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Abstract:

Quantifying large deformation in granular assemblies using concepts originating from continuum 
mechanics is a challenging task because of 1) the discontinuous nature of granular displacement, which
does not allow the definition of a continuum measure of deformation, and 2) the almost inevitable shear 
band localization. These problems exist in both real-world granular materials and their numerical 
idealizations using the discrete element method (DEM). In this work a new method is developed in order 
to address these issues. Instead of creating a meshed equivalent continuum for quantifying small 
engineering strains, the new method performs independent random queries on the velocity gradient 
characteristics of arbitrary sub-domains in the assembly through the novel concept of overlapping
reference triangles, thus, enabling rigorous handling of large deformations which are usually associated 
with localization. The proposed method is illustrated and validated by DEM simulation of a biaxial 
compressive test, in which apparent shear banding takes place. The homogenized deformation 
quantifications based on the new method match the estimations from the imposed boundary conditions. 
The numerical examples are also applied to 1) quantifying the heterogeneous distribution of deformation 
over the specimen, 2) visualizing the nucleation process of shear bands, and 3) characterizing shear flow 
patterns in shear bands. An investigation on the effects of the reference triangle sizes yields some 
inspiring and practically significant results.

1. Introduction

Particle-based methods, including laboratory experiments with particle-level measurements and discrete 
element-type numerical simulations are important means of studying fundamental behaviors of granular 
materials. These methods yield particle-level quantities regarding the movements of particles and their 
mutual relationships (e.g. contacts and contact forces). Micromechanically based constitutive 
relationships can be directly established between these quantities but they are impractical to be used in
solving real world engineering problems. In order to develop conventional constitutive theories in the 
context of continuum mechanics inspired by these particle-based methods, continuum-based variables of 
stress and strain measures need to be derived from particle-level quantities. Whereas formulations for 
calculating averaged stress tensors from inter-particle contact forces are well established, various 
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problems have been encountered in the effort to obtain homogenized strain measurements based on the 
displacement field in granular media. This difficulty can be attributed to the following two factors. First, 
neither granular particle assemblies themselves nor any quantities defined for particles are continuous 
over the domain. The homogenization of stress over a domain does not require derivatives or partial 
derivatives of any variable and is mainly based on contact forces. On the other hand, strain tensors are 
defined as partial derivatives of the displacement field, heavily relying on the continuity assumption.
Second, the definition of stress does not require any “reference state” to be identified while strain is 
usually determined by exploring the relationships between the domain’s current state and a reference 
configuration.

Important progresses have been made in determining average strain tensors based on the movements of 
individual particles. These methods are either based on 1) an equivalent continuum (which is usually 
meshed) attached to the granular assembly (e.g. Bagi, 1996; Kruyt and Rothenburg, 1996; Kuhn, 1999; 
Cambou et al. 2000; Kruyt, 2003; Tordesillas et al. 2008; Li and Li, 2009), or 2) a best-fit approach to 
find the average strain tensor that minimizes the difference between the observed particle (or contact) 
movements and that predicted by the strain tensor (Liao, 1997; ITASCA, 1999). Thorough comparisons
and evaluations of these methods have been conducted by Cambou et al. (2000), Bagi (2006), and Durán 
et al. (2010), and are not repeated here. It was noteworthy that among the methods in the first category, 
the formulations proposed by Bagi (1996), Kruyt and Rothenburg (1996), Kuhn (1997, 1999), and 
Cambou et al. (2000) were essentially based on the same assumptions, and they were found to yield strain 
estimations closely matching the values calculated based on boundary displacements applied to the 
granular assemblies. On the other hands, the credibility of some other methods is questionable, but this 
issue is not further explored in this paper. Despite these successes, several issues remain outstanding.

First, the existing methods did not pay sufficient attention to the strain localization phenomenon, or more 
specifically, shear banding in granular materials. It has been discovered in experimental studies utilizing 
advanced imaging technologies that strain localization is almost a universal phenomenon for both loose 
and dense sand specimens under drained as well as undrained test conditions (Finno et al. 1996, 1997). 
X-ray computed tomography (CT) analysis (Desrues et al. 1996) has revealed that some seemingly
uniform deformation patterns are in fact the results of complex shear localization (or shear banding) 
patterns inside the soil specimens. Once shear banding takes place in a deforming granular specimen, 
deformation usually concentrates in relatively thin zones and the other portions of the specimen
experience essentially rigid body displacement. Under this condition, constitutive modeling should focus 
on the shear bands since the physical and mechanical meaning of homogenized variables over the entire 
specimens is ambiguous. This is especially important if shear bands in the same material but forming
under different boundary conditions are to be analyzed (Fu and Dafalias, 2011b) in order to yield unified 
constitutive models. However, studies focusing on strains or other deformation characteristics calculated 
within the shear bands have been scarce in the literature.

Second, all the existing methods are based on the engineering strain (i.e. the infinitesimal strain tensor, 
sometimes termed the Cauchy strain tensor), which is only appropriate for small deformation problems. 
Even if the homogenized deformation over the entire specimen is considered small, the shear deformation 
in the predominant shear bands is so large that the infinitesimal strain theory loses legitimacy.
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Third, many of the existing methods are only applicable to assemblies of convex particles. This is because 
most of these methods require tessellating the analysis domain with triangles (Bagi, 1996), polygons 
(Kruyt and Rothenburg, 1996), or polyhedrons, and many of the tessellation algorithms are only 
applicable to convex particle shapes.

In this paper, we develop, validate and demonstrate a new method for quantifying deformation 
characteristics in granular assemblies, with special consideration for strain localization (especially shear 
banding) and large deformation. The equivalent continuum quantities of interest are the velocity gradient
tensor, a natural consequence of the finite character and the flow type of deformation predominant in 
granular assemblies under large shear. The formulations are developed and the concept of reference 
triangles is defined in Section 2 of the paper. In Section 3 and Section 4, the effectiveness of the proposed 
method is demonstrated through detailed analysis of the deformation evolution in a virtual (DEM) biaxial 
compression specimen with apparent shear banding development. In Section 5, the effects of an important 
parameter, the size of the reference triangles, on the quantified deformation measurements, is evaluated.

2. Method Development

2.1 Basic premises and outline of the new method

The new method is developed based on the following theoretical considerations and assumptions.

Instead of employing the commonly used engineering strains, the new method is based on the velocity 
gradient tensor. The theoretical concepts and numerical implementation are elaborated in Sections 2.2 and 
2.3, respectively. This framework enables rigorous handling of large deformation problems. Individual 
components of the velocity gradient tensor can be integrated under certain circumstances to obtain 
physically meaningful metrics for quantifying large deformation of a given domain. These metrics can be 
related to conventionally used quantities as described in Section 2.5.

The new method calculates the deformation rate on individual sub-domains in the granular assembly with 
the help of reference triangles, so the conventional method of attaching a virtual continuum to the 
assembly and discretizing this continuum into meshes is avoided. Since the sub-domains are independent 
of each other and so are the reference triangles, the calculation based on each reference triangle is 
essentially an independent query, making random sampling and statistical interpretations of results 
convenient.

The development of the new method is carried out in a two-dimensional (2D) space and demonstrated 
through 2D numerical examples. However, all the formulations can be easily extended to a 3D space as 
will be briefly discussed in Section 2.6. 

2.2 Velocity gradient tensor, rate-of-deformation tensor, and spin tensor

At a given moment t in a continuum, the velocity field is v(x, t) or vi(x1, x2, t), i=1, 2, where x1 and x2 (or x
in the vector format) represent the location of any point in a 2D continuum. The velocity gradient tensor L
is given by 
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Tensor L can be written as the sum of a symmetric tensor D and a skew-symmetric tensor W (i.e. 
L=D+W), termed the rate-of-deformation tensor and the spin tensor, respectively, and given by
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To demonstrate the physical significance of these tensors, we can consider two points p and q in the 
continuum connected by an infinitesimal vector dxpq=xq-xp pointing from p to q. The velocity at q relative 
to that at p is dvpq=Ldxpq=Ddxpq+Wdxpq, where Ddxpq represents the contribution from the deformation 
rate of the continuum near p and Wdxpq represents the contribution from the rate of rigid body rotation 
near p.

2.3 Numerical evaluation of velocity gradient tensors and the concept of reference triangles

The following two facts should be considered and exploited in order to develop numerical formulations 
for calculating the velocity gradient in a granular assembly.

1) A deforming granular assembly can only be considered as a continuum in an approximately sense. 
Velocity is not defined for voids and it is not continuous across inter-particle contact points where sliding 
and rolling is taking place.

2) The overall inelastic deformation of a granular assembly is mainly attributed to the relative 
displacements of individual particles, whereas the internal deformation of individual particle bodies can 
be ignored for most applications. Therefore, both the velocity gradient tensor and the more conventional 
small strain tensor can only be meaningfully defined for domains consisting of multiple particles.

Figure 1 shows a sub-domain in a granular assembly consisting of a few dozen arbitrarily shaped particles. 
A reference triangle is identified with its three vertices attached to and moving with the centers of three 
reference particles. If we assume that 1) the velocity field in this triangular domain varies linearly over the 
triangular area, and 2) the centers of other particles within this triangular domain have approximately the 
same velocities as the velocities of the corresponding points in the triangle, then the homogenized 
velocity gradient tensor can be calculated following the procedure below.
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An unconstrained
small particle.

Figure 1 Reference triangle for a sub-domain in a granular assembly. (a) Locations and velocities of the 
three reference particles, and (b) multiple overlapping reference triangles constructed for the same 
sub-domain.

We need to establish first a parametric coordinate system (also termed the triangular coordinates, or 
natural coordinates) as shown in Figure 2. The location of any point inside the triangle relative to the three 
vertices can be expressed by three parameters ζ1, ζ2, and ζ3. ζ1=l1/L1, where l1 and L1 are the distance from 
this point and corner x1 to side x2x3, respectively, and ζ2 and ζ3 can be defined in a similarly fashion. Only 
two of these three parameters are independent as ζ1+ζ2+ζ3=1. The location of any point in the triangle can 
be expressed as linear combination of the locations of the three reference particles at the vertices 
according to x(ζ1,ζ2,ζ3)=ζ1x1+ζ2x2+ζ3x3, and so is its velocity as

x1

x2

x1

x2

x3

x(ζ1,ζ2,ζ3)

L1

l1

Figure 2 The triangular coordinate system.
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The four components of tensor L can be calculated according to
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where the derivation utilizes the following relationships
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with j and k denoting the 3-cyclic permutations of i, and A is the area of this triangle. Once tensor L is 
calculated, the rate-of-deformation tensor D and the spin tensor W can be obtained using equations (2) 
and (3), respectively. If information about velocities of individual particles is unavailable but particle 
locations are known at a series of time instances, the following central-difference formulation can be used 
to estimate L, which is potentially more desirable because measurements of locations are less volatile 
than those for velocities in a deforming granular assembly.
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These tensors (L, D, and W) are only functions of the current locations and velocities of the three 
reference particles at the vertices of the triangle, and one set of values can be computed for a selected 
reference triangle. For a given sub-domain, multiple reference triangles can be constructed as shown in 
Figure 1(b) and therefore multiple values of L (as well as the corresponding D and W) can be obtained. 
Moreover, rather than measuring features of the exact triangular area, the obtained values for each 
reference triangle reflect deformation rate characteristics of the particles in this “neighborhood” without a 
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clear-cut boundary. This ambiguity in fact reflects the very nature of a deforming granular assembly: any 
variable quantifying its deformation (as well as deformation rates) on the basis of analogy to continuum 
mechanics can only be approximately determined, i.e. no exact and unique strain or rate-of-deformation is 
defined for granular materials. Calculations based on these overlapping reference triangles can be 
considered as random “queries” on the rate of deformation features of this domain. Basic principles of 
statistics are well reflected: the more uniform the deformation pattern, the smaller variance among the 
individually queried values one can expect. The average value of these individual queries should provide 
a reliable quantification of the overall rate of deformation characteristics in this domain.

Practically, reference triangles with approximately equal edge lengths (i.e. close to equilateral triangles) 
are preferred to minimize numeric errors, based on the same considerations why equilateral triangle 
elements are preferred in finite element analysis. Another practical consideration for selecting particles to 
which the reference triangles are attached is that it is desired to use relatively large particles. Smaller 
particles are more likely to be kinematically “unconstrained”, i.e. it can freely move to some extent in 
voids between relative large particles, as shown in the example in Figure 1(a). Therefore, the velocity and 
displacement of such small particles is not very meaningful in terms of representing the deformation 
characteristics of the stress-wise active part of the assembly, since constrained rather than "free" contacts 
are necessary to create forces contributing to the stress definition. If such small particles are used to 
construct the reference triangles, the obtained deformation rate values will have a rather high chance to be 
“noises” instead of meaningful measurements. This phenomenon will be further investigated in Section 5
where we evaluate the effects of reference triangle sizes.

When a reference triangle deforms with the granular assembly, its shape can gradually become skewed or 
even flipped with a numerically negative area. However, this is not an issue for the proposed method 
because the determination of tensors L, D and W only requires information of the current state of the 
domain and do not rely on a fixed previous “reference configuration” of the particles. Therefore, over any 
period of time, a reference triangle for a given sub-domain does not have to be attached to the same 
reference particles, and it can be freely replaced anytime by one which is attached to three different 
reference particles for the next increment. Moreover, because the reference triangles can be constructed 
freely, this method is applicable to both convex and concave particle shapes.

The triangular “space cell” system proposed by Bagi (1996) or the Delaunay triangles constructed based 
on the particle centers can be seen as the smallest reference triangles that can be adopted for a granular 
assembly. Two distinct features differentiate the new method from the existing methods. First, the new
method is based on the rate-of-deformation concept capable of handling large deformation problems 
whereas most existing methods are based on the small strain tensor for small deformation problems. 
Second, the sizes of the reference triangles of our method can be flexibly selected according to the needs 
of the problem to be studied while the tessellation system used by the existing methods is almost fixed for 
a given particle assembly. For instance, the thicknesses of shear bands have been typically reported to be 
8 to 20 times the mean sand particle sizes, also depending on some other factors (Mühlhaus and 
Vardoulakis, 1987; Oda and Kazama, 1998; Alshibli and Sture, 1999). In order to study deformation 
features inside shear bands, reference triangles with edge lengths four to six times of mean particle 
diameters should provide sufficient resolution. It is rare to encounter cases where deformation features at 
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length scales similar to particle sizes are concerned. Nevertheless, reference triangles constructed using 
the Delaunay triangulation represent the lower limit of reference triangle sizes and will be used to study 
the effects of reference triangle sizes in Section 5.

2.4 Local shear flow rate and the shear flow direction

Shear banding is the most important strain localization phenomenon in granular materials. Not only is it 
observed in laboratory tests, but it also takes place in the field as shear failures of foundations and slopes 
are usually accompanied by shear banding. The initiation and development of shear bands in a granular 
assembly with a relatively homogeneous initial state is a rather complex process, as revealed by modern 
imaging techniques (Desrues and Viggiani, 2004; Rechenmacher, 2006). Since the deformation mode of a 
“mature” shear band (deforming in its ultimate steady state) is more or less analogous to laminar flow of 
fluids, it is natural to assume that this shear-type grain flow plays a critical role in the development of 
shear bands. To study the shear banding phenomenon requires quantifying and tracking this type of shear 
flow in granular assemblies throughout the entire deformation process. Consider a small neighborhood of
granular particles with known arbitrary velocity field v(x) as shown in Figure 3, for which the L, D, and 
W tensors have been calculated using the method described above. The current section aims at developing 
appropriate methods to 1) identify the shear flow direction from L, D, and W, and 2) quantify the shear 
flow rate. Although the velocity field shown in Figure 3 to some extent resembles a laminar flow, the 
method to be developed in this section is applicable to arbitrary velocity fields. In a mature shear band 
experiencing steady flow, the local shear flow direction should be the same as the overall orientation of 
the shear band (which itself has attracted substantial interest, e.g. Vermeer, 1990), but the shear flow 
direction, especially its distribution over the entire sample is not apparent before the mature and dominant 
shear band fully forms. Therefore, the method to be developed in this section is an important tool for 
studying the entire shear banding process starting from relatively homogeneous initial states.

v(x)

x1

x2

n t
θ

Figure 3 A small neighborhood of particles showing deformation pattern analogous to laminar flow. Only 
the centroids of the particles are denoted as dots but the particles are not shown. v(x) is the velocity vector 
of the particle whose centroid is located at x.

By making an analogue between the rate-of-deformation tensor and the small strain tensor, one might
naturally postulate that the shear flow direction corresponds to the maximum shear strain direction. 
However, the small strain tensor yields two maximum shear strain directions orthogonal to each other, 
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whereas there is usually only one shear flow direction, especially in the laminar-flow type deformation 
pattern. It is necessary to find an unambiguous way to identify which one of the two maximum shear 
directions corresponds to the shear flow direction.

Consider an arbitrary reference plane with the normal and tangential directions denoted by two orthogonal 
unit vectors n=(cosθ, sinθ) T and t =(sinθ, -cosθ) T, respectively, where θ (between 0º and 180º) is the 
orientation angle of the normal direction measured counterclockwise from the x1 direction. The tangential 
velocity of the particles along this plane is v•t, and the local shear flow rate  along this plane is 
defined as the directional derivative of the tangential velocity with respect to n, namely 

1,2 2,1 1,1 2,2 1,2 2,1
1 1 1( ) ( ) ( ) ( )s i n 2 ( ) c o s 2
2 2 2
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while the other two terms by D. We define the local shear flow direction to be along the reference plane 
(θ=θMaxShear) that maximizes the absolute value of . Based on basic trigonometry, we can find out that the 
normal direction of the reference plane that maximize the absolute shear flow rate is given by
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The two angles, α/2-π/4 and α/2+π/4, each orienting π/4 (45º) from the principal strain directions, are the 
two “maximum shear” directions of the rate-of-deformation tensor D. This is consistent with our 
“speculation” at the beginning of the section, but equation (9) reveals that it is the spin direction (or W), 
or equivalently its sign, that determines which one of these two orthogonal directions is also the shear 
flow direction.

The maximum local shear flow rate, namely the shear flow rate along the shear flow direction θMaxShear, is, 
therefore, the absolute value of equation (8) with equations (9) and (10) plugged in as

1
22 2

1 , 1 2 , 2 1 , 2 2 , 1 1 , 2 2 , 1
1 1[( ) ( ) ]
2 2max v v v v v v       (11)

which is a positive scalar because only the absolute value of the shear flow rate is concerned in this 
context. However, the sign of the shear flow rate can be naturally defined if necessary, by specifying the 
positive direction of the tangential direction for the reference plane.
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To demonstrate the meanings of the quantities defined above, we assume that the particles in an idealized
shear band form a laminar flow pattern as shown in Figure 4. This special flow pattern is not necessarily 
realistic, but we make this assumption for illustration purposes. The normal of the shear band is oriented 
in the angle β, which here is a known quantity while θ in Figure 3 is a variable. If the origin of the 
coordinate system is placed somewhere along the streamline with zero velocity, then the velocity field of 
the domain can be analytically described as

1 1 2( c o s s i n ) s i nv x x     (12)

2 1 2( c o s s i n ) c o sv x x      (13)

where λ=∂vt/∂n, is the directional derivative of the tangential velocity along the streamline direction with 
respect to the normal to the shear band direction. Its physical meaning is: if the lateral distance between a 
streamline and the neutral streamline (where v=0) is l, then the tangential velocity of particles along this 
streamline is lλ. 

x1

x2

v

v

n
t

β

Figure 4 Flow field in an idealized shear band.

By plugging equations (12) and (13) into equations (1), (9), (10), and (11), and assuming λ>0, we get 
shear flow direction θMaxShear =β and the maximum shear flow rate max  , matching the assumed 
geometrical configuration. In this special configuration, the first term in equation (8) and the other two 
terms combined, each contribute λ/2 to the maximum shear flow rate max . By analogy between the 
rate-of-deformation tensor and the small strain tensor, the maximum shear flow rate max corresponds to 
the maximum engineering shear strain for this assumed special velocity field (or deformation pattern), but 
is not necessarily true for an arbitrary velocity field.

2.5 Use integrals of the rate-of-deformation to quantify total deformation

The rate-of-deformation tensor is a useful concept by itself since it can be directly used in constitutive 
models such as those in the theories of plasticity and viscoplasticity. However, it is often desired to
quantify the “total deformation” of a granular assembly or its sub-domains over a given period of time. In 
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fact, the current study was directly motivated by a previous investigation (Fu and Dafalias, 2011b) of the 
anisotropic fabric evolution in shear bands, which requires quantifying the shear deformation within shear 
bands that have formed under different boundary conditions.

A natural solution is to integrate the components of tensor L or D over this period of time. The integral of 
a normal component of D constitutes the natural strain in this direction, such as 1 11

N D dt   where the 
superscript “N” denotes “Natural”, as long as this direction is a fixed principal direction of D, since the 
integration must be carried over the same material line element, i.e. following the same material points. 
Otherwise the integration has no meaning as a strain measure, but simply becomes a measure of 
deformation along a certain direction not necessarily associated with the same material points. The natural 
strain has the following relationship with the corresponding engineering (small) strain component 

l n ( 1 )N E
i i   , where the superscript “E” denotes “Engineering” (also termed the “Cauchy strain”). This 

relationship provides a useful means to relate the method proposed in this paper to the more 
conventionally used engineering strain. The time integration of the normal components of D can also be 
used to track the evolution of void ratio e as.

1,1 2,20

1 ( )ln
1 (0)

te t v v dt
e

 
     (14)

where e(0) and e(t) are the void ratios at the reference state the current state, respectively. The term 
v1,1+v2,2 can be considered an analogue to the volumetric strain εV=ε11+ε22 in small deformation problems. 
Notice that Eq.(14) does not require the fixing of the principal directions of D, since the v1,1+v2,2 measures 
rate of volume and is invariant (a trace) in regards to the choice of axes 1 and 2. 

Time integration can be conducted on the shear component D12 in a similar fashion, and such an integral 
might provide a useful metric for material shear deformation, not necessarily a strain tensor component, 
but this is not pursued in the current paper. Instead, we use max maxdt    to measure the total shear 
deformation (but not shear strain tensor) that has taken place in any small domain from a reference state. 
Note that the value of γmax is independent of the choice of coordinate system x1-x2, whereas D12 is 
dependent on the orientation of the coordinate system. In general, although D itself is a Cartesian tensor, 
the integrals of Dij do not constitute a Cartesian tensor, even more a strain tensor. We only use these 
integrals as physically meaningful metrics for overall deformations in a granular assembly.

If what has been obtained from particle-based numerical simulations or experiments are discrete 
measurements at a series of states of the assembly instead of continuous functions of the time, the 
aforementioned time integrations can be converted into a summation format utilizing these discrete 
measurements, namely

, ,i j i jv d t v d t (15)

where vi,jdt can be easily obtained by rearranging the central difference formulation in equation (7) as
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(16)

2.6 Extension to three-dimension

The aforementioned development in 2D can be readily extended to three-dimensional formulations if 
particle level quantities in 3D are to be analyzed. Such 3D data can be either simulation results of 3D 
DEM or from advanced imaging technologies (e.g. Hall et al. 2010; Hasan and Alshibli, 2010) applied to 
laboratory testing of granular materials. The 3D counterpart of the 2D reference triangles are tetrahedrons
with its four vertices attaching to four particles. We notice that the format of equation (5) is somewhat 
similar to the equation used to calculate strains in three-node triangle finite element (the Turner triangle), so 
the equation for calculating the L tensor (3x3) in 3D can be derived based on an analogy to the four-node 
tetrahedral finite element. The detailed formulations are not provided in this paper. The plane of the shear 
band (or the plane of maximum shear flow rate) is perpendicular to the plane constituted by the first and 
third principal directions of tensor D. 

3. Numerical example I: analyzing D22 in a compression test

In this section, we apply the proposed method to a biaxial compression test to demonstrate its use in 
quantifying overall behaviors of the specimen. The test results are based on DEM simulation of idealized 
virtual particles, but extension of the method to 2D laboratory experimental data is straightforward.

3.1 Brief description of the discrete element model

The DEM model consists of ellipse-shaped virtual particles simulated using the polyarc element (Fu et al., 
2011c). All the particles have the same aspect ratio of 1/3. If we use the minor axis length to represent the 
size of a particle, the particle diameters are between 0.1 mm and 0.33 mm with a random and continuous 
distribution, with the mean particle size d50=0.24 mm and the uniformity coefficient d60/d10=2.16. The 
inter-particle friction angle used in the simulation is 35 degrees. The virtual specimen consists of 45,000 
particles and is approximately 100 mm tall and 50 mm wide in its undeformed initial state. The boundary 
conditions applied in this simulation resemble a real world plain strain biaxial compression test as shown 
Figure 5. A constant confining pressure of 100 kPa is applied to the left and right boundaries and the 
compression in the vertical direction is applied through two rigid platens moving inward at a constant rate 
vbc. Since particles at the left and right boundaries are dynamically and automatically detected, the 
confining pressure boundary condition is flexible as shown in the magnified view in Figure 5. 
Additionally, the two loading platens are free to move in the horizontal direction. These two conditions 
allow shear banding to develop with little kinematic constrains. The average initial particle orientation in 
this simulation is horizontal. A large number of similar biaxial compression simulations with a wide 
spectrum of initial fabrics have been thoroughly analyzed and reported in our previous studies (Fu and 
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Dafalias 2011a, 2011b), so the DEM model itself and the parameters are not further described in the 
current paper.

The loading of this specimen is slow enough to be considered quasi-static. For quasi-static deformation 
where the inertial effects can be ignored, the absolute values of the loading rate and rate-of-deformation 
are of a minimal significance. Consequently, the “time” used in all the analysis below is a virtual time so 
that all the “rate” quantities are normalized. The “virtual second” is selected in such a way to make vbc×1 
virtual second = 0.05H0, where H0 is the initial height of specimen. Therefore, this virtual time system is 
closely tied to the axial deformation of the specimen. For instance, at 1 and 2 virtual seconds after the 
loading has commenced, the specimen should have vertical (engineering) strains of -10% and -20%
(engineering strain), respectively. Note that both the upper and lower platens move at the same rate and 
we consider compressive strain to be negative in order to be consistent with the rate-of-deformation 
definition.

Figure 5 Boundary condition for the biaxial compression simulation.

3.2 General observations on mechanical responses

The evolution of stress ratio σ22/σ11 and volumetric strain εv is shown in Figure 6, where σ11 and σ22 are the
normal stress components in the x1 an x2 directions, respectively. In this particular case they happen to be 
the two principal stress components. The simulation results are typical of dense sand behaviors: the stress
ratio first increases to a peak and then decline and approach to a steady value; the volumetric strain briefly 
decreases (representing shrinking volume) before significant dilation takes place and eventually the 
steady state (critical state) volume is reached. Eight representative reference states from ① to ⑧ are 
labeled in Figure 6: ① is the initial undeformed state; ② represents the elastic regime; in states ③ to 
⑤ both the stress ratio and the dilation rate are around their peak values; the stress ratio is declining in
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state ⑥ from its peak to the steady state; and both state ⑦ and state ⑧ are in the steady state with
axial strains of -10% and -15% respectively. The overall deformation patterns in six of the eight states are 
shown in Figure 7, where all the particles are “dyed” into white and black colors to form a regular grid in 
the initial state. In states ② to ⑤, axial compression and lateral expansion can hardly be observed. The 
initiation of a shear band is merely visible in state ⑥, but this shear band clearly dominates the 
deformation in states ⑦ and ⑧.
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Figure 6 Evolution of the stress ratio and volumetric strain. Note the interchangeability of the virtual time 
and axial compressive strain: 1 virtual second is equivalent to 10% of compressive (engineering) strain.

Figure 7 Overall deformation pattern of the specimen in six reference states.

3.3 Compare results of the proposed method with estimations based on the boundary condition

Even though the deformation of the specimen is highly non-uniform due to the development of the shear 
band, the average value of D22 can be estimated according to applied boundary condition. Since the 
virtual time system is selected in a way to make 2vbc=0.1H0, we can derive how D22 evolves with time as

22
0

2 2 1( )
( ) (1 0 . 1 ) 1 0
bc bcv vD t

H t H t t
     

 
(17)

where H(t) is the specimen height at time t, and the bar symbol “-” over D22 indicates that this variable is 
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an average over the entire specimen. According to equation (17), the absolute value of 22D increases as
the specimen becomes shorter. 

An alternative method for estimating 22D is to randomly assess numerous sub-domains of this specimen
using the method proposed in this paper and evaluate statistical characteristics of the D22 values obtained 
from these sub-domains. To this end we create approximately 3,000 reference triangles randomly 
distributed over the specimen. The average edge length of these triangles is 4mm, and the total area is 
approximately 20,000 mm2, four times of the cross section area of the specimen itself due to the 
significant overlapping of the reference triangles. D22 is calculated for each sub-domain at virtual time 
intervals of 0.1 second throughout the simulation. As shown in Figure 7, the shape of the specimen 
becomes severely distorted at large deformation, similar to typical triaxial and biaxial tests in the real 
world. The portions that have bulged out are not sufficiently constrained by the upper and lower loading 
platens, and therefore D22 in these portions might not be consistent with what is predicted by equation (17) 
based on the boundary movement. Consequently, the middle portion of the specimen that is less affected 
by the irregular boundary shape is identified within a white frame as shown in Figure 8(a). Average values 
and standard deviations of D22 are calculated for both the entire specimen and the middle portion only and 
plotted in Figure 8(b).

Figure 8 Tracking 22D over the simulation. (a) shows the 3,000 overlapping reference triangles (with 
random semi-transparent colors) and the middle portion of the specimen on which statistical analysis is 
conducted to avoid the effects of the irregular shape of the left and right boundaries at large deformation; 
(b) shows the evolution of the mean values and standard deviations of D22 for the entire specimen and the 
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middle portion.

The mean values of D22 for the middle potion match the calculated rate-of-deformation values based on 
the boundary condition fairly well, with a clear ascending trend with respect to the virtual time. The 
difference is reasonably small considering the standard deviations are two to three times of the means. 
This observation demonstrates the effectiveness of the proposed method. On the other hand, the averages 
of D22 over the entire specimen have significantly smaller absolute values than those based on the 
boundary condition. This discrepancy is likely due to the fact that the left and right portions of the 
specimen near the lateral boundaries are not effectively constrained by the two rigid platens. However, it 
should be emphasized that both the averages over the entire specimen and that over the middle portion 
only are valid measurements. Their difference is simply owing to the heterogeneity of the deformation of 
the specimen, not indicating one is “more correct” than the other.

4. Numerical example II: shear flow and shear banding

The numerical example in Section 3 focuses on the D22 component of the rate-of-deformation tensor, 
which can be tied to the velocity boundary condition of the simulation. In the current section, we 
investigate shear flows of the same simulation with an emphasis on the behaviors of shear bands.

4.1 Nucleation of shear bands

The distribution of max over the specimen at selected virtual time instants (states ② to ⑦) is shown in 
Figure 9. Three thousand overlapping reference triangles are randomly placed over the specimen and the 
average edge length of these triangles is 3 mm. A line segment is drawn at the center of each reference 
triangle with the length proportional to the magnitude of max calculated for this reference triangle, and 
the orientation denoting the maximum local shear flow direction. 
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Figure 9 Distribution of max over the specimen in six selected reference states. Note that the scale of the 
line segments representing the magnitude of max varies from one state to another, with the same 
segment length representing a larger max value in later states. The blue polygons shown in states ②
and ⑦ are “virtual masks” to be used in the analysis of Section 4.2.

The maximum shear flow rate distribution visualized above should be analyzed in conjunction with the 
following statistical analysis to gain insight into the nucleation process of shear bands. The normalized 
histogram of the shear flow direction (the angle between the maximum shear flow direction and the 
horizontal, ranging between 0 and 180º) in each of these states is plotted in Figure 10, which can be used 
to estimate the probability density function (PDF) of the local shear flow direction. Additionally, the 
companion normalized histogram weighted by the magnitude of max is also plotted. In weighted 
histograms, one occurrence of the value A is equivalent to A/B occurrences of the value B. The weighted 
histogram is potentially a better metric for indicating the dominant direction of local shear flows because 
it can filter out the unwanted effects of the regions that are not actively deforming. The material in the 
shear bands is experiencing much higher shear flow rates than the other portions of the specimens and 
thereby being given higher weights. Note that the statistical analysis is only conducted for the middle 
portion of the specimen as marked in Figure 8(a) to eliminate the effects of the lateral boundaries. The 
weighted mean values of the shear flow directions in the intervals of 0º to 90º and 90º to 180º are also 
calculated separately and marked in the histograms. They help identify the two (applicable to states ② to 
⑤) or one (states ⑥ and ⑦) predominant shear flow direction.
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Figure 10 Histograms (weighted and unweighted) of local shear flow directions in six selected states.

In state ② the deformation of the specimen is still in the elastic regime with no apparent localization, so 
the maximum shear flow rate distributes over the entire specimen rather uniformly. In each sub-domain, 
the two principal directions of the rate-of-deformation tensor are vertical and horizontal, respectively. The 
magnitude of the rotation tensor is very small, which is induced by minor inhomogeneity of the 
deformation. Therefore the calculated predominant shear directions are close to 45º or 135º. Although a 
considerably larger portion of the specimen shows predominant shear flow directions around 45º than that 
around 135º, this is likely due to the minor imperfection of the specimen and boundary conditions. In this 
deformation regime, there is no mechanically significant difference in the deformation patterns between a 
sub-domain with a shear flow direction of 45º and that with 135º. In states ③ to ⑤, the stress rate is 
around the peak value. It can be observed in Figure 9 that the deformation starts to show some tendency 
of concentration in state ③, where three to four parallel bands with concentrated shear flow can be 
identified in each of the two conjugate directions. In states ④ and ⑤, one shear band gradually gains 
dominance in each direction. Subsequently at larger deformation, the shear band with an inclination of 
approximately 55º dictates the deformation, and the shear flow along the conjugate direction diminishes.
This process is clearly revealed by both Figure 9 and Figure 10. Although investigating the mechanics 
behind these interesting phenomena is beyond the scope of this paper, this numerical example clearly 
visualizes the initiation and nucleation process of the shear bands, providing a promising tool for future 
investigation. Notice that the definition and measurement of max is instrumental in plotting the weighted 
results of Fig. 10.

4.2 Measurements inside shear bands

All the aforementioned analyses have been carried out over the entire specimen. Using the method 
proposed in this paper, we can also focus the measurement within a specific area such as the shear band.
Our previous study of fabric evolution inside shear bands in granular materials with inherent fabric 
anisotropy has used a preliminary form of the current method, which was proven to be a critical tool to 
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gain important insight into this problem (Fu and Dafalias, 2011b). In the example shown below, we utilize 
a “virtual mask”, which is a polygon-shaped area covering the middle portion (to avoid the boundary 
effects) of the shear band in the steady state, such as shown by blue color in two of the states (② and ⑦) 
in Figure 9. With its vertices attached to individual particles, the mask can deform with the specimen.
Therefore, in the undeformed and elastic states before shear bands have initiated, the mask covers the 
particles that would form the predominant shear band at a later time. Only the velocity gradient values 
derived from the reference triangles within the masked area are used in the statistical analysis, and 
approximately 500 such reference triangles are engaged in this example. The mean maximum shear flow 
rates max as well as the standard deviation are shown in Figure 11. The shear flow rates show a clear 
increasing trend until the steady state is reached, representing the concentration of deformation into the 
shear band. We have observed in Figure 8 that the standard deviations of D22 for the global measurement 
are a few times larger than the mean values. This is because the global measurement mixed the results in 
the shear band where the velocity gradient is very high and those in the remaining portions of the 
specimen experiencing essentially rigid body motions. On the other hand, the standard deviations of the 
flow rate within the shear band mask are approximately 40% of the mean values, indicating that the 
deformation (rate) in the shear band is relatively homogeneous. It is evident that when localized 
deformation is the dominant mode, the physical and mechanical meanings of globally averaged 
measurements are rather ambiguous.
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Figure 11 The evolution of shear flow rate in shear band.

5. The effects of reference triangle sizes

The analyses in Section 3 and Section 4 have employed reference triangles with an average edge length of 
4 mm and 3 mm, respectively. In this section, we evaluate the effects of the sizes of reference triangles,
focusing on the D22 measurement in states ② and ⑦ (elastic and steady states, respectively) over the 
middle portion of the specimen. Four reference triangles sizes with edge lengths of approximately 2, 4, 8, 
and 16 mm are employed, and on average each of such reference triangles covers a domain consisting of 
approximately 19, 75, 300, and 1200 particles, respectively. Figure 12 illustrates the sizes of the reference 
triangles relative to the particle sizes. For each case, a sufficient number of triangles (3,000 to 10,000) are 
generated to obtain statistically meaningful representations. Additionally, the reference triangles 
constructed with Delaunay triangulation are the smallest reference triangles that can be adopted, so the 
Delaunay triangles are included in this evaluation as an extreme scenario. For this specimen with 45,000 



-20-

particles, the Delaunay triangle system consists of approximately 90,000 triangles, with an average edge 
length of 0.13 mm. 

Figure 12 Different reference triangle sizes evaluated.

The mean D22 values as well and the standard deviations in these two states (② and ⑦) are shown in 

Figure 13 as functions of the reference triangle sizes. In the elastic state, the effects of the reference triangle 
sizes (including the Delaunay triangles) on the mean value of D22 are observed to be insignificant. The 
standard deviation increases as the sizes of the triangle decreases. This is intuitive because the results 
obtained for larger triangles are homogenized measurements for larger domains with more particles, and 
therefore the random fluctuation of the obtained values should be smaller. It is interesting to notice that 
while the reference triangle sizes only have a moderate effects on the standard deviation with varying edge 
lengths between 2mm and 16mm, the standard deviation obtained for the Delaunay triangle system is 
dramatically larger (by one order of magnitude). Although the aforementioned mechanism (larger domain 
yields more stable results) should somewhat contribute to this phenomenon, we found that this dramatic 
discrepancy is primarily attributed to a fundamental difference between the Delaunay triangles and the 
triangles constructed using the method shown in Figure 1 as elaborated below.

Figure 13 The effects of reference triangle sizes on the rate-of-deformation measurements. 

The distributions of D22 in state ② calculated based on reference triangles with 4 mm long edges and the 

Delaunay triangulation system are shown in Figure 14(a) and (b), respectively. Compared to the relatively 
uniform distribution of D22 in Figure 14(a), isolated clusters each consisting of a number of relatively 
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large circular symbols (denoting positive values) and squares (negative values) are the most salient
pattern in Figure 14(b). In the magnified view, we can see that at the center of each of these clusters there 
are one or two kinematically unconstrained small particles. These particles can freely move in the void 
space between neighboring larger particles, and the magnitude of the displacement is limited by the sizes 
of the voids but the velocity can be fairly high. Therefore, the velocity gradients obtained from reference 
triangles attached to these unconstrained particles are often one or two orders of magnitude larger than 
those from triangles attached to fully constrained particles, and they are considered noises bearing no 
mechanical significance in representing the deformation of the specimen. The effects of these noises on 
the mean measurements are likely to be small, since such random velocity of unconstrained particles 
induces negative velocity gradient values in some reference triangles attached to them while inducing 
positive values in others. Nevertheless, such noises (orders of magnitude larger than the mean value) are 
highly undesirable, making the use of the Delaunay triangles as the reference triangles an unappealing 
option.

A similar investigation is conducted for D22 in state ⑦ and the results included in Figure 13 show similar 

trends as those for state ②, so they are not further elaborated here. The only exception worth mentioning 

is that the average magnitude of D22 in state ⑦ calculated based on the Delaunay triangles is perceivably 

smaller than the corresponding values based on larger reference triangles. This is likely due to the high 
noise level and large error margins associated with the Delaunay reference triangles. 

Figure 14 The distribution of D22 calculated based on reference triangles with (a) 4 mm long edges and (b) 
the Delaunay triangles. Note that positive D22 values are illustrated by circle symbols and negative (in 
compression) values shown as squares. Also note that the same symbol size in (b) represents 40 times 
larger D22 values compared to those in (a).
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This investigation, although not exhaustive, provides some general guidelines for the selection of reference 
triangle sizes. If the objective of an analysis is to quantify the homogenized deformation characteristics of a 
relatively large domain (not necessarily the entire simulation domain or the specimen), the sizes of the 
reference triangles can be rather freely selected as long as the triangles are significantly smaller than the 
domain itself. On the other hand, if the distribution patterns of the deformation rate or the integrals over a 
certain period of time are of interest, the triangles should then be smaller than the desired resolution of the 
distribution resulting from the analysis. For instance, if we need to investigate the difference between the 
shear flow rate in a shear band and that in the remainder of the specimen, the edge lengths of the triangles 
should be smaller than the width of the shear band. Otherwise, the quantified characteristics of the shear 
band will be smeared by reference triangles covering both the shear band and other parts of the specimen 
experiencing rigid body displacements. Other important rules that should be observed in generating 
reference triangles are: 1) larger particles are preferred because they represent the kinematics of the 
specimen better than smaller particles which are more likely to be kinematically unconstrained; 2) 
repetitive sampling by using partially overlapping triangles and statistical analysis are encouraged to ensure 
that the obtained mean values are representative; and 3) the Delaunay triangle systems should be generally 
avoided because of the significant noises introduced to the results.

6. Concluding remarks

In this paper we proposed a new method for quantifying the deformation of granular materials by 
analyzing movement of individual particles. Two innovations have made the new method more effective 
and more flexible than the existing methods. First, instead of creating a meshed equivalent continuum 
attached to the granular particle assembly and assessing the deformation of this continuum, the new 
method performs independent queries on the deformation characteristics of individual sub-domains, based 
on which repetitive sampling and statistical analysis convenient. Second, the new formulations are based 
on the velocity gradient tensor and the rate-of-deformation tensor rather than the more conventional 
engineering strain. This feature provides a theoretically sound framework for handling large deformation 
problems, which is essential for investigating behaviors of granular materials where strain localization (or 
more specifically shear banding) is the most salient mode of failure. Nevertheless, the relationships 
between the rate-of-deformation measurements and the more conventional strain concepts are explored in 
the paper.

In the numerical examples presented in this paper, it was first verified that the averaged or homogenized 
measurements based on the new method are consistent with values estimated on the basis of the imposed 
boundary conditions. More importantly, we demonstrated how to use the new method to quantify the 
evolution of deformation rates distributed throughout the specimen, with a special emphasis on the 
initiation and nucleation of shear bands. Finally, the effects of the sizes of the reference triangles were 
investigated in order to provide general guidelines for the selection of the reference triangle sizes. An 
interesting and inspiring finding in this evaluation was that if the Delaunay triangles (or other comparable 
tessellation methods) are used as the reference triangles, which is a fairly common practice in most
existing methods, very significant noises are expected to be introduced into the measurements, which 
could be detrimental to the statistical interpretation of the results. Therefore, the Delaunay triangulation or 
similar methods constructing cell systems unselectively based on all particles is not a recommended 
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approach for constructing reference triangles. This phenomenon has not been mentioned in the literature 
possibly because most previous studies have used particles of similar sizes, for which this effect is not 
apparent. This issue has to be dealt with carefully if the granular assembly involves particles with a wide 
spectrum of particle sizes.
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