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Abstract 
During the last months of this project, our project activities have concentrated on four 
areas: 1) performing a stochastic inversion of pattern 16 seismic data to deduce reservoir 
bulk/shear moduli and density; the need for this inversion was not anticipated in the 
original scope of work, 2) performing a stochastic inversion of pattern 16 seismic data to 
deduce reservoir porosity and permeability, 3) complete the software needed to perform 
geochemical inversions and 4) use the software to perform stochastic inversion of 
aqueous chemistry data to deduce mineral volume fractions. This report builds on work 
described in progress reports previously submitted (Ramirez et al., 2009, 2010, 2011 --  
reports fulfilled the requirements of deliverables D1 – D4) and fulfills deliverable D5: 
Field-based single-pattern simulations work product.  
 
The main challenge with our stochastic inversion approach is its large computational 
expense, even for single reservoir patterns. We dedicated a significant level of effort to 
improve computational efficiency but inversions involving multiple patterns were still 
intractable by project’s end. As a result, we were unable to fulfill Deliverable D6: Field-
based multi-pattern simulations work product. 
 
This work has been performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  
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Introduction 
Our stochastic inversion approach uses reactive transport modeling, facies-based 
geostatistical methods, and a novel stochastic inversion technique to optimize agreement 
between observed and predicted storage performance. Such optimization is accomplished 
through stepwise refinement of: 1) the reservoir model—principally its permeability 
magnitude and heterogeneity—and 2) geochemical parameters—primarily key mineral 
volume fractions and kinetic data. We suggest that these refinements may lead to 
significantly improved history matching and forward modeling of CO2 storage. Our tool 
uses the Markov Chain Monte Carlo (MCMC) methodology. 
 



Deliverable D1, previously submitted as a report titled “Development of a Stochastic 
Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic 
Response To CO2 Injection/Migration in the Weyburn-Midale Project” (Ramirez et al., 
2009), described the stochastic inversion approach that will identify reservoir models that 
optimize agreement between the observed and predicted seismic response. The software 
that implements this approach has been completed, tested, and used to process seismic 
data from pattern 16. A previously submitted report titled “Model verification: synthetic 
single pattern simulations using seismic reflection data”, Ramirez et al. 2010, partially 
fulfilled deliverable D3 by summarizing verification activities that evaluate the 
performance of the seismic software and its ability to recover reservoir model 
permeabilities using synthetic seismic reflection data. Ramirez et al. 2011, partially 
fulfilled deliverable D4 requirements by summarizing model development activities 
required for application of TProGS software and the use of TProGS within the MCMC 
tool. We were unable to apply the TProGS tool to the seismic and geochemical data 
because we had to concentrate project resources on unexpected challenges presented by 
the MCMC inversions.  
 
The D5 deliverable requires a summary of the results of applying NUFT/MCMC to refine 
the reservoir model and geochemical parameters by optimizing observation/prediction 
agreement for the seismic/geochemical response to CO2 injection/migration within a 
single pattern of Phase 1A/1B. This document includes a chapter that shows and 
discusses permeability models produced by seismic inversion that used seismic data from 
pattern 16 in Phase 1A. It also presents geochemical inversions of mineral volume 
fractions that use aqueous chemistry data from pattern 16 and presents the results of 
verification tests using synthetic data.  It fulfills the requirements of deliverable D5 and 
completes the requirements associated with deliverable D3 by verifying the performance 
software of the geochemistry software and its ability to recover mineral volume fractions.   
 
The main challenge with our stochastic inversion approach is its large computational 
expense, even for single reservoir patterns. We dedicated a significant level of effort to 
improve computational efficiency but inversions involving multiple patterns were still 
intractable by project’s end. As a result, we were unable to fulfill Deliverable D6: Field-
based multi-pattern simulations work product.  
 
We had to significantly modify our original plans for geochemical inversions. Originally, 
we planned to use a 3D reactive transport simulator (NUFT) as the centerpiece of our 
geochemical inversion approach. The computational expense of this approach proved to 
be intractable. The 3D simulator requires about 1.75 hours and 5 hours (per model) to 
simulate 1.3 years and 9 years of CO2 injection, respectively. We expect that our MCMC 
approach will require a few thousand iterations to converge (each iteration consists of one 
3D reactive transport calculation). The estimated run-time is 145 days assuming that 
2000 MCMC iterations are required and that 1.3 years of CO2 injection are simulated. For 
9 years of injection, the estimated run-time is 416 days. Realistically, we believe that the 
runtime could be reduced by a factor of 2 (72 days, 1.3 years of CO2 injection), but these 
run-times would still be too long for practical use.  This situation required that we modify 
our original plans by considering alternative inversion approaches. 



 
A second challenge is that the mineral volume fraction and kinetic rate constants are 
spatially heterogeneous and can show significant variability on the scale of meters to tens 
of meters.  Ideally, an inversion approach models this level of variability by allowing 
changes at each node in the calculation grid (our pattern 16 grid has 26896 nodes). 
However, the amount of aqueous chemistry data is quite limited even at the Weyburn 
project where an unprecedented water sampling program has collected hundreds of water 
samples from multiple wells over a period of about 10 years. Near pattern 16 there are 
several water-sampling wells where multiple aqueous species are measured for each 
sampling episode. In inversion parlance, this means that the ratio of knowns 
(measurements) to unknowns (geochemical properties at each node, i.e., one rate constant 
for each reaction of interest, and one volume fraction for each mineral of interest) is 
extremely poor. The sparsity of information will produce solutions to the inverse problem 
that are highly non-unique, i.e., there will be a very large (possibly infinite) number of 
solutions that fit the data equally well. This means that it will be impossible to uniquely 
determine the 3D distribution of the mineral volume fractions and rate constants in the 
reservoir because there is insufficient enough information to do so. 
 
To mitigate the computational expense and data sparseness problems, we developed and 
tested a 1D inverse approach that uses a faster reactive transport simulator (PHREEQC). 
PHREEQC can solve the reactive transport problem faster than NUFT because it makes a 
few simplifying assumptions, namely that there is only one fluid phase (brine) instead of 
the 3 phases assumed by NUFT (brine, oil, free phase CO2). The 1D flow-tube approach 
simplifies the inversion problem into a single flow path that connects the CO2 injection 
well to a water-sampling point. The reduction of dimensionality from 3D to 1D and the 
faster simulator reduce the runtime to about 2 days for 2000 MCMC iterations. We used 
the flow-tube approach to invert for reservoir mineral volume fractions in pattern 16 
using the aqueous chemistry data provided by Maurice Shevalier and others at the 
University of Calgary. Chapter 2 will describe the 1D approach and inversion results in 
detail. 
 
 

Chapter 1: Seismic Results, Pattern 16, Phase 1A 
 

1.1 Introduction 
This chapter will describe a stochastic inversion approach of seismic properties. We have 
performed several permeability stochastic inversions using seismic data from pattern 16, 
Phase 1A area. Here we present the results of one of those inversions. The permeability 
inversions shown in this chapter assumed well log and laboratory values of seismic 
properties. 



 
Figure 1.1. The orange square shows the location of pattern 16 where seismic data used 
by our inversion was collected. This pattern is within the Phase 1A area of the Weyburn-
Midale reservoir. Borehole layout provided by Barbara Dietiker (Geological Survey of 
Canada). The red lines indicate the location of the CO2 injector, the blue circles represent 
the WAG injectors and the black lines and circles represent the oil producers. 
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Figure 1.2 shows well-logs used to constrain the moduli inversions. The plots show the 
correlation between density (vertical axis, kg/m3) and porosity (top), density and bulk 
modulus (middle plot, horizontal axis, GPa), and density and shear modulus (bottom plot, 
horizontal axis, GPa). Barbara Dietiker (Geological Survey of Canada) provided the well 
log plots. 



 
 

1.2 Seismic moduli and density inversion 
In a previous report (Ramirez et al., 2011) we identified the need to obtain estimates of 
seismic properties (bulk and shear moduli, density) that honored their spatial variability, 
and proposed to develop a new inversion approach to obtain them using the pre-CO2 
injection seismic data. The shape of the waveforms is very sensitive to the vertical 
impedance contrast caused by moduli variability; waveform shape is much less sensitive 
to impedance changes caused by CO2 invasion of the pore space. Our original plan had 
been to use homogeneous values for each layer based on laboratory (Brown, 2002) and 
well log measurements but this approach proved to be inadequate. The need for this new 
inversion was discovered late in the project and was not included in the original scope of 
work. 
 
A stochastic inversion approach that uses empirical petrophysical relationships derived 
from well logs as constraints was developed. It is a straightforward modification of the 
inversion approach used for permeability inversion and described in detail by Ramirez et 
al, 2009. The process starts by proposing realizations of the porosity/permeability fields. 
These realizations honor the porosity/permeability distribution present in the Cenovus 
“calibrated” model (see Figure 1.7, Ramirez et al, 2011).  Petrophysical relationships 
based on well log measurements were used to map porosity to density and density to bulk 
and shear moduli. Figure 1.2 shows cross-plots of density, bulk and shear moduli 
determined from well logs (provided by Barbara Dietiker, Geological Survey of Canada). 
Tables 1 – 3 show the equations used to relate density to porosity, bulk modulus and 
shear modulus. We then used the NUFT flow simulator to predict the pressure 
distribution within the reservoir during water injection (before CO2 injection). Predicted 
waveforms where then calculated (see Ramirez et al., 2009 for details). The predicted 
waveforms were compared to pre-CO2 injection waveforms (data collected in 1999) and 
likelihood values were calculated. We then used the MCMC stochastic inversion 
technique (Ramirez et al., 2009) to find spatially-variable models of bulk/shear moduli 
and density that were most consistent with the data.  
 
We were unable to produce acceptable moduli inversions with this method. The 
likelihoods calculated (proportional to data misfit) turned progressively worse (likelihood 
becomes increasingly negative) during the inversion (see Figure 1.3), the opposite of the 
expected behavior. We spent several days looking for software bugs (one minor bug 
found and fixed) and later attempted a few modifications to the approach; none of the 
changes improved the outcome. Note that the curves in Figure 1.3 show that the 
likelihood sometimes slightly improves (becomes more positive) from iteration to 
iteration but more frequently slightly degrades. After many iterations, this tendency to 
degrade tends to dominate the search. 
 
We do not understand the root cause of this behavior but can offer one possible 
explanation.  The realizations of moduli and density are chosen completely at random. 
The number of realizations that are likely to fit the data poorly is vastly larger than the 
number of realizations that are likely to fit the data well. The acceptance criterion used by 



the algorithm (Metropolis-Hasting, MH) that decides whether to accept or reject a new 
proposal is probabilistic and behaves as follows (see Ramirez et al., 2009 for further 
details). MH always accepts proposals that improve the likelihood (proportional to misfit) 
while sometimes accepting proposals that degrade the likelihood particularly if the 
likelihood for the new proposal is only slightly worse. This behavior insures that the 
search does not to get “stuck” in local maxima. The odds of proposing a realization that 
slightly degrades the likelihood are larger than the odds of slightly improving the 
likelihood and it is likely that some of these will be accepted. This tends to point the 
search away from solutions that improve the likelihood. 
 
We believe that this problem is solvable but the project ended before we were able to 
develop an algorithm that yields acceptable results. One possible solution is to alter the 
approach such that the odds of proposing realizations likely to increase the likelihood 
improve substantially. This can be achieved by adding new information such as a 
constraint on spatial variability that is based on well log variability. Such an analysis 
would inform the likely impedance contrast range between each layer pair, thereby 
providing powerful new constraints to the stochastic inversion. There are stochastic 
inversion schemes of seismic impedance using waveform and traveltime data reported in 
the literature (e.g., Quan and Harris, 2008). They use an ensemble Kalman filter (EKF) 
approach that estimates the impedance spatial variability from well log values. This 
approach proved successful when using synthetic data. An alternative solution would 
make use of well-known, deterministic impedance inversion techniques (D. White, 
personal communication); we would use the inverted impedances directly to compute the 
predicted waveforms. A third alternative would be a modification of the stochastic 
approach we used, this time incorporating the spatial variability trends present in the well 
logs. We would use TProGS (described in Ramirez et al., 2011) to model these trends, 
and it would produce realizations of moduli/density that exhibit realistic spatial 
correlation (or variability). A fourth alternative would	
  change	
  the	
  way	
  we	
  use	
  the	
  
waveforms:	
  the	
  observed	
  and	
  predicted	
  time-­‐lapse	
  difference	
  waveforms	
  could	
  be	
  
compared	
  rather	
  than	
  direct	
  comparison	
  of	
  the	
  observed	
  and	
  predicted	
  post-­‐
injection	
  waveforms.	
  This	
  would	
  partly	
  remove	
  the	
  dependence	
  on	
  the	
  pre-­‐injection	
  
seismic	
  properties	
  model. 
 
 
 
Lithology 
unit 

Equation used to map from porosity to density ( kg/m3)  

Ratcliffe density = 2900.0 + poro*-1818.18 + uniform(-100.0, 100.0) 
Evaporite Poro = ((density – 2850)/-1818.18) + uniform(-0.06, 0.06) 
Marly Poro = ((density – 2850)/-1818.18) + uniform(-0.06, 0.06) 
Vuggy Poro = ((density – 2700)/-1818.18) + uniform(-0.06, 0.06) 
Frobisher Poro = ((density – 2900)/-1818.18) + uniform(-0.06, 0.06) 
Table 1 shows the linear relationships used by the seismic property inversion to remap 
density realizations to porosity realizations. These relationships are based on well log 
measurements of density and porosity shown in Figure 1.2. The term “uniform(-0.06, 



0.06)” means that random number is sampled from a uniform distribution on the range -
0.6 to 0.6. 
 
 
 
Lithology 
unit 

Equation used to map from density ( kg/m3) to bulk modulus (Pa) 

Ratcliffe Bulk_mod = (3.0E-08*density5.3155 )+ uniform(-1.5E+10, 1.5E+10) 
Evaporite Bulk_mod = (1.0E-09*density5.7370 )+ uniform(-1.0E+10, 1.0E+10) 
Marly Bulk_mod = (2.0E-08*density5.3453 )+ uniform(-6.0E+09, 4.0E+09) 
Vuggy Bulk_mod = (2.4E-11*density6.2289)+ uniform(-1.6E+10, 1.4E+10) 
Frobisher Bulk_mod = (8.0E-08*density5.1969 )+ uniform(-1.1E+10, 9.0E+09) 
Table 2 shows the linear relationships used by the seismic property inversion to remap 
density realizations to bulk modulus realizations. These relationships are based on well 
log measurements of density and bulk modulus shown in Figure 1.2. The term “uniform(-
6.0E+09, 4.0E+09)” means that random number is sampled from a uniform distribution 
on the range -6.0E+09 to 4.0E+09. Note that some of the uniform distributions are 
slightly biased towards negatives values in order to reduce the bulk modulus in layers 
where fractures are likely to be present. 
 
 
 
 
Lithology 
unit 

Equation used to map from density ( kg/m3) to shear modulus (Pa) 

Ratcliffe Shear_mod = (5.0E-09*density5.4204 )+ uniform(-1.0E+10, 1.0E+10) 
Evaporite Shear_mod = (2.0E-06*density4.6575 )+ uniform(-5.0E+09, 5.0E+09) 
Marly Shear_mod = (1.0E-11*density6.1800)+ uniform(-3.5E+09, 2.5E+09) 
Vuggy Shear_mod = (3.3E-02*density3.4213)+ uniform(-6.0E+09, 4.0E+09) 
Frobisher Shear_mod = (1.0E-07*density5.0142)+ uniform(-6.0E+09, 4.0E+09) 
Table 3 shows the linear relationships used by the seismic property inversion to remap 
density realizations to shear modulus realizations. These relationships are based on well 
log measurements of density and shear modulus shown in Figure 1.2. The term 
“uniform(-6.0E+09, 4.0E+09)” means that random number is sampled from a uniform 
distribution on the range -6.0E+09 to 4.0E+09. Note that some of the uniform 
distributions are slightly biased towards negatives values in order to reduce the shear 
modulus in layers where fractures are likely to be present. 
 
 
 
 



 
 
Figure 1.3. The plot shows the unexpected degradation (likelihood becomes increasingly 
negative) in likelihood observed during the stochastic inversion for bulk/shear moduli 
and density using seismic data.  
 
 

1.3 Porosity/permeability inversions 
We used pattern 16 seismic data to perform several permeability porosity inversions. We 
were forced to use bulk and shear moduli values from core and from well logs 
measurements because the moduli/density inversion described previously did not produce 
acceptable results. The seismic inversions described below used homogeneous moduli 
values (one for each layer) that were adjusted by trial and error to reduce the waveform 
misfit as much as possible (see Ramirez et al, 2010, for details).   
 
The inversion approach we followed consisted of the following steps; for additional 
details of our MCMC stochastic inversion technique, see Ramirez et al. (2009, 2010). 
First, we generated random realizations of porosity/permeability. A smoothing filter is 
applied to these realizations to reduce the gradients in porosity/permeability, thereby 
adding another constraint to the stochastic inversion.  In this document, we call these 
realizations reservoir models.  These models honored geostatistical trends in Cenovus’ 
model (provided by Barbara Dietiker, Geol. Survey of Canada) calibrated against several 
decades of production data; these trends identified the statistical distributions of porosity 
and permeability in the reservoir layer, and their cross-corelation. The realizations consist 
of porosity and permeability fields that vary spatially within each layer and honor the 
porosity/permeability trends embedded in Cenovus’ calibrated model (previously shown 
in Ramirez et al., 2010, and reproduced in this document’s appendix  as Figures A.1 and 
A.2).  
 
Each realization also honored lithology designations and layer boundaries in Cenovus’ 
model.  The process that produces one realization is initialized with the 
porosity/permeability values of the realization that was last accepted by the MCMC 
process. Then, we randomly select a small subset (~ 0.5 %) of grid nodes whose porosity 
and permeability values will be changed. A new porosity is randomly assigned to each 
chosen node by sampling from the distribution in Figure A.1; nodes within the Vuggy 
layer are populated with porosities that honor the left mode in A.1 while nodes within the 



Marly layer are populated with porosities sampled from the right mode (a similar process 
is used to assign values to nodes within the Ratcliffe, Evaporite and Frobisher layers, 
each layer honoring a different porosity distribution).  
 
Once porosities are assigned we use the porosity-permeability cross-correlation shown in 
Figure A.2 to assign the corresponding permeability values. Figure A.2 shows that each 
porosity value is associated with a range of possible permeabilities. We randomly select a 
permeability value from this range and assign it to the node being processed. After all 
chosen nodes have been modified, we apply a smoothing filter to the porosity and 
permeability fields. 
 
 
The next step consisted of running the flow simulator. The simulator injected CO2 into 
the reservoir at the same rate used in the field. The production rate was set such that the 
pressure around the producers remained at constant, ambient pressure. The flow 
simulation predicted various reservoir parameters such as fluid densities, CO2 saturation 
and pore pressure for each realization. We then predicted seismic velocities throughout 
the model using the calculated reservoir parameters and Gassmann’s equation. The 
velocity model was then used to compute seismic reflectivities and zero-offset, 1D 
seismograms. The algorithm then compared the predicted and observed seismograms, 
calculated the likelihood function (proportional to data misfit), and used the likelihood 
value to decide whether to accept or reject the current realization. Our MCMC stochastic 
inversion technique will find those permeability models that best fit the seismic data and 
the “prior” constraints (lithology boundaries and geostatistical trends).  
 
The flow simulation assumed that water was injected for 2 years, and that CO2 injection 
started after 0.7 years of water injection; the flow simulator modeled reservoir conditions 
after 1.3 years of CO2 injection.  The seismic data used for the inversion were collected 
circa December 2001.  
 
The Evaporite layer plays a significant role as an impermeable boundary above the 
reservoir. The vertical resolution of the flow simulation grid is 4.3 m. The thickness of 
the Evaporite layer in pattern 16 was sometimes significantly less than this resolution, 
thereby artificially disappearing from some parts of the grid. In order to preserve the 
sealing properties above the Marly layer, we set the permeabilities of the Ratcliffe to the 
same low values associated with the Evaporite. This approach insures that there is a 
continuous low permeability layer above the reservoir. 
 
Figure 1.4 shows likelihood value as a function of MCMC iteration for two seismic runs. 
Each plot has red and blue curves representing separate Markov chains that start in 
different places and independently sample the posterior distribution (solution space). 
Each MCMC iteration involves one porosity/permeability realization, one flow 
calculation and one likelihood calculation (i.e., comparison of predicted and observed 
waveforms).  
 



The step size associated with the top plot in Figure 1.4 was about ten times larger (on 
average) than the step size for the bottom plot. Both plots show that the likelihood 
(proportional to misfit) is improving (moving closer to 0). The larger step-size run 
reaches a stable likelihood value (iteration 5700) that is significantly better than the 
corresponding small step size value. However, the larger step size also produced an 
undesirable result: the blue curve stops around iteration 800, indicating that the Markov 
chain is trapped in a local likelihood maximum. The smaller step-size run shows both 
chains progressing normally and reaching relatively stable values after iteration 4600, 
thereby indicating that both chains are producing models that fit the data about the same. 
This means that both Markov chains are sampling models that fit the data equally well 
and that any further improvement in the likelihood is likely to be small or negligible. In 
statistical parlance, this means that the seismic inversion has converged after 4600 
iterations and that the Markov chains are now sampling from the posterior distribution, 
the collection of models that contains the solution to our stochastic inversion problem. 
Thus, we can use models produced after iteration 5000 to obtain a statistically reliable 
estimate of the heterogeneous reservoir permeabilities. 
 
 

 
 
Figure 1.4. The plots show likelihood value as a function of iteration for two permeability 
inversion runs that used different step sizes.  The step size associated with the top plot 
was about ten times larger (on average) than the step size for the bottom plot. The top 
plot indicates that a solution with better likelihood (closer to 0) has been found using the 
larger step size. Likelihood is a measure of the similarity between the predicted and 



observed seismic waveforms. Note that a stable value is achieved after about 5700 
iterations (top plot) and 5000 iterations (bottom plot).  
 
 
Ideally, we would have liked to see the larger step-size run behave in a similar fashion 
but were unable to do so before the project ended. Considering all the factors, we have 
chosen to analyze the results of the larger step size run because of its better likelihood 
values and because it reached relatively stable values after iteration 5700. 
 
We now look at permeability models from the posterior distribution. The images in Figure 1.5 
show horizontal slices through one of the permeability models that best fit the seismic data (we 
chose iteration 5751 because it has a likelihood value near maximum). The horizontal slices 
show the lithologies (1st column), most likely permeability (2nd column) and most likely porosity 
(3rd column). The corresponding CO2 saturations and pore pressures are shown in the 4th and 5th 
columns. The horizontal slices are located 8 m above, 4 m above, 0 m, and 4 m below the 
location of the CO2 injector; the injector depth at this location is approximately 1428 m.  The 
permeabilities are plotted using a logarithmic color scale.  
 
Note that the slice located 4m above the injector consists mostly of the Marly unit. In the 
slice at the injector depth, the upper half of the slice intersects the Vuggy layer and the 
lower half the Marly layer. The slice located 4m below the injector mainly intersects the 
Vuggy layer. 
 
The permeabilities of the Marly and Vuggy layers range from about 40 - 45 to 150 – 160 
millidarcies. The average permeability of the Vuggy layer is larger than the average 
Marly permeability, as expected. The Marly and Vuggy porosities range from 6% to 20%. 
Also, the average porosity of the Marly layer is larger than the average Vuggy porosity. 
 
We next examine the full ensemble of models in the posterior distribution. Figure 1.6 
shows the mean (2nd column) and standard deviation (3rd column) of all the permeability 
models in the posterior distribution, i.e., models with iteration number greater than 5700. 
Comparing the 2nd column of images in Figures 1.5 and 1.6, we can see that the 
permeability images are very similar. This suggests that most of the models in the 
posterior are similar to one another. The variability between models can be evaluated by 
looking at the standard deviation images, 3rd column of images in Figure 1.6. The 
standard deviations in the Marly layer range from about 4 to 18 md.  The standard 
deviations in the Vuggy layer range from about 6 to 24 md.  
 
One question we might ask is how much influence does the seismic data exert on the 
stochastic inversion results. To answer this question, we ran our algorithm without using 
the seismic data. This run produced realizations that only honored the prior constraints 
such as the statistical trends in Cenovus calibrated model: histograms of porosity and 
cross-correlations between porosity and permeability described in Ramirez et al., 2010 
and 2011, lithology designations and layer boundaries. Approximately 1100 porosity and 
permeability models produced by this run were averaged and standard deviations were 
calculated. The resulting models are presented in Figure 1.7. 



 
A comparison of the average and standard deviations in Figures 1.6 (inversion guided by 
seismic data) and 1.7 (only used prior constraints, seismic data not used) suggests that the 
seismic data is influencing the inversion results. For example, consider the images 
corresponding to the Marly and Vuggy (bottom three rows of images in the two figures). 
The seismic inversion image shows a wider range of permeabilities and a smaller range 
of standard deviations than the non-inversion run. This behavior and the likelihood plot in  
Figure 1.4 suggest that the seismic data is helping guide the inversion by selecting a 
subset of the realizations that reduces the data misfit. The seismic data determined the 
locations of the permeability highs and lows within each layer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  
Figure 1.5. The horizontal slices show lithologies (1st column), most likely permeability 
(2nd column) and most likely porosity (3rd column). CO2 saturation and pressure are 
shown in the 4th and 5th columns. The most likely model exhibits the smallest misfit 
between the observed and calculated seismograms. The permeabilities are shown in 
millidarcies, on a logarithmic scale.  
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Figure 1.6. The images show the mean and standard deviation of all the permeability 
models with iteration number greater than 5700. The permeabilities are shown in 
millidarcies, on a logarithmic scale. 
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Figure 1.7. The images show the mean and standard deviation of all the permeability 
models from a run where only the prior information was used (no seismic data used). The 
permeabilities are shown in millidarcies, on a logarithmic scale. 
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Figure 1.8 shows histograms of porosity using prior information only (left plot, before 
stochastic inversion) and after stochastic inversion (right plot). The left histogram is used 
to constrain the stochastic inversion. The two histograms are very similar. 
 
 
Figure 1.8 and 1.9 provide another view of the inversion results. The figures compare 
porosity and permeability histograms using only prior information (no seismic data) and 
after stochastic inversion (using seismic data). The porosity histograms indicate that the 
inversion does not change the porosity distribution. Similar comments apply to the 
permeabilities distributions in Figure 1.9. The histograms indicate that the prior 
constraints determine the modes of the distributions (permeability/porosity values that 
occur most frequently) and that the seismic data has no discernible effect on them.  
 

1.4 Comparison of Predicted and Observed Waveforms 
We will now examine the match (or misfit) predicted and observed waveforms. Table 5 
compares the mean misfit (average of the absolute differences between predicted and 
observed waveforms) for various cases. The table column labeled “Mean misfit using full 
waveform” shows the mean misfit calculated using all points in the waveforms. The table 
column labeled “Mean misfit using short waveform” shows the mean misfit calculated 
using only points that correspond to the Marly, Vuggy and Frobisher units; the points 
associated with the Ratcliffe unit are not included because these points generate large 
waveform differences that dominate the misfit calculation and are not related to reservoir 
properties. 
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Figure 1.9 shows histograms of reservoir permeability using prior information only (top 
row plots, before stochastic inversion) and after stochastic inversion (bottom row plots). 
The top row histograms were used to constrain the stochastic inversion. The prior and 
inversion histograms are nearly identical. 
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Case Mean misfit using full 
waveform 

Mean misfit using short 
waveform 

Pre-inversion, lab 
measured properties 

0.831 0.908 

Pre-inversion, Vuggy 
moduli reduced 

0.772 0.574 

Inversion calculated 
likelihoods using full 
waveforms 

0.484 0.756 

Inversion calculated 
likelihoods using short 
waveforms, iter. 5751 

------ 0.533 

Inversion calculated 
likelihoods using short 
waveforms, use all iter.  > 
5700 

------ 0.511 

Table 5 compares average misfits (average of the absolute differences between predicted 
and observed waveforms) for permeability inversion runs.  
 
 
The case labeled “Pre-inversion, lab measured properties” shows the mean misfit 
obtained when laboratory measured bulk/shear moduli values are used and the stochastic 
inversion does not adjust the permeability/porosity fields. This case produced the largest 
misfit of all the cases considered, as expected.  
 
In a previous progress report (Ramirez et all, 2011), we indicated that the peak associated 
with the Vuggy layer was larger in the predictions than in the observations. Following a 
trial and error approach we reduced the shear and bulk moduli assigned to the Vuggy unit 
in order to reduce the misfit as much as possible. We also decreased the values of the 
layer above the Ratcliffe. This had the effect of increasing the Ratcliffe peak and 
decreasing the Vuggy peak because the predicted waveform is scaled relative to the 
observations (see Ramirez et al., 2009 for details).  The 2nd case “Pre-inversion, Vuggy 
moduli reduced” shows how the misfit decreased when the Vuggy adjustments were 
made and the stochastic inversion has not been used to adjust the permeability/porosity 
fields.   
 
We then ran two stochastic inversions that used the adjusted Vuggy values. After the 
inversion finished, we calculated the mean misfit for the model that best fit the seismic 
data. The first inversion used all waveform points to calculate the likelihood values that 
guided the stochastic search (case “Inversion calculated likelihoods using full 
waveforms”, in Table 5). Notice that full waveform misfit is substantially larger than the 
short waveform misfit even though we have normalized for the difference in the number 
of points. We saw that the largest waveforms differences tend to occur along the Ratcliffe 
waveform section, suggesting that the likelihood calculations were dominated by these 
differences. This dominance decreased the sensitivity to the reservoir units thereby 
increasing the short waveform misfit. 



 
Based on these observations, we changed the way the likelihoods were calculated during 
the inversion, this time excluding the Ratcliffe waveform section. The 4th and 5th cases in 
Table 5 show that the short waveform misfits substantially decrease when the likelihoods 
are calculated in this manner. The 4th case, “Inversion calculated likelihoods using short 
waveforms, iter. 5751”, shows the misfit for one of the models from the run that 
produced the upper likelihood plot in Figure 1.4. Notice that the likelihood values reach 
reasonably stable maximum after iteration 5700; the model chosen as the 4th case comes 
from this region. We also averaged all the models after iteration 5700 and calculated the 
misfit (last row in table 5).  
 
The 4th and 5th cases both show short waveform misfits that are smaller than the case 2 
and case 3 misfits. This confirms that the inversion is reducing the misfit, as previously 
indicated by the Figure 1.4 plots showing that the likelihood is improving (misfit is 
decreasing). However, a comparison of the case 2 (pre-inversion) and cases 4 and 5 (post-
inversion) misfits indicates that the misfit improvement is small.  
 
We believe that the small improvement is due to the following factors. A) The seismic 
data is sensitive to seismic impedance that is strongly dependent on bulk/shear moduli 
and density. Thus, for our application, it is important to have accurate knowledge (in 
space and magnitude) of bulk/shear moduli and density for all layers of interest. The 
inversions described here use homogeneous bulk/shear moduli and density values that 
ignored their spatial variability. We attempted to mitigate this problem by inverting for 
the spatial distribution of these properties but our attempt was unsuccessful. B) The 
impedance is much less sensitive to the changes in fluid moduli and pressure associated 
with CO2 injection. This means that the permeability/porosity realizations could only 
change the waveform a small amount and could not compensate for the relatively large 
waveform differences associated with factor A. C) The location of the layer boundaries 
from Cenovus’ reservoir model maybe off to some extent, affecting the location of the 
impedance interfaces and thus, the waveform shape. 
 
Figures 1.10 – 1.15 show examples of the waveform comparisons at 5 locations through 
out the reservoir. Each figure compares the waveforms for 3 cases (top to bottom): a) pre-
inversion, using laboratory-measured properties, b) pre-inversion after the Vuggy moduli 
were adjusted by trial and error, and c) after the inversion had adjusted the permeabilities. 
The diagram on the right shows a map view of pattern 16 and the red circle indicates the 
waveform locations. Notice the large peak associated with Ratcliffe formation (peak 
centered around index 10). For the short waveform misfits tabulated in Table 5, we used 
all points above index 12, thereby ignoring the Ratcliffe. The trough near indexes 13 and 
14 corresponds to the top of the Marly and the peak centered near index 15 is associated 
with the top of the Vuggy unit. 
 
The waveform sections corresponding to the Marly and Vuggy show that the misfit 
improvement is largest when the adjustments were made to the Vuggy layer and the layer 
above the Ratcliffe by trial and error; this supports our argument that the waveforms 
depend strongly on the bulk/shear moduli. The differences between the middle plot and 



bottom plot are barely perceptible indicating that the change in pressure and fluid moduli 
and concomitant permeability distributions only change the waveforms a small amount. 
We believe that the poor waveform fit probably affected the accuracy of the inverted 
porosity/permeability fields shown here; we do not know how to estimate the magnitude 
of this effect at present.  
 
 
 

 
 
Figure 1.10. The left column of plots compares the observed (blue) and the predicted 
(red) seismograms for various cases. The right diagram shows the location of the 
observed seismogram indicated by the red circle. The likelihoods calculated by the 
stochastic inversion use waveform points below the large Ratcliffe peak (peak centered 
near index 10 and is assumed to end at index = 12). 
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Figure 1.11. The left column of plots compares the observed (blue) and the predicted 
(red) seismograms for various cases. The right diagram shows the location of the 
observed seismogram within pattern 16,  indicated by the red circle. The likelihoods 
calculated by the stochastic inversion use waveform points below the large Ratcliffe peak 
(peak centered near index 10 and is assumed to end at index = 12). 
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Figure 1.12. The left column of plots compares the observed (blue) and the predicted 
(red) seismograms for various cases. The right diagram shows the location of the 
observed seismogram within pattern 16,  indicated by the red circle. The likelihoods 
calculated by the stochastic inversion use waveform points below the large Ratcliffe peak 
(peak centered near index 10 and is assumed to end at index = 12). 
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Figure 1.13. The left column of plots compares the observed (blue) and the predicted 
(red) seismograms for various cases. The right diagram shows the location of the 
observed seismogram within pattern 16,  indicated by the red circle. The likelihoods 
calculated by the stochastic inversion use waveform points below the large Ratcliffe peak 
(peak centered near index 10 and is assumed to end at index = 12)..  
 
 
 

!"#$$%&$$'

!(#$$%&$$'

!)#$$%&$$'

$#$$%&$$'

)#$$%&$$'

(#$$%&$$'

"#$$%&$$'

*#$$%&$$'

+#$$%&$$'

$' +' )$' )+' ($' (+'

!"#$$%&$$'

!(#$$%&$$'

!)#$$%&$$'

$#$$%&$$'

)#$$%&$$'

(#$$%&$$'

"#$$%&$$'

*#$$%&$$'

+#$$%&$$'

$' +' )$' )+' ($' (+'

!"#$$%&$$'

!(#$$%&$$'

!)#$$%&$$'

$#$$%&$$'

)#$$%&$$'

(#$$%&$$'

"#$$%&$$'

*#$$%&$$'

+#$$%&$$'

$' +' )$' )+' ($' (+'

!"#$%&'($#)&*'+!,-./!
0$-)1#$2!3#*3$#4$)!

!"#$%&'($#)&*'+!
#$215$2!0*21,&!6!
71889!:!,-9$#!-.*($!
;-<5,&=$!

!"*)<%&'($#)&*'+!1)$!
3*&'<)!.$,*>!;-<5,&=$!?*#!
,&@$,&A**2!!



 
The left column of plots compares the observed (blue) and the predicted (red) 
seismograms for various cases. The right diagram shows the location of the observed 
seismogram within pattern 16,  indicated by the red circle. The likelihoods calculated by 
the stochastic inversion use waveform points below the large Ratcliffe peak (peak 
centered near index 10 and is assumed to end at index = 12). 
 
 

1.5 Computational Expense 
Perhaps the greatest challenge associated with the use of our stochastic inversion 
approach is its computational expense. Almost all the expense is in running the flow 
simulator that predicts reservoir conditions caused by injection/extraction operations.  
 
The inversion described here required about 5700 iterations for the Markov chains to 
reach convergence.  A total of 32,000 porosity/permeability models were evaluated by 
performing flow simulations for each. About 2500 of the models became part of the 
posterior distribution (i.e., the solution to the stochastic inverse problem), and the rest 
were discarded. Each run used 112 processors, running for about 6.8 days (processor 
time). The wall clock time needed to complete the run was about 9 days. The wall clock 
time is larger than the processing time because we used a multi-user machine where each 
run is limited to 16 hours of run time; when a run ends, it has to be re-submitted and wait 
in the queue for a few hours before execution resumes.  
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1.6 Summary and conclusions 
The seismic inversions suggest that the permeability and porosity are spatially 
heterogeneous in the Marly and Vuggy layers, as expected. The Marly permeabilities 
tend to be smaller than the Vuggy’s whereas the Marly porosities tend to be larger.  Pre 
and post inversion histograms of permeability and porosity look very similar, thereby 
suggesting that the prior constraints determine the modes of the distributions 
(permeability/porosity values that occur most frequently). The seismic data did influence 
the locations of the permeability highs and lows within the reservoir layers. 
 
A key challenge is that the seismic waveforms are more sensitive to the bulk modulus, 
shear modulus and density than they are to the permeability, porosity and CO2. This 
means that it is necessary to obtain accurate estimates of seismic moduli and density 
before using seismic data to invert for permeability and porosity. Our original plan was to 
use homogeneous bulk and shear moduli for each layer (from either well logs or 
laboratory measurements) but this plan proved inadequate because these properties 
exhibit substantial heterogeneity. When this was discovered late in the project we 
developed and tested an inversion scheme that solved for the magnitude and spatial 
distribution of the moduli; this attempt was unsuccessful by the time the project ended.  
 
We believe that this moduli inversion will work, given additional time and resources to 
continue development. 
	
  
The seismic inversions reduced the misfit between the predicted and observed waveforms 
but the misfit improvements were less than expected. We believe that the poor waveform 
fit probably affected the accuracy of the inverted porosity/permeability fields. The root 
cause of this undesirable behavior probably stems from use of homogeneous bulk and 
shear moduli for each layer (from either well logs or laboratory measurements).  

Chapter 2: Development and Application of a Markov Chain 
Scheme for Inverting the Distribution of Mineralogy and 
Reaction Rates Along a Flow Path in the Weyburn Reservoir 
	
  

2.1 Introduction 
The geochemistry component of the parameter inversion effort for the Weyburn reservoir 
assessment involves an attempt to estimate reaction rates associated with reservoir 
minerals deemed likely to undergo dissolution in response to the addition of CO2.  In 
addition to calcite and dolomite, these include silicate minerals which are unstable in 
acidic brine, such as feldspars, as well as anhydrite which may dissolve or precipitate in 
response to changing concentrations of calcium. 

Inversion of “lumped” reaction rates entails both intrinsic, pH-dependent dissolution rates 
normalized per unit surface area and the associated mineral surface area per unit volume: 



( )1−Ω= Ak
dt
dM

        (Eq.-2.1) 

where M is the mineral mass, k the intrinsic rate constant (adjusted for temperature), A 
the mineral surface area, and,  

spK
IAP

=Ω           (Eq.-2.2) 

where the saturation ratio, Ω, of a particular phase is given by the ion activity, IAP,  
product of the constituent reactant and product species in the mineral phase’s dissolution 
equationand the solubility product Ksp.  One approach to the inversion problem is to 
assume literature-derived values for the intrinsic dissolution rates and invert the mineral 
specific surface areas (and hence mineral mass or volume, assuming a relationship 
between volume and surface area) which reproduce observed changes in brine chemistry 
using a forward reactive transport model.  An inversion attempt based on this approach 
must either (1) yield forward model results that are consistent with both observed data 
and other, independently-constrained model parameters, or (2) indicate that flawed 
assumptions exist, including, for example, the values of the intrinsic dissolution rates, and 
thus warrant modification of the inversion problem definition.  This approach quantifies 
the reactive mineral assemblage members present at the start of the problem.  
Nonetheless, inversion to even a reduced set of parameters is highly problematic because 
of a number of key issues and uncertainties: 

• In contrast to the seismic data inversion, the geochemical inversion entails 
multiple input parameters (e.g., lumped reaction rates for each of the proposed 
mineral assemblage members) and output values (e.g., pH, concentrations of 
indicators cations such as calcium and magnesium).  The degree to which 
different output values must be weighted in compiling an overall goodness-of-fit 
or likelihood value, is not known a priori. 

• In contrast to the high degree of spatial resolution offered by the seismic data for 
inverting the permeability field in three dimensions, brine geochemical 
parameters are available from a limited number of wells (e.g., only four wells 
with adequate data quality are located within Pattern 16).  Moreover, samples 
drawn from a given well represent a spatial average of conditions across some 
(unknown) portion of the reservoir where the well intersects relatively permeable 
materials.  The implied limit to associating water quality with a specific location 
within the reservoir is particularly true of horizontal wells. 

• Blending of injected water from sources outside of the reservoir obfuscates the 
definition of ambient background brine composition, rendering initial conditions 
and boundary conditions inherently ill-defined. 



• Geochemical models used to simulate water-rock interactions depend on 
thermodynamic data associated with putative reactive mineral phases to calculate 
saturation indices.  These thermodynamic data, their temperature corrections, and 
the stoichiometry of individual phases included in the model are idealizations that 
may not be accurate. 

• To invert reaction rates based on well data, a flow pathway connected the well to 
a CO2-injection-induced geochemical perturbation must be inferred or assumed.  
Inconsistencies between the modeled flow pathway and reality will introduce 
reactive transport modeling errors associated with residence time, dispersion, and 
other factors. 

The results of the parameter inversion are discussed in the context of these constraints, 
below. 

2.2 Reservoir Geochemistry Model 
The Vuggy and Marly units – the permeable constituents of the Weyburn-Midale 
reservoir – consist primarily of dolomite and calcite, with lesser abundances of 
aluminosilicate minerals such as feldspars, illite, and kaolinite.  To posit a plausible 
geochemical model of the reservoir with which to inform the geochemical parameter 
inversion calculations, the brine water quality data set, including baseline data as well as 
data collected during subsequent monitoring events following the commencement of CO2 
injection, must be reconciled with the inferred mineral abundances and presumed 
reactivities of key mineral phases. 

Monitoring data were collected beginning in August 2000 (Baseline sampling event).  
The Baseline data set as well as data from subsequent sampling events through 
Monitoring 11 (September 2004) were speciated using the PHREEQC geochemical 
model (Parkhurst and Appelo, 1999) to assess the possible impact of CO2 injection across 
the reservoir.  Initial speciation of 328 water complete water samples collected from 
multiple wells during these sampling events indicates that the majority of the samples are 
thermodynamically highly supersaturated with respect to calcite (Figure 2.1), based on 
laboratory-measured pH samples.  It is likely that these samples reflect some off-gassing 
of CO2 under ambient atmospheric temperature and pressure during sample collection, 
recovery, handling, and analysis, resulting in a pH rise and calcite supersaturation which 
are not indicative of in situ conditions (Emberley et al., 2005).  This explanation is 
supported by comparing measured pH values with a set of subsequent of downhole pH 
measurements collected during some of the early monitoring events, which reveals 
laboratory-measured pH values that are appreciably higher than those obtained via 
downhole probe at pH values less than 7.0 (Figure 2.2), presumably those samples 
characterized by the highest CO2 partial pressures and hence the most likely to be 
affected by off-gassing. 

To compensate for the loss of CO2, and hence the presumably skewed pH values across 
the 328 samples, PHREEQC was used to acidify individual samples. At a fixed alkalinity, 
this implies the addition of CO2 to the solution composition.  To constraint this 



calculation, log saturation indices for calcite were reduced to +0.3 in a majority of the 
water samples which were initially identified as being highly supersaturated.  The pH in a 
small subset of samples with calcite log saturation indices between +0.3 and +0.5 was not 
adjusted because of difficulty reconciling total alkalinity and bicarbonate alkalinity.  The 
effect of this adjustment on computed pH versus downhole pH and on carbonate 
saturation indices is shown on Figures 2.3 and 2.4, respectively.  This adjusted water 
quality data set comprises the brine chemistry data, including concentrations of dissolved 
CO2, with which reactive transport model results may be compared and hence assessed, 
as discussed below. 

 

 
Figure 2.1.  Calcite and disordered dolomite saturation indices in brine samples collected during monitoring 
events. 
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Figure 2.2.  Laboratory-measured pH versus downhole pH. 
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Figure 2.3.  Calcite and disordered dolomite saturation indices in brine samples, corrected by simulated pH 
decrease/CO2 addition. 
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Figure 2.4.  Modeled pH (pH-corrected samples) versus downhole pH.  Dashed line indicates ideal match. 

 

2.3 Geochemistry Inversion Using the Markov Chain Monte Carlo 
Algorithm: Development and Testing Using Synthetic data 
The Markov Chain Monte Carlo (MCMC) method utilizes a likelihood function to 
determine whether or not a set of model parameter values proposed by a Markov chain 
Monte Carlo simulation will be accepted and serve as a basis for a subsequent proposal.  
The likelihood function for a particular model output (e.g., Ca2+ or Mg2+ concentration) is 
defined by: 
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where L(x) is a measure of the degree of fit between the model predictions, assuming 
model x, and the observed data, k a normalizing constant, N the number of data points, is 
d(x)pred,i is the predicted data for a given model x, is d0,i the vector of observed 
measurements, σi the estimated data uncertainty, and n ≥ 1.  Because the geochemical 
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inversion involves multiple outputs, different likelihood functions must be calculated for 
each, via Eq.-2.3, and blended as a weighted sum. 

To demonstrate the MCMC approach for inverting the initial distributions of mineral 
mass (and hence, by extension, surface area and lumped reaction rates) in the context of 
reactive transport, a synthetic test problem was created, based on the Weyburn reservoir 
mineralogy and brine chemistry, as a means for assessing the capability of the algorithm 
to find known initial conditions.  The test problem was based on the following set of 
assumptions, as applied to a forward reactive transport model: 

1. To reduce the computational burden, a 1-D column 20 m in length is divided 
uniformly into 20 cells. 

2. The uniform permeability of the column is 100 mD, with a porosity of 0.15. 
3. The initial brine chemistry in the column is based on the average background 

brine composition, as described in Section 2.2. 
4. Single phase, steady-state flow of CO2-impacted brine occurs through column.  

This is accomplished by specifying a fixed fluid pressure gradient across the 
column of 0.01 bar/m.  The influent CO2-impacted brine composition is based on 
equilibration of the ambient background brine composition with CO2 at a partial 
pressure of 100 bars. 

5. For advective-dispersive solute transport, the column dispersivity (characteristic 
length) is set equal to 1 m. 

6. A set of reactants – calcite, dolomite (disordered), anhydrite, and K-feldspar 
(representing a silicate phase most likely to undergo dissolution in response to a 
pH decrease) - is distributed long the column, each with fixed intrinsic dissolution 
rates.  Overall reaction rates depend also on mineral surface area (Eq.-2.1), which 
is assumed to be a function of mineral mass, as well as a mixing efficiency factor 
that is assumed to depend on fracture porosity, as described below. 

Intrinsic mineral dissolution rates are assumed to depend on temperature and pH:  
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where R is the universal gas constant, T the absolute temperature, {H+} the activity of the 
hydrogen ion, n an exponential factor, and k25

nu and k25
H the neutral and acid rate 

constants at 25°C and Ea
nu and Ea

H the neutral and acid activation energies, respectively.  
Using data summarized by Palandri and Kharaka (2004) and an assumed average pH of 
5.5 across the column during the progression of the CO2-rich brine, the resulting intrinsic 
rate constants for calcite, dolomite, and K-feldpar are 3.1 x 10-6, 1.2 x 10-6, and 4.7 x 10-

11 mol m-2 sec-1, respectively.  For anhydrite, an intrinsic dissolution rate one order-of-



magnitude faster than the carbonates, or 2 x 10-5 mol m-2 sec-1, is assumed.  Dissolution 
reactions for both dolomite and K-feldspar are constrained to be irreversible. 

For all four minerals, assuming a fixed intrinsic dissolution rate based on an average pH 
ignores the pH dependence implied by Eq.2-4.  This assumption was employed in the 
construction of the synthetic test problem for the express purpose of computational 
convenience, as the relatively high intrinsic dissolution rates implied near the injection 
well (i.e., a low pH/high H+ activity zone) would require small time steps and thus 
significantly increased computation time.  The effects of modeling Eq.-2.4 directly versus 
employing fixed approximations is explored in Section 2.4, below. 

To convert between mineral volume and specific surface in the reactive transport model, 
it is assumed that the mineral grain geometry can be approximated by spheres.  Based on 
unpublished experiments involving core samples from the Weyburn reservoir (S. Carroll 
et al., LLNL), specific surface areas for calcite and dolomite are assumed to be on the 
order of approximately 0.03 m2/gm, implying spheres with effective diameters of 100 µm.  
For K-feldspar, which is distributed much more sparsely than the other mineral phases, 
an effective particle diameter of approximately 3 µm is assumed, based on the analyses of 
Weyburn lithology samples conducted by Durocher et al. (2005). 

Finally, for fluid flow and transport through the one-dimensional column, the rate law 
implied by Eq.-2.1 only applies for the case of ideal mixing when all of a mineral’s mass 
within a given volume element is exposed to reaction with the influent brine.  In the 
presence of preferential flow conduits, particularly in instances in which flow through 
fractures predominates, this mixing assumption will not hold.  As such, a multiplier, Φ, is 
applied to the right-hand-side of Eq.-2.1 to account for reduced water-rock contact; i.e., 
Φ << 1.  A value of 5 x 10-5 was assigned to Φ based on the in situ fracture porosity 
estimated by Cardona et al. (2002). 

Running the inverse problem entailed conducting multiple forward reactive transport 
simulations for the 1-D column, using the reactive transport modeling capability of 
PHREEQC with the tacit assumption of single-phase flow.  Individual trial simulations, 
or proposals, were based on a postulated distribution of mineral assemblages placed 
along the column, spatially correlated as a single Gaussian field using a mineral index 
number function.  This ad hoc function, consisting of a series of superimposed Gaussian 
distribution functions about mean and standard deviation values set between 0 and 1, 
allows mineral assemblages (e.g., silicate mixture, calcite- or dolomite-rich carbonates, 
anhydrite) to be “extracted” according to some particular scalar value between 0 and 1 
(Figure 2.5).  Given the initial masses of each mineral phase in each volume element, 
surface areas and hence overall reaction rates can then be calculated, dynamically, as the 
simulation progresses. 

An initial mineral assemblage distribution was created using a spatially correlated 
mineral index function along the column to serve as a synthetic truth data set to test the 
MCMC inversion approach (Figure 2.6).  Subsequent proposals were then constructed 
using different mineral index number distributions placed along the column.  A 
likelihood function was calculated for four measured outputs which are potentially 



indicative of mineral dissolution: pH, Ca2+, Mg2+, and dissolved Si.  The likelihood 
function values for all four parameters, weighted equally, were summed, with the 
respective values for σ (Eq.-2.3) adjusted to produce a reasonable dynamic range of 
composite values.  Proposals were accepted when the ratio of the composite likelihood 
value to that of the prior proposal was greater than that of a random number selected from 
a uniform distribution between 0 and 1; this is the well known Metropolis-Hastings 
acceptance criteria.  After a proposal was accepted, its mineral index distribution served 
as the basis for a new distribution, implemented by replacing a contiguous section of the 
column, up to 0.25 of its length, with new (spatially-correlated) mineral index numbers.  
A python script was used to generate proposals, write PHREEQC input files, run the 
reactive transport model, and read the output file, and score the proposals using the 
likelihood function. 

The distribution of composite likelihood values, computed using the four measured 
outputs from each of the 20 volume elements after one pore volume of CO2-enriched 
brine has passed through the column, versus the proposal number (i.e.,  MCMC iteration 
number) is shown on Figure 2.7. This case simulates an ideal (and unrealistic) field 
scenario where there is one sampling well in each of the cells along the 1D flow-path.  
The behavior of the MCMC algorithm in this example is one characterized by occasional 
peak values, representing the best fits to the synthetic data set, followed by descents into 
poorer solutions as the parameter space (i.e., mineral index function values) is explored.  
Among this set of proposals, the mineral assemblage utilized in the best likelihood case 
(Figure 2.8) provides a good match to the synthetic truth mineralogy (Figure 2.6) and, by 
association, the synthetic truth brine chemistry (Figure 2.9). 

A second MCMC demonstration involved an attempt to invert to the same synthetic truth 
data set, but using only the data corresponding to the last volume element in the column, 
i.e., the effluent port in the 1D column.  This simulates the typical field situation where 
water samples are collected within a flow path connecting the CO2 injector and the 
sampling well.  This inversion has much less data with which to chose among the 
proposals, thereby producing results that are inherently less unique, and hence more 
difficult to assess, because the composition of the brine arriving at the end of the column 
encompasses all of the time- and space-integrated reactions which have occurred 
upgradient.  The distribution of composite likelihood values for the four measured 
outputs from the last volume element after one pore volume versus the sequence of 
proposals is shown on Figure 2.10.  In comparison to the 20-volume-element inversion 
(Figure 2.7), the behavior of the MCMC algorithm is much more erratic for this 
application.  Nonetheless, relatively good fits to the synthetic truth brine chemistry can be 
distinguished in the set of accepted proposals.  For example, averages of inverted mineral 
index function values along the column taken from all proposals with composite 
likelihood function scores exceeding 1.5 (Figure 2.11) yields a coarse replica of the 
synthetic truth mineralogy distribution, with dolomite replacing calcite in the 
downgradient (right) portion of the column, along with an appearance of anhydrite.  This 
demonstration of some success of the MCMC approach in this example is important for 
establishing applicability to field data sets with low spatial resolution. 

 



 

Figure 2.5.  Mineral solid volume fractions as a function of the mineral index number, as defined via Eq. 
(4). 
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Figure 2.6.  “Synthetic truth” initial distribution of reactive mineral phases along the column.  At time t = 0, 
CO2-enriched brine enters the column at the left end. 
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Figure 2.7.  Behavior of the composite likelihood function as a function of proposal number when the 
synthetic data for all 20 cells are used in the inversion.  Proposal rejection rate is approximately 36%. 
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Figure 2.8.  Initial mineralogy distribution implied by Proposal #2,134, representing the highest likelihood 
function score among the 2,500 proposals generated for the full 20-cell-based inversion. 

 

 

Figure 2.9.  Comparison of model output and synthetic truth data for Ca, Mg, and pH along the entire 
column length (20 cells). 
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Figure 2.10.  Behavior of the composite likelihood function as a function of proposal number when only the 
synthetic data for the last column cell are used in the inversion.  Proposal rejection rate is approximately 
54%. 
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Figure 2.11.  Inverted mineralogy distribution implied by the average mineral index values from all 
proposals with likelihood function scores above 1.5 – or approximately the top 10% of all accepted 
proposals – generated by inverting from the synthetic data for the last volume element in the column. 

 

2.4 Inversions using Brine Chemistry Data from Pattern 16 
Pattern 16 was selected as the target for the MCMC inversion of seismic data to yield 
putative distributions of permeability.  For the geochemistry inversion, complete, 
corrected brine chemistry data (see Section 2.2) are available from several wells – 
primarily oil producers – within or near the borders of Patterns 16 (Figure 2.12).  Of these, 
two wells, D08-12-06-14 and 02-12-06-14, exhibit brine chemistry changes during the 
first 1,000 days of CO2 injection, including decreased pH and increases in the 
concentrations of Ca2+, Mg2+, dissolved Si, and total dissolved CO2, that are consistent 
with increased carbonic acid content.  Inversion of the D08-12-06-14 data was attempted, 
using the single-volume-element version of the 1-D test problem described in Section 2.3 
as a template, to help constrain possible mineral reaction rates along a possible flow path 
from the Pattern 16 injector.  Three modifications to the test problem model configuration 
were required: 

1. The 1-D flow tube, divided into 40 equal volume elements, was extended to a 
length of 400 m to represent the distance scale of the shortest path between the 
CO2 injector and well D08-12-06-14.  This represents a significant change with 
respect to the original plan of performing a 3-D inversion in order to reduce the 
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computational expense of the approach, as discussed in the Introduction chapter 
of this final report. 

2. The column permeability (120 mD), porosity (0.1), and pressure gradient (0.015 
bar/m) were set to values which permit arrival of a solute front, subject to 
dispersion, at the well location within a 1,000-day time frame, as suggested by 
monitoring data. 

3. The partial pressure of CO2 in equilibrium with the brine entering the column at 
the injection well location was set randomly, per proposal, between 30 and 70 
bars, as full CO2-saturated brine partial pressures are not present in the data set. 

4. The dispersivity (characteristic length) of the column varied randomly between 10 
m and 40 m, per proposal, since the flow rate and hence the position of the solute 
front is unknown (unlike the test problem). 

5. The intrinsic mineral dissolution rates were modeled using two different 
approaches, yielding two separate inversions.  The first approach entailed 
employing fixed intrinsic dissolution rates at pH 5.5, as employed for the 
synthetic problem presented in Section 2.3.  The second approach entailed 
directly solving Eq.-2.4 dynamically (i.e., in space and time) as part of each 
proposal’s forward model. 

The forward reactive transport models were all run out to approximately 1,280 days of 
injection, representing the point at which the solute front migrated 90% of the way 
through the column. 

For the fixed intrinsic dissolution rate inversion, a total of 2,500 proposals were tested; 
the rejection rate was approximately 32%.  The range of mineral index functions 
associated with the top 5% of accepted proposals at different locations along the column 
(i.e., proposals with the best likelihoods) are summarized on Figure 2.13, while the 
inverted distribution of mineralogy from the best likelihood proposal is shown on Figure 
2.14.  Both plots suggest, as expected, a reactive mineralogy dominated by calcite and 
dolomite, with a silicate mineral (K-feldspar) also present.  The highest scoring 
mineralogy proposals appear to all exclude anhydrite dissolution or precipitation as a 
major contributor to the observed brine chemistry. 

For the variable intrinsic dissolution rate inversion, 300 proposals were generated as a 
consequence of appreciably increased computation time.  The rejection rate for this 
inversion was also approximately 32%.  The inverted distribution of mineralogy 
associated with the best likelihood proposal from this inversion is illustrated on Figure 
2.16.  This distribution is similar in character to that of the fixed intrinsic dissolution rate 
inversion (i.e., predominantly dolomite dissolution at the upgradient portion of the 
column, largely replaced by calcite dissolution toward the downgradient end), indicated a 
relative lack of sensitivity of the inversion to the differences in the mineral dissolution 
kinetics model with regard to pH dependence.  It is also worth noting that both inversions 
employed different seed values for random number generation and yet proceeded to 
generally convergence toward the same overall mineralogical trend. 



 

 

Figure 2.12.  Schematic map of the Pattern 16 vicinity, showing approximate well locations within the 
pattern (blue circles) as well as outside (green triangles); depicted well locations indicate well head 
locations and do not take into consideration subsurface geometry. Data from well D08-12-06-14 were 
chosen to inform the inversion because (1) brine chemistry changes consistent with the introduction of CO2, 
and (2) proximity to the injector. 
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of time are shown on Figures 2.16 through 2.20 for pH, Ca2+, Mg2+, dissolved Si, and 
total dissolved CO2, respectively.  With the exception of dissolved Si, for which the 
model is incapable of explaining the apparent concentration increase with time, 
agreement with the monitoring data is reasonably good.  Particularly noteworthy is the 
inversion results for dissolved CO2 (Fig. 2.20).  Note that total dissolved CO2 values were 
not used to calculate the likelihood values that guided the MCMC search.  The inverted 
result agrees well with the trend in the observations thereby suggesting that the inversion 
is producing internally consistent results. 

 

 

Figure 2.13.  Distribution of mineral index numbers for proposals with likelihood function scores above 
1.65 (approximately the top 5% of accepted proposals) at different locations along the flow path, inverted 
from data from Well D08-12-06-14 assuming fixed average intrinsic dissolution rates at pH 5.5.  The 
distributions generally indicate a shift from a reactive dolomite near the influent portion of the flow path to 
a reactive calcite closer to the effluent end (400 m). 
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Figure 2.14.  Mineralogy distribution along the flow path implied by the best likelihood proposal generated 
by inverting from the data from Well D08-12-06-14 assuming fixed average intrinsic dissolution rates at 
pH 5.5.  Flow of CO2-enriched brine is from left to right. Because a silicate-rich mineralogy is not common 
at x = 200 m or x = 300 m among the top 5% of the proposals (refer to Figure 2.13), it is likely that the 
carbonate-poor region predicted to exist between 250 m and 300 m is a low-consequence artifact. 

 

 

0.0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1.0	
  

50	
   100	
   150	
   200	
   250	
   300	
   350	
   400	
  

M
in
er
al
	
  S
ol
id
	
  V
ol
um

e	
  
Fr
ac
1o

n	
  

Distance	
  (m)	
  

K_feldspar	
  

Anhydrite	
  

Dolomite	
  

Calcite	
  



 

Figure 2.15.  Mineralogy distribution along the flow path implied by the best likelihood proposal generated 
by inverting from the data from Well D08-12-06-14, assuming pH dependence through time and position 
along column in accordance with Eq.-2.4. 
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Figure 2.16.  Comparison of measured pH, corrected by the procedure discussed in Section 2.2, as a 
function of time in wells D08-12-06-14 and O2-12-06-14 and modeled pH based on the best likelihood 
proposal generated by the MCMC inversions using different mineral dissolution kinetic models (i.e., fixed 
versus variable intrinsic dissolution kinetics).  The inversion values at time t = 0 represents the initial 
condition prior to the introduction of CO2-rich brine into the flow path. 
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Figure 2.17.  Comparison of measured Ca2+ as a function of time in wells D08-12-06-14 and O2-12-06-14 
and modeled pH based on the best likelihood proposal generated by the MCMC inversions using different 
mineral dissolution kinetic models (i.e., fixed versus variable intrinsic dissolution kinetics).  The inversion 
values at time t = 0 represents the initial condition prior to the introduction of CO2-rich brine into the flow 
path. 
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Figure 2.18.  Comparison of measured Mg2+ as a function of time in wells D08-12-06-14 and O2-12-06-14 
and modeled pH based on the best likelihood proposal generated by the MCMC inversions using different 
mineral dissolution kinetic models (i.e., fixed versus variable intrinsic dissolution kinetics).  The inversion 
values at time t = 0 represents the initial condition prior to the introduction of CO2-rich brine into the flow 
path. 
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Figure 2.19.  Comparison of measured dissolved Si as a function of time in wells D08-12-06-14 and O2-12-
06-14 and modeled pH based on the best likelihood proposal generated by the MCMC inversions using 
different mineral dissolution kinetic models (i.e., fixed versus variable intrinsic dissolution kinetics).  The 
inversion values at time t = 0 represents the initial condition prior to the introduction of CO2-rich brine into 
the flow path. 
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Figure 2.20.  Comparison of measured total dissolved CO2 as a function of time in wells D08-12-06-14 and 
O2-12-06-14 and modeled pH based on the best likelihood proposal generated by the MCMC inversions 
using different mineral dissolution kinetic models (i.e., fixed versus variable intrinsic dissolution kinetics).  
The inversion value at time t = 0 represents the initial condition prior to the introduction of CO2-rich brine 
into the flow path.  Note that total dissolved CO2 was not included among the metrics used to compute 
composite likelihood functions used to rank proposals. 

 

2.5 Conclusions 
Constrained by the computational burden imposed by a full 3-D model and limited spatial 
resolution inherent in the monitoring data, the MCMC algorithm was applied to a 
simplified, 1-D idealization of a reactive transport in the Pattern 16 area to (1) 
demonstrate the applicability of the methodology, and (2) provide some degree of 
constraint on mineral dissolution rates.  It is important to recognize that the inversion 
approach as employed herein is highly idealized, not only in assuming 1-D flow but also 
in assuming that fluid flow is single-phase.  While the single-phase model can capture 
salient features of the water-rock interactions by assuming the influx of a CO2-enriched 
brine, it neglects the multiphase physics of the flow system.  Nonetheless, inversion of 
the inherently low-resolution Pattern 16 geochemistry data indicates a reactive flow path 
between the injection well and well D08-12-06-14 that is characterized by interactions 
with carbonate minerals, predominantly dolomite-rich near the injection well and 

0.0001	
  

0.001	
  

0.01	
  

0.1	
  

1	
  

0	
   500	
   1000	
   1500	
  

Co
nc
	
  (m

ol
al
)	
  

Time	
  (days)	
  

D08-­‐12-­‐06-­‐14	
  

02-­‐12-­‐06-­‐14	
  

Inversion	
  (Mixed)	
  

Inversion	
  (variable)	
  



progressing to more calcite-rich further downgradient.  This observation is consistent, for 
example, with the initial interaction of the CO2-rich brine with the dolomite-rich Marly in 
contact with the injection well, followed by subsequent interaction with the calcite-rich 
Vuggy along the flow path (Figure 2.21).  With the exception of dissolved Si, the 
agreement between the modeled and observed geochemical indicators implies a 
reasonable degree of self-consistency between the intrinsic reaction rates calculated via 
Eq.-2.4 and the Palandri and Kharaka (2004) data set, the fracture porosity, the mineral 
specific surfaces, and the assumed cubic relationship between surface area and mineral 
mass.  The inversions do not appear to be sensitive to the pH dependence of the 
dissolution kinetics implied by Eq.-2.4. 

In summary, the MCMC approach for inversion of reactive transport for the geochemical 
conditions specific to the Weyburn-Midale reservoir appears capable of yielding 
plausible results that are consistent with data and constrained by independent parameter 
estimates.  Application is tempered, however, by computational constraints, a complex 
operating history, and – significantly – by limited spatial resolution associated with brine 
samples.  Therefore, this methodology is perhaps most suited as a means for 
independently estimating lumped dissolution rates at the field scale for comparison with 
laboratory data. 

 

 

Figure 2.21. A schematic model of fluid flow between the CO2 injector and the monitoring well (not to 
scale).  While supercritical CO2 will migrate upwards as a result of buoyancy, brine will also be displaced 
in response to the applied pressure gradient.  Dissolution of dolomite occurs at the point of injection in the 
Marly, followed by subsequent reaction with calcite where the flow path crosses into the more permeable 
Vuggy. 

 



Summary and Conclusions 
The goals of this project were to develop and use stochastic inversion algorithms that 
would integrate seismic reflection and aqueous chemistry measurements made during 
Phase 1A. This final report and previous deliverables describe the inversion approaches 
we developed and the inversion results obtained. The seismic data was used to 
reconstruct the reservoir’s permeability and porosity in three dimensions. The aqueous 
chemistry data were used to invert for mineral volume fractions along 1D flow tubes in 
the reservoir. 
 
A key challenge associated with the stochastic inversion using seismic data and chemistry 
is its computational expense. We used large amount of project resources to mitigate this 
problem as much as possible. The seismic runs required about 9 days and used 112 
compute cores. The reactive transport runs would have taken hundreds of days if we had 
continued with our original plan of performing full 3D calculations. Instead, we 
simplified the problem to reactive transport along 1D tubes and assumed that a single 
liquid phase was present in the pore space. These simplifications reduced the run times to 
about 2.0 days. 
 
A second challenge is that the seismic waveforms are more sensitive to the bulk modulus, 
shear modulus and density than they are to the permeability, porosity and CO2. This 
means that it is necessary to obtain accurate estimates of seismic moduli and density 
before using seismic data to invert for permeability and porosity. Our original plan was to 
use homogeneous bulk and shear moduli for each layer (from either well logs or 
laboratory measurements) but this plan proved inadequate because these properties 
exhibit substantial heterogeneity. 
 
The seismic inversions reduced the misfit between the predicted and observed waveforms 
but the misfit improvements were less than expected. We believe that the root cause of 
this behavior stems from use of homogeneous bulk and shear moduli for each layer. We 
originally believed that homogeneous values would be good enough, but discovered late 
in the project that our assumption was incorrect and quickly developed a stochastic 
inversion scheme to solve for bulk modulus, shear modulus and density, using the 
baseline 1999 reflection survey data (pre- CO2 injection). By the time the project ended, 
this new inversion approach was unable to improve the misfit. We believe that this 
moduli inversion will work, given additional time and resources to continue development. 
 
The seismic inversions described in this report used homogeneous moduli values that 
were adjusted by trial and error to reduce the waveform misfit as much as possible. The 
waveform misfits improved after this was done but were still poor. This issue probably 
affected the accuracy of the inverted porosity/permeability fields shown here; the 
magnitude of this effect has not been quantified. 
 
The seismic inversions suggest that the permeability and porosity are spatially 
heterogeneous in the Marly and Vuggy layers, as expected. The Marly permeabilities 
tend to be smaller than the Vuggy’s whereas the Marly porosities tend to be larger.  Pre 
and post inversion histograms of permeability and porosity look very similar, thereby 



suggesting that the prior constraints determine the modes of the distributions 
(permeability/porosity values that occur most frequently) in the inversions. The seismic 
data did influence the locations of the permeability highs and lows within each layer. 
 
The aqueous chemistry inversions indicate that the reservoir’s reactive mineralogy is 
dominated by calcite and dolomite, as expected. Inversion of the inherently low-
resolution geochemistry data indicates a reactive flow path between the injection well and 
well D08-12-06-14 that is characterized by interactions with carbonate minerals, 
predominantly dolomite-rich rock near the injection well and progressing to more calcite-
rich further down-gradient.  This observation is consistent, for example, with the initial 
interaction of the CO2-rich brine with the dolomite-rich Marly in contact with the 
injection well, followed by subsequent interaction with the calcite-rich Vuggy along the 
flow path. The inversions also suggest that mineral volume fractions are spatially 
heterogeneous, ranging in value from 0.07 to 0.7 (calcite) and 0.02 to 0.75 (dolomite). 
The inversions suggest that anhydrite dissolution or precipitation is not a major 
contributor to the observed brine chemistry. Comparison of the predicted and observed 
brine chemistries indicates that pH, Ca2+, Mg2+ and dissolved CO2 agree reasonably well; 
dissolved Si does not.  
 

Implications for Best Practices Manual 
The seismic waveforms are more sensitive to the bulk modulus, shear modulus and 
density than they are to permeability and porosity. This means that it is necessary to 
obtain good estimates of seismic moduli and density before using seismic data to invert 
for permeability and porosity. 
 
Synthetic data tests (Ramirez et al, 2010) suggest that it maybe possible to estimate 
permeability in reservoir regions that do not contain CO2 but where significant pressure 
changes are caused by CO2 injection. This possibility exists because bulk and shear 
moduli change with reservoir pressure. 
 
Given currently available reactive transport simulators, it is unfeasible to use MCMC 
approach to invert for mineral volume fractions and rate constants using the 3D volumes 
we considered. 1D inversions are currently feasible and can yield plausible results that 
are consistent with data and constrained by independent parameter estimates. Application 
is tempered, however, by computational constraints, a complex operating history, and – 
significantly – by limited spatial resolution associated with brine samples.  Therefore, this 
methodology is perhaps most suited as a means for independently estimating lumped 
dissolution rates at the field scale for comparison with laboratory data. 
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Appendix 
	
  

 
Figure A1. Histograms of porosity (left) and permeability (right) in Cenovus’ model, 
calibrated against production and injection history. 
 

 
Figure A.2 shows the correlation between porosity and permeability expressed in 
Cenovus calibrated model. 
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