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An Embedded Mesh Method for Treating Overlapping Finite

Element Meshes

Jessica Sanders1,∗, Michael A. Puso1

Abstract

A new technique for treating the mechanical interactions of overlapping finite element
meshes is presented. Over the years, many different names have been given to methods
treating overlapping meshes, here we will refer to them all as embedded mesh methods.
Such methods can be useful for numerous applications e.g., fluid-solid interaction with a
superposed meshed solid on an Eulerian background fluid grid or solid-solid interaction with
a superposed meshed particle on a matrix background mesh, etc. In this work, we consider
the interaction of two elastic domains: one mesh is the foreground and defines the surface
of interaction, the other is a background mesh and is often a structured grid. Many of the
previously proposed methods employ surface defined Lagrange multipliers or penalties to
enforce the boundary constraints. It has become apparent that these methods will cause
mesh locking under certain conditions. Appropriately applied, the Nitsche method can over-
come this locking ([1]), but, in its canonical form, is generally not applicable to non-linear
materials such as hyperelastics. The relationship between interior point penalty, discontin-
uous Galerkin and Nitsche’s method is well known (see [2]). Based on this relationship, a
nonlinear theory analogous to the Nitsche method is proposed to treat nonlinear materials in
an embedded mesh. Here, a DG derivative based on a lifting of the interface surface integrals
provides a consistent treatment for non-linear materials and demonstrates good behavior in
example problems.

Keywords: discontinuous Galerkin, Nitsche’s method, embedded grids, mesh locking

1. Introduction

Overlapping meshes can significantly simplify model development and provide a more
generalized framework for model simulation. A common example is a continuum solid (fore-
ground) mesh embedded in an Eulerian (background) fluid (Figure 1) but many different
physics can be exploited in this context. Here, our proposed approach will be in the context
of solid-to-solid interaction for simplicity but is extended to fluid-to-solid interaction in a
sequel work.
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Figure 1: Embedded mesh approach. Background fluid in blue and foreground solid in brown.

The authors have previously investigated several techniques for embedded meshes in
linear elasticity in [1]. In this work, it is shown that a standard mortar constraint approach
(e.g., [3]) is prone to mesh locking , especially in the case of disparate mesh sizes and domain
stiffness. A good exposition of the mesh locking phenomenon is presented in [4]. Methods
that use an over-set grid are often applied in fluid mechanics (e.g., the Chimera method [5])
can avoid this mesh locking by building an auxiliary mesh using the background material.
Penalty methods and Nitsche’s method have also been studied for embedded meshes ([1]
and [6] ). Applied appropriately, Nitsche’s method was shown in [1] to enforce the two-body
surface-to-volume constraints without mesh locking, and apparently with the correct rates
of convergence, for linear elasticity.

Nitsche’s method was originally proposed in [7] as a method for weakly imposing essential
boundary condition for the finite element approximation of elliptical PDEs. A relationship
to stabilized finite element methods was later established in [8], where it was shown that
Nitsche’s method could be derived for the stabilized Lagrange multiplier formulation of [9].
The method has witnessed a resurgence in recent years. It was also used in [10] and [11]
for boundary condition enforcement in mesh-free methods, in [12] for domain decomposition
purposes, and in [13] for contact, and in [14] and [15] for embedded interfaces 2. Nitsche’s
method has posed some outstanding challenges for extension to large deformation, and other
non-linear mechanics problems. In particular, the formulation for solid mechanics systems
includes a stress variation operator (shown in Section 3, equation (11)) which is added to
the statement of virtual work to assure symmetry and adjoint consistency of the virtual
work. It has previously not been clear how to obtain a natural extension of the operator to
a non-linear material law.

We address these problems by exploiting the well-documented parallels between Nitsche’s
method, interior penalty and discontinuous Galerkin (DG) methods. Discontinuous Galerkin
(DG) methods have been used for the numerical solution of PDEs since their introduction

2Embedded interfaces in this context refer to surfaces that capture a jump of some field within a single
mesh, as opposed to the embedding of two different meshes.
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in [16]. The class of methods has since been studied in many contexts, [e.g., 17, 18] and
developed parallel to the similar class of methods known as interior penalty [e.g., 19, 20].

Elastic one-field problems with kinematic constraints, such as incompressibility, pose a
well-known locking problem for conforming approximations. Locking in this context (which
is similar in spirit to interface locking) motivated studies of DG methods for these elliptical
classes of problems, along side other techniques such as reduced integration and assumed
strain methods. DG methods avoid locking for incompressible elasticity through the relax-
ation of the assumptions of continuity at element boundaries (followed by subsequent weak
enforcement to that continuity). The techniques in this chapter are largely motivated by the
work of [21] and [17], which extend the ideas of the original DG methods as applied to linear
elasticity by [18]. An excellent review of DG methods can be found in [2].

Whereas in standard finite element methods, continuity between elements is built into
the discrete space, it must be enforced in DG methods in the variational form. The interior
penalty approach is one way to apply these constraints. Its virtual work statement for linear
elasticity is nearly form identical to Nitsche’s method. The largest difference appears to
be that “interior penalty” generally refers to the discrete variational forms used to enforce
internal continuity for DG methods, whereas “Nitsche’s method” generally refers to methods
as applied to constraints and boundary conditions in a continuum sense. Many previous
works acknowledge the fundamental connection between interior penalties, DG methods,
and Nitsche’s method, including [2], and the work of [22], which successfully blends the
extended finite element method with DG methods for embedded discontinuities.

Derivation of interior penalty methods can be done with a discontinuous Galerkin deriva-
tive. For solid mechanics problems, this DG derivative relates a possible displacement jump
in a solution field to an associated volumetric strain. Nitsche’s method is not generally de-
scribed with a DG derivative, but in this paper we show that the derivative may be adapted
from its standard use for discrete spaces to our situation in which a displacement jump arises
inherently from the definition of the problem. We show that for a linear system, the vari-
ational formulation resulting from using this operator is essentially equivalent to Nitsche’s
method prior to discretization.

Current foundations for discontinuous Galerkin methods in non-linear finite elasticity
are presented in [23] and [24], based upon a natural extension of the linear work in [21] for
incompressible elasticity. In these works, stability of the formulation is discussed via the
problem of coercivity of the linearized elasticity problem. Though restrictions on the elastic
moduli are shown to result in the desired coercivity properties, a complete case for overall
stability of the formulation remains an open question.

We draw on the basic ideas in [24], in that we take advantage of their justification
for extension of a DG derivative for a hyperelastic material. We adapt the concept of a
DG derivative to the case in which the discontinuity is part of the problem definition, as
opposed to discretely introduced, and apply it to both linear and non-linear elastic structural
mechanics systems. The remainder of the document will be organized as follows: Section
2 introduces the problem formulation and governing equations for a two-body structural
system with one body embedded in the other. Variational and discrete forms are presented
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in sections 3 and 4. Section 5 reviews implementational details, and finally three numerical
examples are presented in section 6.

2. Problem Formulation

We consider the two domains shown in Figure 2, B1 and B2, subject to finite deformation
and forced to move in concert at their interface, Γ∗. Our formulation is general to cases of
both complete (as shown) and partial overlap of the bodies. The coordinates of body m in
the material configuration are denoted as X(m), and coordinates in the current configuration
are denoted as x(m). The deformation of the bodies are prescribed through the mapping

x(m) = ϕ(m)
(
X(m)

)
.

The entire computational domain is denoted Ω and is the union of the background and
foreground domains i.e., Ω = B1 ∪ B2. Excluding Γ∗, the computational boundary can be
divided into Dirichlet and Neumann parts on each body, Γ

(m)
d and Γ

(m)
h , respectively.

For simplicity, we consider the case in which the materials are not subject to body loads,
though we allow the possibility of surface loads, T (m), and prescribed boundary displace-
ments, ū(m). The equations of motion are

∇0 · P (m) = 0 in Ω (1a)

u(m) = ū(m) on Γ
(m)
d (1b)

P (m)n(m) = T (m) on Γ
(m)
h (1c)

u(1) = u(2) on Γ∗ (1d)

P (1)n(1) = −P (2)n(2) on Γ∗. (1e)

For a hyperelastic deformation model, the first Piola-Kirchoff stress, P (m), is obtained via

direct differentiation of some stored energy function, W (m)
(

X(m), F (m)
)
, with respect to

the deformation gradient, F (m):

P (m) =
∂W (m)

∂F (m)
. (2)

Equations (1d) and (1e) represent motion coupling through enforced continuity at the do-
mains’ shared boundary.

We also consider the elastic small deformation case in which stress is a linear function of
strain, which is taken as the symmetric part of the displacement gradient,

ε(m) = 1
2

(
∇u(m) +∇T u(m)

)
. Equation (1a) then reduces to ∇ ·

(
C(m) : ε(m)

)
= 0. Here,

C(m) is the fourth order tensor of material properties for body m according to Hooke’s Law.
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Figure 2: Two body problem in finite deformation

3. Variational Forms

For a traditional derivation of the finite element weak form associated with the equa-
tions of motion, we define a solution and weighting space, S(m) and V (m), consisting of
displacements, u, and their variations, δu:

S(m) =
{

u(m)|u(m) ∈ H1(Bm), u(m) = ū(m) on Γ
(m)
d

}
V (m) =

{
δu(m)|δu(m) ∈ H1(Bm), δu(m) = 0 on Γ

(m)
d

}
.

The constrained variational problem is given by:

Find (u1, u2) ∈ (S1 × S2) such that∑
m

∫
B

(m)
0

(
δF (m)

)T

: P (m) dB =
∑
m

∫
∂B(m)

δu(m) · P (m)n(m) dΓ

for all (δu1, δu2) ∈ (V 1 × V 2). (3)

The boundary terms on the right side can be divided into those evaluated over Γ
(m)
d , which

vanish due to the definition of V , those evaluated over Γ
(m)
h , in which we can make the

substitution given by (1c), and those on the common boundary, Γ∗, These substitutions lead
to the form:

Find (u1, u2) ∈ (S1 × S2) such that∑
m

∫
B

(m)
0

(
δF (m)

)T

: P (m) dB =

∫
Γ∗

[[δu]] · P̂n(1) dΓ +
∑
m

∫
Γ

(m)
h

δu(m) · T (m) dΓ

for all (δu1, δu2) ∈ (V 1 × V 2). (4)
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Where the term P̂n(1) indicates a developed contract traction on the shared interface. The
jump in any field is denoted [[a]] = a(1) − a(2).

Standard mortar methods for this problem would devise a separate approximation space
for the contact traction, P̂n(1). In this altered approach we incorporate the displacement
gap, [[u]], into the definition of the displacement gradient and show that this reproduces
the appropriate constraint energy. This approach is motivated by discontinuous Galerkin
methods. To define a displacement gradient augmented by the displacement jump, we make
use of the lifting operators commonly used for discontinuous Galerkin style derivatives. The
proposed operator, R, converts a displacement jump, defined over a boundary, to a spatial
gradient defined over an associated domain. It is defined through its action on a vector field
a and a tensor field b via:∫

Ω

R(a) : b dΩ = −
∫

Γ∗

a⊗ n(1) : b(2) dΓ. (5)

We adapt the definition by choosing the a to be the displacement jump, b to be stress, and
the domain of integration to coincide with B2, which gives∫

B2

R([[u]]) : P dB = −
∫

Γ∗

[[u]]⊗ n(1) : P dΓ (6a)

= −
∫

Γ∗

[[u]] · Pn(1) dΓ. (6b)

An integration domain of B1 would also be possible, or a convex combination of integrals
over each. We choose B2 (the background) because it simplifies implementation, and was
shown in numerical experimentation to be the most effective for the kind of stiff overlapping
body problems for which we intend the method. The choice does affect the specifics of all of
the following variational statements as well as implementation.

The operator R is tensor valued and defined over a volume, and we will need to chose a
suitable basis and discrete expression for it. Section 4 will give more specifics into choosing
and evaluating R. A new gradient operator for the problem, based on both the traditional
term F and the lifting operator, defined

DDGu = F + R([[u]]), (7)

is used in place of the standard displacement gradient for the compatible strains over the in-
tersected background body. We consider the internal virtual work of body 2 (the background)
and replace the gradient, F and the gradient variation, δF , with their DG counterparts from

6



(7), and expand the integral in the following way:∫
B2

(
δD

(2)
DG

)T

: P (2) dB =

∫
B2

(
δF (2)

)T

: P (2) dB +

∫
B2

R([[δu]]) : P (2) dB (8a)

=

∫
B2

(
δF (2)

)T

: P (2) dB −
∫

Γ∗

[[δu]]⊗ n(1) : P (2) dΓ. (8b)

The last term in (8b) gives the term representing constraint energy that was unknown - the
second term in equation (4). By replacing the operator F with DDG, we effectively move
the term representing constraint energy to the left side of the equation and incorporate it
into the body integral. Our variational form becomes

Find (u1, u2) ∈ (S1 × S2) such that∫
B1

(
δF (1)

)T

: P (1) dB +

∫
B2

(
δD

(2)
DG

)T

: P (2) dB =
∑
m

∫
Γ

(m)
h

δu(m) · T (m) dΓ

for all (δu1, δu2) ∈ (V 1 × V 2). (9)

We can see the relationship to Nitsche’s method by investigating the linear case, in which
(9) becomes

Find (u1, u2) ∈ (S1 × S2)∫
B1

δε(1) : C(1) : ε(1) dB +

∫
B2

δD
(2)
DG : C(2) : D

(2)
DG dB =

∑
m

∫
Γ

(m)
h

δu(m) · T (m) dΓ

for all (δu1, δu2) ∈ (V 1 × V 2). (10)

Equation (10) can be expanded and re-written using the definition of R:

Find (u1, u2) ∈ (S1 × S2)∑
m

∫
B(m)

δε(m) : C(m) : ε(m) dΩ−
∫

Γ∗

[[δu]]⊗ n(1) : C(2) : ε(2) dΓ

−
∫

Γ∗

[[u]]⊗ n(1) : C(2) : δε(2) dΓ +

∫
B2

R([[δu]]) : C(2) : R([[u]]) dB =∑
m

∫
Γ

(m)
h

δu · T (m) dΓ

for all (δu1, δu2) ∈ (V 1 × V 2). (11)

If the integral
∫

B2 R([[δu]]) : C : R([[u]]) dB were replaced with a standard penalty
term like α

∫
Ω
[[u]][[δu]] dΩ, equation (11) would be identical to a Nitsche based approached

to the constrained two body problem. Equation (9) can then be seen as the natural extension
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of Nitsche’s method to a nonlinear elastic embedded mesh system.
The penalty style term in Nitsche’s method has the function of stabilizing the problem,

which would otherwise lose its coercivity (and discrete positive definiteness) due to the
subtracted integrals. The stabilization term, α, must be appropriately chosen. The final
integral in (11) appears to act in the same function, but without a necessary choice of
stabilization coefficient. It was shown in [2], however, that for traditional DG applications,
the formulation is not unconditionally stable, meaning that it may be necessary to add an
extra stabilization term. None of our examples in linear elasticity appeared to require this
extra stabilization, though some of the nonlinear examples benefited from a small extra
penalty term.

4. Discretization

The bodies are meshed independently, with a discretization mismatch allowed to occur
at Γ∗. Finite dimensional subspaces in this case are:

S(m)h

=
{

u(m)h|u(m)h ∈ C0(Bm), u = ϕ̄ on Γ
(m)
d

}
V (m)h

=
{

δu(m)h|δu(m)h ∈ C0(Bm), δu = 0 on Γ
(m)
d

}
.

Figure 3 shows the overlapping body superposed over the background discretized body 2.
For simplicity, the overlapping elements are not shown.

All elements of body 1 contribute to the discrete stiffness of the system. Body 2 contains
three categories of elements: (1) those that are submerged (void) and contribute no stiffness,
(2) those that are complete, and (3) cut elements which contribute partial stiffness. These
cut elements use the discrete DG strain:

DDGuh = 1 +
∂NA

∂X
dA + R([[uh]]), (12)

or

DDG = δiI +
∂NA

∂XI

dAi + Rh
iI([[u

h
i ]]). (13)

Note that when using indicial notation, we use capital letters for quantities measured in
material coordinates, and lower case letters for spatial coordinates.

In a modified DG element we need to be able to form a discretization of the term R([[uh]]).
This is a local calculation which involves choosing a basis for R. Here we present two
approaches, the first taken in [24], and a second which was implemneted for the subsequent
numerical results. For the following development, a section of Γ∗ that overlaps a specific
element, e, is called Γe. For convenience, we introduce a special vector of displacements,

dg =

{
d(1)

e

d(2)
e

}
, (14)
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cut element void element

Figure 3: The background grid divided into traditional (white), void (gray) and DG elements (teal). Fore-
ground boundary is shown with a dotted line.
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Figure 4: DG element with associated degrees of freedom
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corresponding to all of the displacement degrees of freedom involved in the discrete gap
function over Γe

∗. Figure 4 shows an example. Assuming that R has support functions NB

over the entire area of a DG element, we can write

R([[uh]]) = NB[RB]dg. (15)

where B indexes and is summed over the chosen supports of R. For clarity it is worth
presenting both vector and indicial notation, such that

RiJ([[u]]) = NB[RBJ ][[ui]] = NB[RBAJ ]dg
Ai, (16)

where B is indexed over all of the elements involved in the gap function as defined over Γe
∗.

We solve for [RBAJ ] through a discrete form of the equation that defines R. Equation (6b),
written over a single element, e, is∫

Be

R([[u]]) : P dB = −
∫

Γe

(
[[u]]⊗ n(1)

)
: P dΓ,

or, ∫
Be

RiJ([[u]])PiJ dB = −
∫

Γe

[[ui]]PiJn
(1)
J dΓ. (17)

By substituting (16) into (17), assuming linear NB, using the discrete form of u, and acknowl-
edging arbitrary PiJ , we can form a discrete system that can be solved for the coefficients of
[RBAJ ]. This was the approach of [24]. In the proposed approach, in lieu of solving a linear
system, we let R be constant, such that we get the expression

RiJ([[u]])

∫
B2

e

dB = −
∫

Γe

[[ui]]n
(1)
J dΓ,

or

RiJ([[u]]) = − 1

VE

∫
BE

(
N

(1)
A −N

(2)
A

)
nJdg

Ai dΩ, (18)

where VE is the volume, or area, of the material region of the cut element, and nJ is the
outward normal, in material coordinates, of Γ∗. The vector dg

Ai is a set of nodal degrees
of freedom associated with the support of the gap function. The volume integrals are only
performed over the material, or uncovered area, meaning that VE is the area of the material
section of the element.

It should be noted that the constant R can lead to rigid body rotation mode for a single
foreground/background element pairing (See Figure (5)). We typically do not expect the
mode to propagate for more than one element.

Once the virtual work statements have been discretized, Nitsche’s method and the DG
derivative method can no longer be seen as equivalent, due to the necessity of the discrete
space approximation of the lifting function.
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Un-deformed 
elements

Possible deformation
mode 

Figure 5: A rotational displacement jump mode may be transparent to the constant strain lifting operator

5. Linear and non-linear implementational

For a linear system the strain in a DG element appears as

DDG = ε(u) + R([[u]]) = Bd + BMdg, (19)

where B and d are the standard B matrix and element displacement vector and

BM = −[BM
1 , BM

2 , −BM
3 , ... −BM

ng
], (20)

BM
a =

1

Ve



∫
Γe
∗

Nan1 0

0

∫
Γe
∗

Nan2∫
Γe
∗

Nan2

∫
Γe
∗

Nan1


. (21)

Here ng is the number of nodes involved in the special element displacement vector dg. The
final expression for a modified element stiffness is

ke =

∫
Be

(B + BM)T D(B + BM) dBe, (22)

which must be assembled using a local ID array taking into account all of the degrees of
freedom in d and dg.

For the non-linear system discretize the more convenient (and equivalent) variational
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form given by:

Find u ∈ S1 such that ∫
Ω

δE : S dΩ =

∫
Γ

(m)
h

δu · T (m) dΓ

for all δu ∈ V . (23)

where E is the Green strain tensor and S is the second Piola-Kirchoff stress, both functionally
dependent on DDG. The variation of strain in DG elements becomes

δEDG
IJ =

1

2

(
∂δui

∂XI

(FiI + RiI) +
∂δui

∂XJ

(FiJ + RiJ)

)
. (24)

In 2D Voigt vector notation this is

δEDG =


Fi1δui,1

Fi2δui,2

Fi1δui,2 + Fi2δui,1

 +


Ri1δui,1

Ri2δui,2

Ri1δui,2 + Ri2δui,1

 (sum over i),

= Bδu + BMδug

, (25)

where B is the standard non-linear displacement gradient matrix, and

BM = −[BM
1 BM

2 BM
3 ... BM

ng
], (26)

BM
A =


R11NA,1 R21NA,1

R12NA,2 R22NA,2

R11NA,2 + R12NA,2 R21NA,2 + R21NA,1

 . (27)

Local evaluation of the internal forces in DG elements gives

f int,e,m
DG (d) =

∫
Bm

e

(
B + BM

)T
SDG dBe. (28)

The consistent tangent associated with the linearization of this term for a Newton-Raphson
iteration is:

∂f int(d)

∂d
=

∫
Be

(B + BM)T ∂S

∂E
(B + BM) dBe +

∫
Be

∂(B + BM)

∂d
S dBe (29)

In the following examples, integration of the DG elements is done with Gauss quadrature
over sub-triangles. Standard finite element assembly of element internal forces and tangent
stiffness applies, and the global problem is solved with Newton-Raphson iteration.
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6. Numerical Examples

For three numerical examples, we compare a DG derivative approach to penalty and
mortar constraint approaches for the same problem. For a description of penalty and mortar
approaches to the embedded problem see [1].

For finite deformation problems, we use a standard Neo-Hookean hyperelastic behavioral
law, based on the first invariant of strain, I, and the deformation jacobian, J , given by:

W =
1

2
µ (I − 3− 2 ln J) +

λ

4

(
J2 − 1

)
− λ

2
J. (30)

6.1. Non-linear bending

We construct a rectangular [1 × 1.5] background domain, with the origin at the center
of the left boundary, and embed a smaller [1 × 0.625] rectangular body, in left portion, so
that the boundaries coincide on three surfaces, and continuity only needs to be enforced on
a vertical surface at x = 0.625. The crosshatch mesh is constructed to represent a “worst
case scenario” for the locking phenomenon, with the constrained surface cutting diagonally
across the background mesh. Loading is a linear distribution of normal forces on the left
and right faces. The embedded domain is both more finely meshed and comparatively stiff
than the background grid (E1 = 50000, E2 = 50, ν1 = ν2 = 0.3). Finite deformations and
the Neo-Hookean material law are considered.

Figure 6 shows a problem setup and a refined FEA solution with no embedded mesh. For
the sake of rendering, the gridding is not shown. Figure 7 shows a mortar solution, both in
terms of x-directional stresses and interface traction, where it is seen that large oscillations in
stress are encountered at the interface. Results for the DG derivative formulation are shown
in Figure 8 and appear qualitatively improved. Convergence rates to a fine conforming mesh
are given in Figures 9 and 10 for mortar methods, a penalty method, and the DG derivative
method. The mortar method does not converge in the energy norm, and the penalty method
does not converge optimally in the L2 norm of displacements, but the DG derivative method
converges optimally or nearly optimally for both. Both the penalty method and the DG
derivative method have slightly less than optimal rates in the energy norm. This may be a
result of the non-linearities of the geometries and comparison to the imperfect finite element
solution. Figure 11 is the energy convergence results for the equivalent linear problem, which
in fact do converge optimally.

6.2. Linear multiple inclusions

A second problem, this time representing a small deformation linear system, is given
in Figure 12. A conforming FEA solution for y-directional stresses is shown in Figure 13.
Embedded meshes with a mortar constraint, and the DG derivative are shown in Figures 14
and 15, respectively. Convergence properties in the error norms for the three methods, as
well as a standard Nitsche’s method, are given in Figure 16. In both norms, convergence
rates are better for the DG derivative method than for any of the other three. Results are
shown with zero extra stabilization for the method, meaning that there is also no extra choice
or scaling of a stability parameter.
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Figure 6: (a) Problem setup (b) Converged conforming finite element solution for non-linear bending
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Figure 7: Mortar solutions for non-linear bending: (a) Cauchy stresses in x, (b) surface traction
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Figure 8: DG solutions for non-linear bending: (a) Cauchy stresses in x, (b) surface traction
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Figure 10: Spatial convergence for energy norm in displacement for non-linear bending
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Figure 12: Setup for a multiple inclusion problem; all inclusions are stiff.

16



 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 13: Reference solution (y-directional stresses) with a conforming finite element grid for stiff inclusion
example
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Figure 14: Mortar solution (y-directional stresses) for stiff inclusion example

17



 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 15: DG derivative solution (y-directional stresses) for stiff inclusion example

6.3. Non-linear conveyor belt

The final example is a cross-sectional plane strain simulation of loading on a reinforced
conveyor belt, again with finite deformations and a Neo-Hookean material. These kinds
of systems are used for heavy duty industrial applications such as mining. Steel cords are
generally used as the reinforcement for a rubber belt. Both materials can be reasonably
modeled with a Neo-Hookean constitutive model in the elastic regime, although their overall
strength and compressibility are very different. A setup is shown in Figure 17. The rubber
belt is modeled with a effective stiffness of E = 0.1 and Poisson’s ratio of ν = 0.45. The
steel inclusions are modeled with a stiffness of E = 200 and ν = 0.3. The right side of the
problem is considered a symmetry plane, and we apply a pressure loading. The loading is
deliberately larger than would be physically reasonable for industrial applications, so as to
allow us to observe very large deformations of the materials. A contour of bending stresses for
a conforming solution is shown in Figure 18. Though overall displacement seems reasonable
in the mortar solution (Figure 19), it is clear that the stress values in the steel are non-
physical – this is due to the stiffness difference between the materials. The relative mesh
densities were allowed to be similar in this case, to demonstrate that only one of our two
important parameters - relative mesh density and relative stiffness, can be enough to produce
a locking effect. The solution due to the DG method returns a reasonable approximation of
the stress field in comparison to the conforming solution (Figure 20).
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Figure 16: Spatial convergence to a fine conforming mesh for stiff inclusion problem
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Figure 18: Conforming solution for reinforced conveyor belt problem (bending stresses)
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Figure 19: Mortar solution for reinforced conveyor belt problem (bending stresses)
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Figure 20: DG derivative solution for reinforced conveyor belt problem (bending stresses)
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7. Conclusions

In this paper, the stability of embedded finite element meshes for structural mechanics
problems was analyzed. In the case of structural elasticity, traditional methods for enforcing
continuity constraints at embedded boundaries have been shown to have either stability or
consistency problems. In particular, mortar methods, which are standard for treatment of
conformally meshed interfaces, can result in over-constraint and locking behavior, which
causes a loss of energy convergence and unstable interfacial fluxes. Penalty methods tend
to behave better than mortar methods for energy considerations, but failed to sufficiently
enforce continuity constraints, resulting in loss of optimality in the displacement norms.
Nitsche’s method for weak constraint has been shown to be capable of restoring convergence
optimality and increasing overall accuracy of the solution in these cases. The previous major
disadvantage of Nitsche’s method was that its extension to non-linear material behavior was
unclear.

Here, a lifting operator was introduced such that Nitsche’s methods’ boundary integrals
could be evaluated as volume integrals and rolled into the definition of element strain. An
additional advantage occurs from this method in that some amount of stabilization naturally
comes from the modified element strains. The method is shown to perform as well or better
than a standard Nitsche’s method in linear test problems with no additional stabilization.
The discontinuous Galerkin version of Nitsche’s method was applied to the case of embed-
ded meshes for non-linear elasticity. Use of this method circumvented the need to find an
expression for the stress variation - previously an outstanding question for non-linear appli-
cations on Nitsche’s method. Optimal convergence in displacement and energy norms was
observed for all linear problems. Non-linear problems converged as well. In all cases, the
discontinuous Galerkin method performed as well or better than either standard mortars or
penalty methods.
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