-Fock-Bogoliubov (HFB) calculations of
240Pu with a finite-range (D1S) interaction. Details of
the calculation are given in [10]. We have chosen to fo-
cus on the hot-scission point with constrained quadrupole
moment Q20 = 370 b [17], and used the constraint on
neck size, QN , to approach scission. This constraint
lets us vary the density of matter in the neck. HFB
calculations produce self-consistent solutions that min-
imize the total energy of the nucleus. In order to de-
scribe the nucleus near scission, we introduce here the
additional requirement that the interaction energy be-
tween pre-fragments must be minimized. This criterion is
consistent with the physical picture of the pre-fragments
evolving into independent fragments that move increas-
ingly further apart. We have shown in previous work
[10, 11] that the pre-fragments in the HFB solutions near
scission generally exhibit “tails”, portions of individual
orbital wave functions that extend into the complemen-
tary fragment. Our calculations show that the size of
these tails is closely related to the strength of the inter-
action between the fragments. Therefore, minimization
of the interaction energy between fragments is essentially
equivalent to localization of the orbitals on the fragments.

Hartree-Fock methods in molecular (or nuclear)
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physics generally produce single-particle atomic orbitals
that are not spatially localized within a molecule (nu-
cleus). However, it was observed early on [9] that any uni-
tary transformation applied to the single-particle compo-
nents of a Slater determinant does not affect the global
properties of the corresponding system. Since then, uni-
tary transformations have been routinely used to local-
ize electron orbitals and thereby define such chemically
meaningful concepts as core and bond orbitals. In nu-
clear fission, we will use the same concept to localize nu-
clear quasi-particle states (qp) on the nascent fragments,
taking advantage of the fact that the Bogoliubov vac-
uum is only defined up to a unitary transformation of
the qp destruction operators. More precisely, for each
qp i, we define a localization indicator ℓi, as the abso-
lute difference between the qp density to the left and
right of the neck position. A value ℓi = 0, for exam-
ple, corresponds to a completely delocalized qp. For a
given pair of of qp, (i, j), we can then look for a mixing
angle θ that maximizes the pair localization parameter
√

ℓ2

i + ℓ2

j . Thus, through a systematic search algorithm,

a set of qp pairs is found that minimizes the summed
tail size of the two fragments. In selecting these pairs,
we have required that the level energies of the qp pairs
are no more than 2 MeV apart, and have taken care not
to mix “mirror” states (nearly degenerate in energy, but
very different quasiparticle occupation numbers). The in-
terest of this process is that it unambiguously identifies
pre-fragments built from qps that are spatially localized.
The interaction energy between fragments can now be
rigorously calculated as those contributions to the HFB
mean and pairing fields that couple qps in complemen-
tary fragments. The nuclear component of that interac-
tion energy (i.e., excluding the direct Coulomb repulsion
between fragments) is plotted in Fig. 1 before and after
tail reduction. In both cases individual qps are assigned
to one fragment or the other based on their spatial local-
ization relative to the neck position. The effect of the tail
reduction can be rather substantial even when the neck
between the fragments is small, e.g. by ∼ 20 MeV even
when QN < 0.5.

We show in Fig. 2 more details concerning the lo-
calization of the qps with occupation v2 according to
whether they are preferentially holes (v2>1/2) or parti-
cles (v2<1/2). We observe that the effect of the localiza-
tion is most visible for the hole states with v2 > 0.7. Note
in particular the pair of deeply-bound states in the top
panel of Fig. 2 with v2

≈ 1 and ℓ ≈ 0 (i.e., fully delocal-
ized), both with K quantum number 1/2 and only 7 keV
apart in energy. These two states become fully localized
in the bottom panel. Notice also that a great number of
localized qps of particle type can combine with localized
qps of hole type to provide a rich spectrum of two-qp
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Figure 1: (Color online). Interaction energies plotted as a
function of neck size (QN). The solid black and red dashed
curves are the nuclear interaction energies before and after
localization respectively (energy scale on left y axis), and the
dotted green curve is the exchange part of the 2-body compo-
nent of the interaction energy (energy scale on right y axis).
The inset shows a closeup view for 0.2 ≤ QN ≤ 0.5.
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Figure 2: (Color online) individual quasiparticle states before
(top panel) and after (bottom panel) localization at scission.
Proton states are shown as red crosses, and neutron states as
black disks. The x axis gives the occupation (v2

i ) of the state,
while the y axis gives its normalized localization (ℓi/2v

2

i
) .

states localized on each of the two pre-fragments. These
simple excitations or combinations of them describe ex-
cited fragments. Not all states are fully localized by the
algorithm above, in particular a 2-MeV, K = 1/2 neu-
tron state remains in the bottom panel with v2

≈ 0.16
and ℓ ≈ 0.53, but the overall effect on the fragment den-
sities shown in Fig. 3 is significant. The effect of the
localization on the interaction energy is even more strik-
ing, as shown in Fig. 1. We point out that this analysis
includes ≈ 1100 proton and neutron qp states.

If we faithfully apply the variational principle to the fis-
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Figure 3: (Color online) effect of localization on the densities
of the fragments at scission. The solid black line gives the
density along the symmetry (z) axis before localization, and
the dashed red line is the density after localization.

sioning nucleus in order to minimize the total energy (by
the HFB method), as well as the interaction energy (by
tail reduction), the result will be two infinitely separated
fragments in their respective ground states. Experimen-
tal observables–neutron emission and kinetic energies–
clearly indicate that we must depart from this adiabatic
picture. In fact, the point where the evolution of the
fissioning nucleus ceases to be adiabatic could be taken
as a definition of scission. For practical applications,
we give the following 3 criteria that define the scission
point: 1) the repulsive Coulomb force between fragments
greatly exceeds their mutual nuclear attraction, 2) the
exchange contribution to the interaction between frag-
ments is small, which means that we can neglect the an-
tisymmetry between their constituents and describe the
system as two separate Bogoliubov vacua, and 3) in each
fragment, we can excite a set of two-qp states that re-
main localized on the fragments, so that the fragments
can be considered as separate entities with their own ex-
citations and in interaction through a repulsive force act-
ing only on their respective centers of mass. As the neck
is reduced in our 240Pu calculation, the point at QN =
0.35 is the first for which all three criteria above are si-
multaneously verified, and the results in Figs. 2 and 3
were calculated for this scission point. Scission may oc-
cur at other nearby points, but this one is representative.
At QN = 0.35, the Coulomb force is ≈ 30 times larger
than the nuclear one, the two-body exchange contribu-
tion is only -0.7 MeV (Fig. 1), and a set of 2-qp states
can be constructed from localized states in Fig. 2 that
remain localized within a fragment (i.e., their creation
does not significantly affect the excitation of the com-
plementary fragment, or the interaction energy between
them). Thus, for the first time in the literature, we give
a definition of scission that relies on the nonlocal aspects
of quantum mechanics.

This leads us to describe our system after scission
in the Hill-Wheeler approximation as Ψ =

∫

f (d)Φddd

where d is the relative distance between the fragments,
and Φd ≡ Φ1Φ2 is the two fragments’ wave function. We
obtain the collective Hamiltonian [12],

Hcoll ≡
~p2

d

2µm
+ V (d) + C

where ~pd is the momentum operator corresponding to d,
µ is the reduced mass of the fragments with masses A1

and A2, and m is the nucleon mass, V (d) is the fragment
interaction potential, and C = Ei + ε0 is a constant with
Ei (i = 1, 2) the internal fragment energy, and ε0 a zero-
point correction,

Ei ≡

〈

Φi

∣

∣

∣

∣

H −
~p2

i

2mAi

∣

∣

∣

∣

Φi

〉

ε0 ≡

〈

Φd

∣

∣

∣

∣

~p2
1

2mA1
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~p2
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2mA2

−
~p2

2mA

∣

∣

∣

∣

Φd

〉

Note that V (ds)+C is nothing but the total Bogoliubov
energy at the scission point (i.e., at d = ds).

Thus we propose the following two-stage description of
fission: 1) the nucleus deforms until it reaches a scission
configuration determined with the criteria given above at
which point the fragments are “frozen” in their configu-
rations and 2) as a result of their strong mutual repulsion
move apart essentially by spatial translation. Eventually
these fragments will decay by neutron and gamma emis-
sion to their respective ground states.

In the following we investigate the extent to which
this picture is consistent with experimental observables.
Let us first discuss our predictions assuming a one-
dimensional path leading to the hot fission point and
that the collective dynamic is adiabatic from the sad-
dle to the scission point. Starting with zero energy at
the saddle we are at ≈ 25 MeV above the scission point.
With our assumption this energy must be interpreted as
a collective pre-kinetic energy. Now, the kinetic energy
acquired by the fragments after scission is simply given
by V (ds)−V (∞) = V (ds) which is ≈ 170 MeV accord-
ing to our calculations. Adding this pre-kinetic energy,
our description gives a total kinetic energy (TKE) of 195
MeV which exceeds by only 10 MeV the experimental
value 184.8 ± 1.7 MeV obtained by averaging the data
sets available in the literature [13–15].

The calculation of the fragment excitation energies re-
quires their corresponding ground-state energies. In or-
der to calculate these ground-state energies consistently
within the same basis as the excited states, they have
been obtained from an HFB calculation starting from
the scission configuration, but without the constraint on
neck size. Constraints were added to keep the average
number of protons and neutrons in each fragment the
same as in the excited state, but otherwise the fragments
were allowed to drop to their lowest-energy state as they
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were pulled further apart. The minimum energies of the
fragments were thus found when they were moved an ad-
ditional 1.6 fm apart. Using these as the ground-state
energies, excitation energies of 4.5 MeV and 7 MeV were
obtained for the heavy (average mass number ≈ 132)
and light (average mass number ≈ 108) fragment, re-
spectively. Together, these yield a total excitation energy
(TXE) of ≈ 11.5 MeV. By contrast, the average TXE ex-
pected from empirical arguments [16] in thermal fission
on a 239Pu target is ≈ 26 MeV, thus leaving a ≈ 15-MeV
discrepancy which we address next.

It is believed that three collective degrees of freedom
(Q20, Q30, Q40), if not four (triaxial mode), are the barest
minimum needed to describe the collective dynamics of
fission. If so, one could expect that part of the avail-
able energy in the descent from saddle to scission would
be transferred to two or three modes transverse to the
fission direction. This possibility was studied previously
[17] with two degrees of freedom (Q20, Q40). That work
showed that ∼ 2 MeV are already taken by one trans-
verse mode. With two other degrees of freedom a total of
4 or 5 MeV could be taken up in these collective modes,
at the expense of the fragment kinetic energy. Finally
an other source of dissipation can result from the cou-
pling of the collective dynamic with internal excitations
[18]. A derivation of such coupling can be obtained in
the framework of a generalization of the generator co-
ordinate method including two quasiparticle excitations
[19]. Therefore we have sufficiently many degrees of free-
dom to dissipate part of the available 25 MeV from saddle
to scission.

Let us therefore consider different damping scenarios.
Suppose that the 25 MeV potential energy liberated in
the fission of 240Pu is shared in a 50/50 split between pre-
scission fragment kinetic and excitation energies, then
our prediction (TKE = 182.5 MeV and TXE = 24 MeV)
precisely matches the experimental values. Even if we
take a more conservative 25/75 distribution, one way or
the other, the scenario we propose is still in remark-
able agreement with observations. It is rather striking
that, without adjustable parameters, we have formulated
a quantum mechanical and dynamical picture of scission
that is consistent with experiment.

In closing, we comment briefly on the nature of the
fragment excited states calculated in this microscopic ap-
proach. Strictly speaking, the fragments identified on the
HFB solution for 240Pu should be analyzed separately on
the set of eigenstates of the Hamiltonians describing each
of them. The spectrum of nuclei at such high energies is
not known and its description would likely require a sta-
tistical distribution over all conceivable types of states at
those excitation energies (collective, intrinsic, states with
one or more nucleons in the continuum, etc.). Whether or
not a statistical approach is necessary to perform such an
analysis is a separate question. The description of fission
we propose does not require any statistical mechanics or

any kind of temperature for low-energy fission.

Finally, let us mention that the concept of localization
could have interesting applications as we approach the
scission point. In effect, as we recognize pre-fragments,
the values of the global constraints split into the con-
tributions from those pre-fragments. As the fragments
move apart, we expect the correct description of the sys-
tem to rely on separate collective coordinates for those
individual fragments. Although it remains to be veri-
fied, we believe that the localization of Fock space could
provide a way to impose constraints separately on the
pre-fragments, and thereby give a richer description of
the nucleus at and beyond scission.

This work was performed under the auspices of the US
Department of Energy by the Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.
Funding for this work was provided by the United States
Department of Energy Office of Science, Nuclear Physics
Program pursuant to Contract DE-AC52-07NA27344
Clause B-9999, Clause H-9999 and the American Recov-
ery and Reinvestment Act, Pub. L. 111-5.

[1] K.-H. Schmidt and B. Jurado, Phys. Rev. Lett. 104,
212501 (2010).

[2] S. L. Whetstone Jr., Phys. Rev. 114, 581 (1959).
[3] J. R. Nix, Nucl. Phys. A130, 241 (1969).
[4] K. T. R. Davies, R. A. Managan, J. R. Nix, A. J. Sierk,

Phys. Rev. C 16, 1890 (1977).
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