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Abstract

Escalating problems with drug resistance continue to compromise the effectiveness of

commercial antibiotics, necessitating the search for novel classes of antimicrobial agents.  To 

circumvent problems with resistance, a multi-target single-pharmacophore approach has been 

employed to discover inhibitors that maintain a balanced activity against multiple target 

enzymes. In this chapter we examine the application of computational techniques, in particular, 

structure-based drug design approaches, to design new dual-targeting antibacterial agents against 

bacterial topoisomerases. 
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1. Introduction

Almost seventy years ago, penicillin was used to save the life of an infected patient suffering 

from streptococcal sepsis (1). Since then, many new classes of antibiotics have been discovered 

and developed.  However, bacteria, the champions of evolution, have adapted and developed 

resistance against frontline antibiotics, such as vancomycin, methicillin, fluoroquinolones and 

macrolides (2-7).  A growing clinical concern is that bacteria are becoming increasingly

multidrug-resistant where even new antibiotics, such as linezolid (8) and daptomycin (9), are 

encountering significant resistance.  Consequently, the unmet medical need caused by prevailing 

bacterial drug resistance has renewed interest in the discovery and development of new classes of 

antibiotics (10) with novel mechanisms of action (11-13).  Pharmaceutical researchers are 

pursuing a multi-target single-pharmacophore approach (14) to fight antibiotic resistance.  This 

new strategy focuses on the design of inhibitors that maintain well-balanced activity against

multiple target enzymes from multiple pathways, like bacterial topoisomerase IV and DNA 

gyrase, dramatically reducing the probability of resistance incidence (15).

The utilization of microbial genomics (16) for target identification, advances in x-ray 

crystallography for 3D target-ligand interactions, and exploitation of computational approaches 

for designing and developing (17, 18) novel small molecules should accelerate the discovery of 

new antibacterial agents with the desired broad spectrum efficacy and the low potential for 

resistance development.

This chapter discusses the application of computational structure-based drug design methods in 

the discovery of novel small molecule inhibitors against well-validated targets involved in 

bacterial DNA replication (19, 20) and cell division; the type IIA topoisomerases, gyrase B 
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(GyrB) and topoisomerase IV (ParE).  The focus will be on specific ligand-protein interactions 

observed in publically available crystallographic structures of novobiocin and/or adenylyl-

imidodiphosphate (ADPNP) bound to the E. coli GyrB and ParE subunits as the initial guide for 

inhibitor discovery and optimization.

2. The design of antibacterial agents that inhibit the function of type IIA 

topoisomerases - GyrB and/or ParE

2.1 Background

There are many classes of antibiotics that target different aspects of bacterial function. Two 

important classes of antibiotics, including the coumarins (e.g. novobiocin) and fluoroquinolones

(e.g. ciprofloxacin), target proteins involved in DNA replication, specifically the type IIA family 

of topoisomerases, DNA gyrase and topoisomerase IV (19, 20). These enzymes are structurally 

homologous proteins and exist as heterotetramers in vivo, comprising 2 GyrA and 2 GyrB 

subunits for DNA gyrase and 2 ParC and 2 ParE subunits for topoisomerase IV.  Type II 

topoisomerases possess both DNA cleavage and ligation functionalities, and an ATP-dependent 

clamp that work in a concerted fashion to resolve DNA catenates and supercoils during 

replication. The GyrA and ParC subunits are catalyze DNA cleavage and re-ligation via an 

intermediate where the 5’-ends of the DNA chain are covalently bound to conserved tyrosine 

residues.  The GyrB and ParE subunits are responsible for passage of a separate DNA strand 

through the cut DNA strands in an ATP-dependent manner.  At the cleavage site, DNA becomes 

single stranded due to a four base-pair staggered break within the binding cavity, allowing the 

fluoroquinolone inhibitors to bind to the DNA-topoisomerase complex.  The drug-DNA-enzyme 
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ternary complex locks the tetrameric complex in a catalytically non-competent state (21),

arresting DNA replication. The accumulation of single- and double-stranded breaks irreversibly 

damage the bacterial chromosome (22, 23).

Although dual-targeting in principle, fluoroquinolones appear to kill via single targets in 

different bacterial classes. In E. coli, a gram-negative bacteria, fluoroquinolones kill mainly via

inhibition of DNA gyrase, while in gram-positive organisms like S. aureus, fluoroquinolones 

appear to operate primarily via inhibition Topoisomerase IV (24).  Coumarin antibiotics, on the 

other hand, which target the ATP-binding domains of the GyrB and ParE subunits, are poor dual 

targeting agents that operate mainly via the inhibition of GyrB. However, the high degree of

similarity at the sequence and structural level between GyrB and ParE suggests that the design of 

potent dual targeting agents against the GyrB and ParE domains should be possible (25, 26).

2.2 Structural features of the type IIA topoisomerases

A number of X-ray structures (27) of the ATPase domain of DNA-gyrase complexed with 

phosphoaminophosphonic acid-adenylate ester (ADPNP) and novobiocin are available (Figure 

1).  The detailed analysis of these structures demonstrates that the ligands bind similarly to a key 

aspartic acid side-chain and a conserved water molecule in the binding cavity.  In both cases, 

each ligand donates a hydrogen bond to the aspartate side chain and accepts a hydrogen bond 

from the conserved water molecule.  Figure 2 illustrates the hydrogen-bond network observed for 

the adenine of the ADPNP and the carbamate moiety of novobiocin. Novobiocin is an ATP-

competitive inhibitor that overlaps partially with the adenine moiety of ATP (27).  This 

overlapping competitive binding area is the focus of novel inhibitor design.

[Insert Figures 1 & 2 here]
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Recently, Bellon et. al from Vertex (27) reported the structure of the ATP-binding domain of E. 

coli ParE complexed with adenylyl-imidodiphosphate (ADPNP) at 2.0 Å resolution as well as a

ParE novobiocin complex at 2.1 Å resolution (Figure 3).  A comparison of the GyrB and ParE

structures demonstrate strikingly similarity within the ATP-binding sites.  Superposition of the E. 

coli ParE and GyrB structures shows the amino acids in the active site overlap closely.  The ParE 

and the corresponding E. coli GyrB residues (in parenthesis) are as follows when ADPNP is 

bound (Figure 4):  Y5 (Y5), E38 (E42), N42 (N46), E46 (E50), D69 (D73), M74 (I78), K99 

(K103), Y105 (Y109), T163 (T165), Q332 (Q335), and K334 (K337).  The authors also point out 

that the specific functional roles of GyrB vs. ParE residues in the ATP active site are 

transferable. Similarly, the key residues of both proteins that interact with novobiocin (Figure 5) 

are as follows:  E46 (E50), D69 (D73), R72 (R76), M74 (I78), D77 (D81), I90 (I94), R132 

(R136), and T163 (T165). Moreover, Figures 4 and 5 illustrate two important features: 1) the 

hydrogen-bond interactions with D1069 observed for the adenine scaffold of the ADPNP also 

engage the carbamate moiety of novobiocin, and 2) the orientation of these ligands with respect 

to the binding site environment – the polar phosphate group from the tail end of the ADPNP 

hydrogen bonds with K1099 & K1334, while the carbonyl-ester of the middle ring and the 

hydroxyl of the tail end of novobiocin hydrogen bonds with R1132 and D1077, respectively.

[Insert Figure 3 here]

To maintain dual targeting activity, the authors report that the key structural difference between 

GyrB and ParE is a single amino acid change from Ile78 to Met74, respectively.  Charifson et al

also report (28) that the binding site of ParE is narrower than that of GyrB because the switch 

from Ile78 in GyrB to Met74 in ParE, thus dictating the co-planarity requirement of the ligands 

to bind in the cavity.  Moreover, our in-house crystallographic structures data [unpublished 
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results] for both targets complexed with our ligands suggest that the co-planarity requirement of 

the ligands is not solely dictated by Met74 of ParE or Ile78 of GyrB but also by the key aspartate 

side chain and conserved crystallographic water molecule in the binding site.  Further analysis of 

the complexes shows the distance from the C of the Met or the Ile to the centroid of our ligand 

is 3.489Å for ParE and 3.523Å for GyrB.  The resultant 0.034-Å shorter distance in the ParE 

binding cavity seems small but is consistent with the selectivity profile of ParE with respect to 

the ligand’s chemotype. This agrees well with Charifson’s observation.  However, when the 

ligands are removed, the calculated volumes of the whole binding site cavities for ParE and 

GyrB structures are 79.8 Å3 and 74.4 Å3, respectively.  The overall volume of the ligand-binding 

cavity of ParE appears to be larger than that of GyrB by about 5.4 Å3. 

[Insert Figures 4 & 5 here]

2.3 Identification of the “hot spots” in the GyrB binding cavity

Once a binding cavity is characterized, interaction “hot spots” within the binding cavity need to 

be identified.  These “hot spots” are specific locations within the binding cavity that would 

potentially be exploited to interact with the inhibitor pharmacophore.  Thus, the “hot spots” can 

be used for fragment-based screening and lead identification.  One method to identify these “hot 

spots” is to use a variation of virtual screening (see Section 2.4).  Schechner et al (29) screened 

the binding site of GyrB with small fragments. Combinations of these fragments are then used as 

the basis for the design of novel ligands.  They used the Multiple Copy Simultaneous Search 

(MCSS) technique developed by Karplus et. al (30), where all chemical fragment conformations 

are generated and randomly distributed in the binding cavity, removing fragments that occupy 

the same positions.  The fragment library contained twenty-three functional groups, representing 
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various chemical characteristics, such as charged, polar, hydrophobic, aromatic and aliphatic 

groups.  Multiple structural states o f  t h e  2 4 kDa subdomain of GyrB identified 

crystallographically (to encompass active-site flexibility) were used to collect unbiased results.  

Overall, the protein conformations did not affect the functional group binding.  However, 

binding energies and specific orientations of small functional groups were affected.  The tightest 

binding pharmacophore among the groups tested was a phenol, forming a hydrogen bond with 

the key Asp73 in the binding cavity.  Other functional groups were identified to target the 

phosphate binding site.  A deep hydrophobic binding pocket near the ATP binding site was also

identified and suggested a path for optimization of the inhibitor scaffolds identified in the 

pharmacophore search.

2.4 Computationally aided structure-based drug design

Structure-based drug design (SBDD) takes advantage of structural information about a protein

target to identify and optimize lead compounds.  The protein target structure is often derived 

from X-ray diffraction data, but may also be an NMR-based structure or based on a homology 

model (31-33).  SBDD still relies on all the available information about the target and its 

biological role.  Experimental data help to guide the computational chemist as to the most 

relevant calculations to drive optimization.  This section aims to broadly describe the role of 

computational approaches in SBDD for lead identification and optimization.  

At the lead compound identification stage, virtual screening searches large chemical databases to 

eliminate non-binders.  When large compound libraries are screened, i.e., in the range of 100K or 

larger, the speed of the calculations is paramount, and this consideration leads to using relatively 

simple and fast docking algorithms.  Each compound is assigned a score that is used to produce a 
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sorted list with the most promising predicted compounds at the top.  Success at this stage is not 

focused on predicting accurate binding affinities, but rather on enrichment of strongly binding 

compounds (‘hits’).  Docking programs are sometimes evaluated for robustness by seeding 

libraries with known binding compounds to see if they appear at the top of the ranked list.  Zhou 

et. al (34) used enrichment to compare the performance of Glide (35), DOCK (36), and GOLD 

(37).

After initial virtual screening of a large database, top-scored compounds are re-ordered using 

more accurate scoring methods.  Re-scoring aims to correct some of the deficiencies in docking 

scores ignored in the initial stage.  Effects to consider for re-scoring may include solvation (32) 

and accounting for flexibility of the protein target upon ligand binding.  Two common re-scoring 

methods are Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (38) and Linear 

Interaction Energy (LIE) (39).  For some well studied cases, such as kinases (33) and DHFR 

(40), the protein has larger motions that respond to the ligand binding, making flexible 

conformations of the protein necessary for more accurate binding predictions.  

2.4.1 Structure-based virtual screening

Virtual screening is a process where chemical structures are evaluated in silico against the target 

protein structure via docking and/or a 3D pharmacophore model.  This approach enables the 

identification of the biologically relevant molecules more efficiently when the virtual library is 

large (>5 million) than a random experimental high throughput screening.  Figure 6 illustrates a 

typical workflow for a virtual screen with a protein receptor as a target, from which a library of 

compounds is screened for a subset of compounds for further analysis. This section surveys a 

limited number of docking programs for virtual screening and their performance for studying 
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topoisomerase inhibitors against GyrB and/or ParE with emphasis on the identification of novel 

leads and improvement of these leads.  The related in silico techniques such as target, ligand 

preparation, scoring functions, and molecular dynamics are herein broadly discussed.

[Insert Figure 6 here]

2.4.1.1 Target preparation

Several factors should be considered when preparing protein targets for molecular docking.  

Frequently, the structures used for the protein targets are derived from x-ray crystallography 

experiments.  Within these structures, small molecules, such as water molecules, ions, co-factors, 

and crystallization agents can appear in the binding site.  In other cases, regions of the protein 

may be unresolved or disordered.  Also, because of the experimental limitations, hydrogen atoms 

are not usually resolved, meaning that protonation states of titratable groups must be assigned.  

Each of these issues needs to be addressed in the context of the relevant biology and the desired 

goals for the molecular docking.  For example, conserved water molecules may play a key role in 

mediating contacts between a ligand and its protein receptor (41, 42).  Certainly, this is the case 

for novobiocin (27).  Thus, including key crystallographic water molecules can improve docking 

results (43, 44).  However, the water positions may be different for each putative ligand, and in 

some cases displacing key waters with a ligand (45) may be more favorable.  Other molecules to 

consider as necessary in the binding site include co-factors, metals and ligands of metals so that a 

more biologically relevant protein environment is represented.  Most importantly, each of the 

residues in the binding site need to be completely represented.  If portions of the binding site are 

missing in the original crystal structure, then homology modeling or loop prediction methods 

need to be used to complete the binding site structure.
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2.4.1.2 Fundamentals of molecular docking

Proteins are well known to be flexible and conformationally dynamic.  Typically, in molecular 

docking the protein targets are held fixed during virtual screening to minimize the computational 

cost.  The key routine for docking programs is to 1) generate poses for the ligand within the 

binding site and 2) score each ligand pose as the predicted binding mode for that ligand.

In addition to the internal conformational space, the ligand rotational and transitional degrees of 

freedom are explored to generate a set of poses.  The number of low energy conformers increases 

exponentially with the number of rotatable bonds, so efficiency in the search algorithm is 

imperative.  To this end, several algorithms have been developed with modified protocols 

including: incremental construction of the ligand [DOCK (36), FlexX (46)], genetic algorithms 

that optimize the conformation and orientation of the ligand simultaneously in the binding pocket 

[AutoDock (47, 48), Fitted (49)], Monte Carlo based algorithms [MCDOCK (50), Ligandfit (51), 

QXP (52)], pre-generation of low energy ligand conformers before introducing them into the 

binding pocket [FLOG (53), FRED (54)], high temperature molecular dynamics simulations to 

generate random ligand conformations that are rigidly translated into the binding site [Cdocker 

(51),   ICM (55)], matching ligand functional properties with hot spots in the binding site 

[Libdock (51)], calculated distance geometry for intraligand and ligand-sphere interactions 

[DockIt (56)], or exhaustive search algorithms [Glide (35)].  Many codes combine a number of 

the algorithms to meet the user’s needs [Dock Vision (57, 58), MolDock (59), SurFlex (60),

MoeDock (61)].   The major approaches are mentioned with common docking methods as 

examples only. Neither the details of available methods nor the completeness of the list of 

docking codes are the intention for this survey. For a more complete discussion on pose 

generation, the reader is referred to the review by Brooijmans and Kuntz (62).  
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The next step is to assign a score for each pose to: 1) select the best pose for each compound and 

2) rank ligands based on their scores.  Key challenges for the scoring functions are to account for 

the conformational entropy penalty of the ligand, the ligand desolvation, and the intramolecular 

interaction upon binding.  While in principle we formally understand the theoretical basis to 

calculate the free energy of binding (63), in practice calculating free energy remains a research 

problem that requires massive (hundreds of cpu hours) computer power per ligand (see for 

example the work by Wang et. al (64) and Mobley et. al (65)).  Due to the large number of 

ligands that need scores in a typical virtual screening campaign, simplified scoring functions 

assign pose scores. The scoring functions are a compromise between accuracy and computational 

efficiency.

Three broad categories of scoring functions exist: physics (force-field) based, knowledge-based 

and empirical scoring functions.  Force-field based scoring functions base their scores on a 

function that explicitly lists physical interactions such as electrostatics and van der Waals.  For 

example, the scoring function in AutoDock (47) originally took its parameters from the Amber 

force field (66).  

Another approach is to consider a database of ligand-protein complexes and calculate the 

likelihood of forming specific contacts between ligands and proteins.  A score based on this 

‘knowledge’ is assigned by summing the likelihood of each contact a ligand pose has with a 

protein.  This type of scoring is called knowledge-based scoring (67, 68).  

In the case of an empirical scoring function, the strategy is to fit the scoring function to 

reproduce binding data from a set of training data.  The development of this type of function 

often starts with either a force-field or knowledge-based scoring function.  Each contribution is 
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weighed to reproduce binding affinity data (69, 70). For example, the later versions of Autodock 

(3.0 and above) introduced a scoring function that weighed the Amber force field parameters to 

better reproduce binding data.  

Strategies exist to make the molecular docking results more reliable or at least represent 

experimental data better.  Tirado-Rives et al (71) have recently introduced a conformer-focusing 

contribution to the uncertainty of predicting affinities. This contribution was used in most 

available docking programs such as Discovery Studio (51), MOE (61), and Glide (35) to account 

for the penalty of conformational change from the unbound state to the bound state of the ligand.

A number of studies (72-79) have evaluated several docking programs and scoring functions for 

different major targets such as kinases, metalloenzymes, serine proteases, nuclear receptors and 

DNA gyrase.  Warren et al (80) from GSK reported that these programs performed well for some 

targets but poorly for others, in terms of the correct identification of actives or enrichment.  The 

report showed that the best-to-least performers were FlexX, GOLD, LigandFit, QXP, Dockit, 

FRED, DOCK, Glide and MoeDock for GyrB.  Schulz-Gasch et al (81) at Hoffman LaRoche 

reported their findings using FlexX, Glide and FRED towards GyrB, such that FlexX and Glide 

predicted the inhibitors well, while FRED‘s performance was the least among three programs in 

virtual screening.  Generally, the docking programs – Glide, FlexX, DOCK and GOLD - were 

the most popular for using in lead identification by pharmaceutical companies, and their 

performance is not consistent across target classes.  For example, the top performing programs 

for kinases were Glide, DOCK, ICM, LigandFit, FlexX, GOLD, respectively, and for 

matalloenzymes the order was FlexX, LigandFit, Glide, FRED and ICM.  Additionally, there are 

other programs developed by pharmaceutical teams with comparable performance. 



14

Other validation studies suggest that combining several scores into a consensus score may be 

better than any individual scoring function alone (82-86).  Another popular strategy to make the 

scoring better is to re-examine the top scoring compounds.  Because of the known short-comings 

of the rapid high-throughput virtual screening scoring functions, one strategy is to use more 

complex, accurate methods to re-score these compounds. Additionally scoring functions can be 

improved by including solvation effects via an implicit solvent treatment such as Poisson 

Boltzmann, or its approximation: generalized Born.  Scoring via a molecular mechanics Poisson-

Boltzman (MMPBSA) or MMGBSA can help improve binding affinity predictions (38, 87-90).  

The variation in performance of docking programs and scoring functions suggests that molecular 

docking is an active area of research with room for improvements (91).

2.4.1.3 Flexible receptor docking

To quickly screen large virtual libraries effectively, the protein target is typically fixed.  

However, cases exist where the protein needs to respond to the binding of substrates to achieve 

efficient binding.  In the case of kinases (92, 93), DHFR (94, 95), aldose reductase (96, 97), and 

members of the enolase superfamily (98), the protein backbone moves substantially to adapt to 

small molecule binding.  The conformational changes may introduce new van der Waals, 

electrostatic and hydrogen bond contacts or clear space for the ligand to fully enter the binding 

site.  Addressing these changes can considerably affect docking pose generation and scoring.  By 

simultaneously sampling the degrees of freedom in both the protein and the ligand, large changes 

in conformation can be explored and modeled more accurately.  Certainly, a better representation 

of the conformational space should result in a better prediction, but it has an increased 

computational cost.  The total conformational space available for exploration increases 

exponentially with each independent degree of freedom, regardless of whether it belongs to the 
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protein or ligand.  If no experimental data exists for a ligand-protein complex structure where the 

protein has conformationally responded to ligand binding, then this flexible protein docking 

method becomes more difficult to justify.  

Some conformational changes can be relatively small, where only a few side-chains rearrange to 

accommodate ligand binding.  While small, these changes may have a large impact on binding. 

Consider, for example, orienting polar groups to optimize a hydrogen bond network.  If only a 

few residues move, sampling their degrees of freedom along with the ligand conformational 

space is the most practical approach.  Some programs, such as AutoDock (47) and Glide (35)

include options to specify flexible residues in their induced fit calculations.  AutoDock performs 

the search of all degrees of freedom in one run while Glide undergoes a cycle of optimization of 

docking the ligand and optimizing flexible side-chains (99).

Another approach is to run molecular dynamics (MD) simulations on the free protein target to 

explore the conformational space available to the protein (relaxed complex method).  The key 

advantage is that the receptor degrees of freedom are calculated once instead of for each ligand 

individually.  While relatively new, some work has shown this approach is viable.  Wong et al

(100) performed MD simulations of the receptor and docked into trajectory snapshots.  They 

found improved rankings of known ligands.  Combining molecular dynamics and docking has 

also been proposed by other authors (101).  Note, however, that large conformational changes, 

particularly those involving an entropic barrier, will be difficult to sample using molecular 

dynamics.  Therefore, this approach is really best suited for relatively small changes at the side-

chain level.  



16

Larger conformational changes, whether local (loop rearrangements) or global (domain hinge 

motions), are more challenging to capture computationally.  However, some groups have shown 

progress in this area.  Wong and Jacobson (102) were able to predict loop rearrangements 

involved in ligand binding of up to 15 residues in length.  They showed that the enrichment of 

known ligands improved when a database was docked against the predicted structures.  In special 

cases, experimental evidence greatly simplifies the problem.  For example, if a domain-domain 

rearrangement involves the two domains acting as rigid bodies around a small, flexible hinge 

region, then one can include only the relevant degrees of freedom in the docking calculation 

(103).  Reducing the effective number of degrees of freedom is a viable approach, if one can 

identify them a priori. 

Post-processing of molecular dynamics or more advanced sampling techniques can guide the 

selection of key receptor degrees of freedom.  For example, normal mode or principal component 

analysis of a molecular dynamics simulation is one approach to identify large-scale concerted 

motions (104).  The result of this type of analysis is a list of concerted motions that individually 

account for a fraction of the motions in the molecular dynamics simulation.  The top 2 or 3 

motions (normal modes or principal components) likely include the majority of variation in the 

conformational space.  

An alternative to predicting large induced fit changes is to use a holo crystal structure where the 

changes are evident.  While smaller changes may remain, even in domain-domain hinge regions, 

holo structures will likely capture the large conformational change while small perturbations may 

be adjusted at the side-chain level as discussed in this section above.  

2.4.2 Identification of new lead compounds by virtual screening
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The aim of virtual screening is to identify actives and inactive compounds.  In lead identification 

accurate classification of hits as active compounds needs to be confirmed experimentally.  

Several groups have used virtual screening to find new lead compounds that bind to GyrB.  

Boehm et. al at Roche (26) used the binding interactions of the novobiocin-GyrB complex 

structure, two key hydrogen bond interactions of the ligand with an aspartate side chain and with 

a conserved crystallographic water molecule, as the required binding motif (Figure 7) to virtually 

screen a commercially available database and an in-house collection. They used LUDI and 

CATALYST (51) software to identify 3000 compounds, from which 150 hits were confirmed 

and clustered into 14 classes.  Seven classes (Figure 8) were validated as novel GyrB inhibitors: 

phenols, 2-aminotriazines, 4-amino-pyrimidines, 2-amino-pyrimidines, pyrrolopyrimidines, 

indazoles and 2-hydroxymethyl-indoles.  The molecular weights of these “lead-like” hits were

lower than that of novobiocin, and their activities were within 2-3 orders of magnitude higher 

than that of this antibiotic compound.  Of these lead-like hits, the Indazole A complexed with the 

24kDa N-terminal fragment of GyrB structure (Figure 9) was used to explore the potential van 

der Waals interactions of the ligand with the lipophilic surface of Ile78, Pro79 and Ile94.  The 

resulting activity of compound B indicated 10 times more potency than novobiocin, and the 

binding hypothesis was confirmed by the x-ray structure, where the indazole moiety hydrogen 

bonded with the postulated Asp73 and the conserved water molecule. The mercaptobenzoic acid 

side chain pi-stacked with the Glu50-Arg76 salt bridge and made a hydrogen bonding interaction 

to Arg136 and the benzyloxy side chain interacted with the lipophilic area of Ile78-Pro79-Ile94.

[Insert Figures 7, 8 & 9 here]

Oblak et  a l (105) also used LUDI to identify low-molecular weight fragments of 2-

aminobenzimidazole and indolin-2-one as potential GyrB inhibitors from the MDL-databases 
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(Figure 10).  Because DNA gyrase is a member of the GHKL ATPase superfamily (106), it is 

structurally related to the larger family of kinases, where the indolinone hit is known as a potent 

inhibitor of many kinases (92) much like tyrosine, JNK, casein, etc.

Focusing on the previously unexplored structural pocket at the dimer interface of subunit A and a 

small area of the ATP binding pocket on subunit B targeted by coumarin and cyclothialidine, 

Ostrov et. al (107) used DOCK (v5.1.0) to screen 140,000 small molecules and identified the 

following chemotypes (Figure 11), such as methylxanthines, imidazole carboxamides, 

pyrimidine nitrous amides, benzothiazolinones, aminonapthoquinones, mandelic acids, 

aminobenzoacetic acids, and imidocarbonodithioic diamides as the potential scaffolds for novel 

GyrB antibacterial leads targeting fluoroquinolone-resistant strains.

[Insert Figures 10 & 11 here]

2.5 Structure-based lead optimization

The main goal of lead optimization is to start with initial leads, selected among the 

computational and experimental screen hits, and optimize them to yield strongly binding, highly 

specific and effective compounds.  Once a lead is identified, more accurate computational 

methods can be employed to optimize the ligand. A structure-based approach focuses on 

improving binding affinity by suggesting perturbations to the lead compound.  One approach is 

to use some of the re-scoring tools such as MMGBSA or LIE methods.  Another approach is to 

use free energy methods that are more general and potentially more accurate, but substantially 

more computationally expensive. 

MMGBSA and LIE are both post processing methods that can be useful in lead optimization.  

Early in its development MMGBSA involved producing a thermodynamic ensemble of the



19

protein-ligand complex and averaging the interaction energy of all the structures.  An alternate 

approach is to calculate the binding energy for a single protein-ligand structure using the MM-

GBSA energy model.  Typically, the protein-ligand input to the single-point MMGBSA 

rescoring is the product of a docking calculation.  The distinction between the two approaches is 

important because producing a thermodynamic ensemble of the protein-ligand complex is 

computationally intensive.  There are two types of studies common in the literature: 1) those that 

focus on reproducing published data and 2) those that use these methods to discover new 

inhibitors.  While these two methods are well known in academia, their use in pharmaceutical 

development is relatively new.  Publications using MMGBSA or LIE for drug discovery have 

appeared in the literature only in the last 5-10 years.

De Amorim et al (108) present an in depth discussion of the methods and applications of the 

linear interaction energy method (LIE). A retrospective study, using data for inhibitors of 

CDK2, Lck and p38, was used to fit parameters for a LIE model with continuum electrostatics.  

Using this method, Kolb et al (109) found novel, low micromolar inhibitors of EphB4 and 

CDK2.

Rastelli et al (110) performed a retrospective study using known DHFR inhibitors to test the 

usefulness of MMGBSA and MMPBSA in a virtual screening tool.  They found that the methods 

were able to discriminate between binders and decoys in this diverse set.  They found similar 

results when they performed ensemble averaging over snapshots of an MD trajectory versus 

single point calculations on a single protein-ligand complex structure.  Bag et al (111) used 

MMGBSA estimates of binding free energy to discover novel inhibitors of DHFR.  The 

correlation between the IC50s of the inhibitors and the MMGBSA predictions was ~ 0.79.  

Hendricksen et al (112) identified novel bacterial histidine biosynthesis inhibitors using a 
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combined MMGBSA/MMPBSA approach.  Most importantly, the authors considered side-chain 

flexibility by running an MD simulation and averaging MMGBSA interaction energies from 

trajectory snapshots.  They tested the compounds on a whole-cell assay directly without any 

initial enzymatic assay because of their confidence in the improved predictive power of these 

approaches. A combination of docking and MMPBSA ranking yielded new inhibitors of dengue 

virus methyltransferase (113). 

Structure based drug design is particularly well suited for optimizing binding affinity, which 

frequently translates to higher potency.  However, the effectiveness of a drug not only depends 

on potency but on other properties and biological activities, including but not limited to 

solubility, octanol/water partition coefficient, affinity for molecular pumps, ability to penetrate 

relevant tissues, lifetime in the blood stream, toxicology and pharmacokinetic properties.  Thus, 

many have coupled a number of methods together to maximize the design effectiveness.  To this 

end, the understanding of the structure-activity relationships (SAR) is very important when 

applying structure-based drug design methods for drug discovery. The rational design of 

experiments to generate biological data is a crucial step, providing possible comparisons of 

predictions and experimental results.  The quantitative structure-activity relationships approach 

(QSAR) is a valuable drug design tool that can offer solutions based on the statistical analysis of 

relationships between chemical structure and biological activity in a quantitative and 

mechanism-based manner.  Herein, the single-targeting GyrB approach is reported for the 

novobiocin and cyclothialidine lead compound generation and optimization by using structure-

based and SAR-based techniques.  Subsequently, the dual-targeting GyrB/ParE approach aimed 

at minimizing target-based resistance development is exemplified with the work from other 

groups that identified newer chemotypes beyond coumarins (e.g. novobiocin).
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Musicki et al (114) utilized the x-ray structures of a 24-kDa N-terminal fragment of GyrB to 

identify a larger hydrophobic region consisting of Val94 and Phe95, where the methyl groups of 

novobiocin were located.  These two amino acids are conserved across twelve Gram-positive 

strains and in E. coli. Using the combined information, they modified the methyl groups of 

novobiocin to spirocyclopentyl moiety derivatives with lower molecular weights and improved 

physiochemical properties and pharmacokinetic profiles. The spirocyclopentylnoviose 

(RU79115) is shown in Figure 12 with a MIC50 of 0.08 g/mL, while the MIC50 of novobiocin is 

in the range of 0.3-40 g/mL.

[Insert Figure 12 here]

Angehrn et al (115) from Hoffman-La Roche used structure-activity relationships derived from 

various substitution patterns and x-ray structural analyses to identify the simple hydroxylated 

benzyl sulfide moiety as the active structural feature in cyclothialidine, a potent gyrase inhibitor.  

Inhibitors with this moiety demonstrated in vitro activity against Gram-positive bacteria. The 

best activities were shown by the 14-membered lactone C, which incorporated the benzyl sulfide 

as well as other features that improved pharmacokinetic properties and lipophilicity (Figure 13).

Lactone C exhibits in vivo efficacy with an ED50 of 25 mg/kg against a S. aureus septicemia 

model and overcomes resistance against other marketed antibiotics drugs.

[Insert Figure 13 here]

Scientists at Vertex used the information from the structures of ParE complexed with ADPNP 

and novobiocin (described in section 2.2) to design a series of aminobenzimidazoles (28) such as 

VRT-125853 and 752586 that demonstrate dual inhibition of GyrB and ParE (Figure 14). The Ki

(M) values of VRT-125853 against E.coli were 0.015 and 0.68 for GyrB and ParE, 
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respectively. Similarly, the Ki (M) values for VRT-752586 were < 0.004 (GyrB) and 0.023 

(ParE). Resistance incidence studies showed very low rates of resistance, consistent with the dual 

targeting profile of the inhibitors.  As with novobiocin and ATP, the aminobenzimidazole core 

exploits the anchoring H-bonding interactions with the conserved Asp residue (D73) and 

structural water molecule that is coordinated by D73 and T165.

[Insert Figure 14 here]

In a similar vein, Pfizer (116) and Evotec (117) teams reported a series of imidiazolo- and 

triazolo-pyridines as dual inhibitors of bacterial GyrB and ParE (Figures 15, 16). These 

synthetically challenging pyridines exhibit the same shape and pharmacophore as the 

aminobenzimidazoles developed by the Vertex group. The two groups reasoned that their 5,6-

fused heterocyclic scaffolds could provide different SAR and optimization opportunities with 

alternative ADME, pharmacoplogy, toxicology and efficacy profiles. The authors pointed out 

that achievement of dual-targeting across the series was challenging and only a few isolated 

molecules were observed with balanced, dual enzyme activity.  The IC50 (M) values of 

imidazolo-pyridines against Spn reported by the Pfizer team for compound D were 1.91 (GyrB) 

and 1.38 (ParE), and those of compound G were 0.117 (GyrB) and 0.147 (ParE).  The IC50 (M) 

values of triazolo-pyridines against E.coli reported by the Evotec team were 9.64 (GyrB, no 

activity measured for ParE) for compound M and 0.042 (GyrB) and 11 (ParE) for compound Z.

[Insert Figure 15 & 16 here]

In recent years there has been a paradigm shift in antibiotic discovery from the development of 

single-target single-pharmacophore agents to multi-target single-pharmacophore agents. This 

trend is exemplified by the efforts directed towards the discovery of novel agents that inhibit the 
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function of bacterial topoisomerases as described in this survey. Undoubtedly, structural biology 

and computational techniques have helped to attain the promising results.

3 Concluding Remarks

The availability of high resolution crystal structures of GyrB and ParE, and the opportunity for 

dual target inhibition to minimize the potential resistance development have catalyzed numerous 

efforts to discover novel antibacterial agents against these targets.  In conjunction with crystal 

structures, docking-based virtual screening applications have demonstrated effectiveness as a 

quick and inexpensive alternative to high throughput screening.  Of the available methods, some 

have demonstrated reasonable accuracy and continue to be improved.  At the time this chapter is 

being written there are more than 30-million unique compounds available in commercial libraries 

in which to search for leads.  Invariably, in silico screening will identify numerous potential 

inhibitor scaffolds beyond the molecules surveyed here.  The combination of computational 

structure-based drug design methods and multi-objective ADMET structure-activity relationships 

are valuable and effective drug design tools that identify and optimize lead compounds for tight

binding, high specificity and effectiveness.  The chemical space diversity of dual-target 

topoisomerase inhibitors continues to expand beyond the coumarin and quinolone classes by 

utilizing these drug development tools.  

In summary, the drug discovery process has steadily become more information driven.  Thus, 

using the knowledge of drug resistance gained from the structure-function-activity relationships 

combined with continuing improvements in computational structure-based methods should help 

feed drug discovery pipelines with novel inhibitors with the desired properties for development

into the next generation of antibiotics.
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Figure Legends

Figure 1: Chemical structures of the substrate and a natural product inhibitor of type IIA 

topoisomerases; adenylyl-imidodiphosphate (ADPNP) and novobiocin.

Figure 2:  The “anchoring” hydrogen-bond network used in GyrB and ParE to bind: (a) the 

adenine moiety of ADPNP and (b) the carbamate moiety of novobiocin. 

Figure 3:  Crystal structures of E. coli ParE. (a) A 43-kDa fragment (PDB code 1S16) 

complexed with ADPNP at 2.0 Å resolution. (b) A 24-kDa fragment (PDB code 1S14) 

complexed with novobiocin at 2.1 Å resolution (27).

Figure 4:  The ATP binding site of E. coli ParE with ADPNP drawn in balls and sticks, and the 

protein shown in cylinders with key amino acids side chains labeled.  The illustration shows the 

hydrogen-bond interactions between the adenine of ADPNP with the key amino acid D1069 and 

its orientation with respect to the binding environment - the polar phosphate group from the tail 

end of the ADPNP hydrogen bonds with K1099 & K1334. 

Figure 5: The novobiocin binding mode from the crystal structure of E. coli ParE with 

novobiocin shown in balls and sticks and key amino acid side chains labeled. The illustration 

shows the hydrogen-bond interactions of the carbamate moiety of novobiocin with the key amino 

acid D1069 and its orientation with respect to the binding environment - the carbonyl-ester of the 

middle ring and the hydroxyl of the tail end of novobiocin hydrogen-bonds with R1132 and 

D1077, respectively.

Figure 6:  An illustration of a typical workflow used for in silico screening.

Figure 7:  An illustration of the binding hypothesis used for in silico screening.
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Figure 8:  Seven classes of lead compounds as novel inhibitors of DNA GyrB (26).

Figure 9:  Structure-guided design of indazole B for maximal inhibitor-receptor interactions 

(26). 

Figure 10:  Chemical structures of DNA GyrB lead compounds; aminobenzimidazole and 

indolin-2-one, respectively (105).

Figure 11:  Chemical structures identified by virtual screening using DOCK (107).

Figure 12:  Potent inhibitor (RU-79115) optimized from the natural product novobiocin (114).

Figure 13:  A design of compound C from structural guidance and SAR (115).

Figure 14:  Chemical structures of aminobenzimidazoles with dual E. coli GyrB/ParE activity.

Figure 15: Chemical structures of imidazolo-pyridines reported by the Pfizer team.

Figure 16:  Chemical structures of triazolo-pyridines reported by the Evotec team.


