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We describe a modification of the treatment of photon sources in the IMC algorithm [1]. We describe this

modified algorithm in the context of thermal emission in an infinite medium test problem at equilibrium

and show that it completely eliminates statistical noise.

Let us examine the case of an infinite medium problem with gray, constant opacities with matter and

radiation at equilibrium at temperature T, simulated with the IMC method. The census photons

representing the initial radiation all initially have time t = 0 and have a total energy aT 4. During a time

step of size ∆t, the energy of each census photon will decrease by a factor exp[−σc∆t]. The total energy

in census photons at the end of the time step will therefore be

Ecensus(t = ∆t) = aT 4 exp[−σc∆t]. (1)

To simulate thermal emission, we will make Ns thermal source photons, each with a different initial time

ti,p in [0,∆t]. We will assume all Ns photons have the same initial energy acσPT 4
0 V∆t/Ns. Since ti,p is

different for each thermal source photon, they will all reach time ∆t with different energies

Ep(t = ∆t) = Ep(t = 0) exp[−σc(∆t− ti,p)]. The sum of these energies will be

Ethermal ≡
Ns∑
p=1

Ep(t = ∆t) = aT 4
0 V cσ∆t

1

Ns

Ns∑
p=1

exp[−σc(∆t− ti,p)] . (2)

Since

lim
Ns→∞

1

Ns

Ns∑
p=1

exp[−σc(∆t− ti,p)] =
1

∆t

∫ ∆t

0
exp[−σc(∆t− τ)]dτ =

1 − exp[−cσ∆t]

cσ
, (3)

the sum in Eq.(2) is a Monte Carlo estimate for an integral over all possible thermal emission times. Using

Eq.(2) and Eq.(3), we find that, in the limit of a large Ns, the radiation energy due to thermally emitted
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photons at t = ∆t will be

Ethermal(t = ∆t) = aT 4
0 V (1 − exp[−cσ∆t]), (4)

so Ecensus + Ethermal = aT 4
0 V , which is the value necessary to maintain thermal equilibrium. The matter

energy will also be the same as the initial value, by energy conservation. With a finite number of photons,

we will not maintain thermal equilibrium exactly, because the sum in Eq.(2) will only approximate the

integral, with an error that is proportional to N
1
2
s [2].

This is illustrated in Fig. 1. This plot shows an IMC simulation using one zone, a cube with unit length in

each direction. All faces have reflecting boundaries, making it effectively an infinite medium problem. The

material and radiation temperatures were initialized to 1. The material has a heat capacity cv = 1.0, and an

absorption opacity σ = 10. The simulation used 100 photons per time step, and units were chosen so that

a = c = 1. The simulation used ∆t = 0.001 from t = 0 to t = 1, ∆t = 0.01 from t = 1 to t = 2, and

∆t = 0.1 for t > 2.
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Figure 1. Matter and radiation temperature for an infinite medium test problem simulated with IMC
with three different values for the time step ∆t.

In the IMC algorithm, we regard physical quantities like opacity and heat capacity as constant throughout

the time step. This means that the distance to scatter, the amount of absorption on a given photon path, etc.,
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are independent of when they occur during the time step. We can therefore calculate the contribution that is

made for every emission time in [tn, tn+1] for each path taken by a source photon. This modified IMC

algorithm is best illustrated by describing how we simulate the behavior of a source photon. As in IMC, we

sample a position, direction, frequency, and energy Ep for each source photon. However, we do not sample

an emission time. The energy emitted in a small period [te, te + dt] will be dE =
Ep

∆tdt. So we can think of

a source photon as a large number of small photons with emission times spread out evenly between tn to

tn+1, each with energy dE. Instead of the source photon having a time, it will have a distance traveled, sp,

with an initial value of 0. The photon will travel a total distance c∆t in the time step, unless it exits the

problem through a boundary. Some fraction of its energy will reach census on each path, and some fraction

will be absorbed. These fractions will be functions of the initial and final value of sp on the path. The total

energy Ep(sp = 0) of the source photon will be either absorbed, leave the problem through a boundary, or

reach census as the photon reaches sp = c∆t. That is, Ep(sp = c∆t) = 0.

First, we will calculate the amount of energy that reaches census on a given path from s0 to s1 = s0 + dp.

Because of absorption, dE(s0 + dp) = dE(s0)[1 − exp(−σadp)]. The energy emitted in

[tn+1 − s0/c, t
n+1 − s1/c] will reach census during the path. A photon that has moved a distance s0 has a

total energy consisting of emission that occurred in [tn, tn+1 − s0/c]. This range has a size of

tn+1 − s0/c− tn = ∆t− s0/c, so

dE(s0) =
Ep(s0)

[∆t− s0/c]
(5)

and

dE(s) = dE(s0)exp[−σ(s− s0)]. (6)

The total energy reaching census is the integral of Eq.(6) over the range [s0, s1]:

Ec(s0, s1) =

∫ s1

s0
dE(s) =

Ep(s0)

[∆t− s0/c]

∫ s1

s0
exp[−σ(s− s0)] =

Ep(s0)

σ[∆t− s0/c]
[1 − exp[−σ(s1 − s0)]] .

(7)

Next, we will calculate the amount of energy that is absorbed on the path from s0 to s1. This is done by

conservation of energy. The photon energy at s1 is related to the photon energy at s0 by

Ea(s0, s1) + Ec(s0, s1) + Ep(s1) = Ep(s0). (8)

Ep(s1) in Eq.(8) is given by Eq.(5). This yields

Ea(s0, s1) = Ep(s0)(1 − exp[−σ(s1 − s0)])
∆t− s1/c

∆t− s0/c
− Ec(s0, s1). (9)

The modified IMC results for the test problem described earlier are show in Fig. 2

Fig. 2 shows that there is no statistical noise in the modified IMC simulation for any value of ∆t. This

happens because the source photons in the modified IMC algorithm each contribute exactly the amount of
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Figure 2. Matter and radiation temperature for infinite medium test problem using modified IMC with three
different time steps

energy calculated in Eq.(2) to census. In effect, the integrand in Eq.(3) is evaluated exactly, not

approximately as a sum over a finite number of emission times. The value of Tr at the end of the time step

is 1.0 to roundoff. By conservation of energy, Tm = 1.0 to roundoff at the end of the time step also, and so

these values are maintained in subsequent time steps of the calculation.
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