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Radiation-induced mechanical property changes in filled rubber
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Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and 
molecular weight distribution between network junctions. Here we report mechanical response measurements when the material is 
exposed to radiation while being under finite non-zero strain. We observe interesting hysteretic behavior and material softening 
representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic modulus depends upon 
the radiation dosage, strain level, and strain-cycling history of the material. Using the framework of Tobolsky’s two-stage independent 
network theory we develop a model that can quantitatively interpret the observed elastic modulus and its radiation and strain 
dependence.
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I. INTRODUCTION

Filled and cross-linked elastomeric rubber and foam are 
versatile network materials with a multitude of applications 
ranging from artificial organs and biomedical devices to cushions, 
coatings, adhesives, interconnects, and seismic-isolation-,
thermal-, and electrical barriers [1-3]. However, upon long-term 
or repeated exposure to external factors like mechanical stress, 
temperature fluctuations, or radiation, which, for instance, is often 
used to sterilize biomedical devices [4] such materials can 
undergo chemical changes. The most profound aging signatures 
include [5-7]: (1) creation of new cross-links; (2) breaking 
(scission) of covalent bonds; and (3) modification of the polymer-
filler interface. All these can directly affect the molecular weight 
distribution (MWD) of the polymer between network junctions or 
physical restraints, thereby altering and degrading many of the 
useful properties it was originally designed for.

In a recent paper [8] we examined the effect of radiation on the 
MWD of a filled networked elastomer. The progressive exposure 
to radiation was found to lead to a monotonic increase in the net 
cross-link density. Correspondingly, the MWD peak narrows and 
shifts to the left (i.e. smaller chain-lengths). We showed that this 
behavior is consistent with a model in which the rate of chain 
modification (i.e. either new cross-link formation or chain 
scissioning followed by cross-linking) is proportional to the 
radiation dosage. We also carried out limited measurements of the 
permanent set when the samples were irradiated under a finite 
strain, and showed that the data can be quantitatively interpreted 
in terms of Tobolsky’s two-stage independent network model [9, 
10].   

One important aspect that was not analyzed in the previous
work was the stress-strain response of samples irradiated under a 
finite strain. Assuming that the cross-link density is affected by 
radiation only and not by strain one expects to see the following 
behavior (see section IV): (1) the elastic modulus should increase 
as a function of the radiation dosage; and (2) the elastic modulus 
should increase as a function of the strain at which the rubber 
material is being irradiated. However, from very recent 
mechanical measurements we see that although trend (1) 
generally holds true in all cases, trend (2) has a strong dependence 
on the stress-strain history of the sample, and can even be 
opposite to the above expected behavior, especially during the 
early stress-strain cycles and small radiation dosages. In this brief
report we discuss these recent measurements, and develop a 
model for quantitative interpretation of the observed modulus as a 

function of radiation dosage and strain level.

II. MECHANICAL MEASUREMENTS

As in the previous work [8], all experiments were performed on 
the commercial silicone elastomer TR-55 from Dow Corning. 
Thin rectangular samples were stretched to specific strain levels 
and exposed to controlled dosages of -radiation from a Co-60
source (1.4MeV, ~ 0.1 Mrad/hour dose rate) in a non-reactive 
nitrogen atmosphere. Seven different strain levels were studied, 
corresponding to stretch ratios 1 = 1.20, 1.47, 1.67, 1.84, 2.00, 
2.33, 2.67. Following exposure to controlled duration (and 
therefore dosages) of radiation, each sample was removed from 
the irradiation chamber, released from the 1-strain, and allowed 
to relax at ambient conditions for 24 hours. The relaxed samples 
were then subjected to measurement of the new equilibrium 
length, called the recovered length s. After several weeks of 
further equilibration, stress-strain analysis was carried out for 5 
load/unload cycles at strains of up to 50% elongation. The stress-
strain analysis was performed on rectangular specimens (width ~ 
3 mm and thickness 0.6-0.9 mm) using a Instron 5565 dual-
column electromechanical test system with an initial grip 
separation of ~ 20 mm and a stretching rate of 20 mm/min. 

Figure 1. Recovered length (s) as a function of radiation dosage for 
different values of tensile stretch ratios (1) at which the material is 
subjected to radiation. The symbols denote experimental measurements 
while the lines (solid, dashed, and dotted) are theoretical results using 1-
independent feff (see section III). The 1 values are indicated by each curve.
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Fig. 1 plots the measured recovered length (s) as a function of 
radiation dosage D for the different values of 1. Error bars 
indicate sample-to-sample variation in cases where multi-sample 
measurements were performed. A subset of these results was 
already reported in Ref. [8]. These results can be quantitatively 
interpreted using Tobolsky’s 2-stage independent network model
[9, 10], as discussed in section III below.

Fig. 2 plots a typical stress-strain response of such samples 
(only the loading curves are shown and the unloading curves 
hidden for clarity). The main feature is that there is strong 
dependence on the cycle number. In particular, in cycle 1 the 
response is much steeper, corresponding to a significantly higher 
elastic modulus, while the response becomes progressively softer 
in subsequent cycles, but with a much smaller drop-off than 
between cycle 1 and cycle 2. This type of softening has long been 
known to occur in filled rubber materials and is generally known 
as the Mullins effect [11]. At the end of cycle 1 a small permanent 
stretch (~ 2%) is also incurred, which is smaller than typical 
permanent sets reported in Fig. 1. It is important to note here that 
the recovered length in Fig. 1 was obtained prior to subjecting the 
samples to the stress-strain cycles as in Fig. 2.

Figure 2. Typical stress-strain response of a radiation-exposed TR-55 
sample through the first five cycles. The data shown corresponds to a 
sample that was exposed to 17 Mrad of radiation (under 1 = 1) and then 
stretched to a maximum of 50% of its original length during each cycle.

Next the Young’s modulus (E) was extracted from the stress-
strain slope at small deformation (corresponding to strain levels of
5% or less) for various cycles and various values of 1 and D. Fig. 
3 displays the results for E in cycles 1 and 5. We observe the 
following trends: (1) for all values of 1 the modulus increases as 
a function of D within each cycle. For 1 = 1 and cycle 1 this 
increase is nearly linear, as observed previously [8]; (2) for all 
values of 1 and D the modulus significantly decreases from cycle 
1 to cycle 5, similar to the softening behavior seen in Fig. 2. The 
decrease in modulus is the largest for 1 = 1 and gets 
progressively smaller for increasing values of 1; (3) as a function 
of 1 the modulus displays complex behavior that can be 
increasing, decreasing, or non-monotonic depending upon the 
cycle and the radiation dosage D. In particular, in cycle 1 the 
modulus E shows an overall decreasing trend as a function of 
increasing 1, with the rate of decrease |E/1| getting smaller 
with increasing 1 and increasing D. In cycle 5 on the other hand
E shows more complex behavior as a function of 1, decreasing at
D = 5 Mrad, increasing at D = 17 Mrad, and non-monotonic at 

intermediate values (10 Mrad). The above behavior of E can be 
traced to a combination of two effects: (i) material softening due 
to the Mullins effect; and (ii) radiation hardening of the elastomer 
due to the creation of a net number of new cross-links [8]. In the 
following we analyze the above results within the framework of 
Tobolsky’s 2-stage network theory using a simple constitutive 
materials model for the mechanical response of incompressible 
rubber.  

III. CONSTITUTIVE MODELING

To analyze the experimental data on recovered length s (Fig. 
1) and Young’s modulus E (Fig. 3) we adopted the Neohookean 
stress response model [12] defined by the function

)/1()( 2   G , where  is the (true) stress under a uniaxial 
stretch ratio  ( = 1 corresponds to a state of no deformation), 
and G is the shear modulus that depends on the cross-link density 
in the material. Before deriving a general formula for the Young’s 
modulus E (see section IV) we note that for the special case 1 = 1 
the Young’s modulus is simply three times the shear modulus, 
i.e., E = 3G. Thus the near-linear increase of E with D for 1=1 in 
cycle 1 (see Fig. 3 (top)) can be expressed as G = G0(1+C0D), 
where G0 ~ 1.5 MPa is the shear modulus of the pristine material, 
D the radiation dosage in Mrad, and C0 is a constant ~ 0.05 Mrad-

1. This change in modulus results from a net increase in the 
number of cross-links in the system induced by radiation. 

Figure 3. Young’s modulus obtained from the small-deformation slope of 
experimental stress-strain data for various values of 1, three different 
radiation levels, and two cycles (cycle 1 and cycle 5). Depending on the 
cycle and the radiation level the elastic modulus displays increasing, 
decreasing, and non-monotonic behavior as a function of 1.
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For the case 1 > 1 the radiation-induced cross-links give rise to 
two independent networks: (1) the original one created in the 
unstrained state, a fraction of which gets modified during 
exposure to radiation; and (2) the new cross-links created at strain 
state 1. In the presence of these two networks the stress response 
function becomes:

         . (1)

In eq. (1) f'mod and f'xl are respectively the amounts of pristine 
cross-links that are modified and the amount of new cross-links 
created by radiation, both expressed as a fraction of the pristine 
cross-link density [8], taking into account subtle feedback effects
[13] that are present for 1 > 1. The net increase in cross-link 
density in cycle 1 as a function of the radiation dosage D can be 
expressed through the relation [8]:

DCfff xl 0mod''  xl . (2)

Figure 4. The quantity feff (see text) as a function of radiation dosage D: 
the points correspond to (1-averaged) values obtained by inserting 
experimental recovered lengths (s) into eq. (4), while the solid line 
corresponds to an exponential fit given by eq. (5).

For the data in Fig. 1 the recovered length s can be modeled by 
solving eq. (1) for (s) = 0, which yields:

    , (3)

where feff = f'xl/(1-f'mod). When eq. (3) is inverted to solve for feff for 
all experimental value of s in Fig. 1, one obtains the expression:

        (for 1 > 1). (4)
  

When the experimental values of s and 1 (from Fig. 1) are used 
in eq. (4) we find that feff is a function of D only, and nearly 
independent of 1. The values of feff (averaged over 1) as a 
function of D is plotted in Fig. 4, with the behavior well-described 
by the exponential fit (solid line): 

  , (5)

where constants 1 ~ 0.165 Mrad-1 and 2 ~ 0.003 Mrad-2

respectively.

IV. ANALYSIS OF YOUNG’S MODULUS (E) 

The main motivation for the current paper was to analyze and 
understand the complex behavior of the Young’s modulus E as 
seen experimentally (Fig. 3). The modulus E, defined as the 
small-deformation stress-strain slope about the altered equilibrium 
(s) is given by:

         , (6)

where  is the uniaxial deformation strain. Eqs. (1), (2), (3) and 
(6) yield (after some algebraic manipulation) the following 
expression for E:

          . (7)

For 1 = 1 there is no permanent set, i.e., s = 1 (as also follows 
from eq. (3)), which when substituted in eq. (7) yields the simple 
relation E = 3G0(1+C0D)= 3G, as mentioned in section III. 
Assuming a constant G0 ~ 1.5 MPa in eq. (7) one obtains an 
increasing E as a function of increasing 1 as shown in Fig. 5, a 
behavior in clear disagreement with the experimental pattern of 
Fig. 3.

Figure 5. Young’s modulus (E) as predicted from eq. (7) with a constant 
G0 (= 1.5 MPa) independent of stress-strain cycling.

The behavior in Fig. 5 arises under the assumption that G0 is 
constant and independent of the cycle number, 1, and D. This is 
equivalent to the assumption that the rubber network does not 
have any hysteresis effects, i.e., no Mullins effect. This 
assumption is clearly not correct for the experimental TR-55 
samples as evidenced from the softening in Fig. 2 with strain 
cycling. In fact Figs. 2 and 3 indicate two different stages at 
which the material softening takes place: (1) during the several-
week-long annealing period following the s measurements. This 
softening happens only for s > 1, with the amount of softening 
increasing with increasing s (and therefore increasing 1); (2) 
during the first stress-strain cycle following the annealing period. 
The amount of this softening decreases with increasing 1. The 
first type of softening leads to the behavior of E as seen in Fig. 3 
(top), while the second type of softening causes the change from 
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the behavior in Fig. 3 (top) to that in Fig. 3 (bottom). We 
elaborate on this point in the discussion below.

Although the Mullins effect has been known for several 
decades, the underlying microscopic driving force is still unclear 
[14]. Suggestions range from the cleavage of chemical bonds 
between rubber and filler, slipping and disentanglement of chains, 
rupture of filler clusters, and so on. The true mechanism 
notwithstanding, it is clear that any of these processes will lead to 
a decrease in the overall cross-link density. In addition, the 
propensity for each of these processes is expected to: (1) increase 
with the stress level the material is subjected to; and (2) decrease 
with increasing radiation dosage. The latter creates additional 
cross-links that reduce the average stress levels per cross-link for 
a given strain level. As  a simple model illustrating these two
effects on the cycle 1 response we have explored the behavior of 
E when the pristine shear modulus G0 in eq. (7) is rescaled by a 
multiplicative factor, i.e., 

G0 G0[1-(s-1)], (8)

where  is a decreasing function of the radiation dosage D. Fig. 6 
plots the resulting values of E for the parameter values of  = 
0.95, 0.48, and 0.19 for D = 5, 10, and 17 Mrad respectively. This 
behavior is quantitatively consistent with Fig. 3(top).

Figure 6. Young’s modulus (E) in cycle 1 as predicted from eq. (7) by 
rescaling the pristine shear modulus G0 (= 1.5 MPa) with a multiplicative 
factor [1-(s-1)]. This factor represents a simple model that illustrates the 
effect of s and radiation dosage D on the cycle 1 response. See text.

Finally, the behavior of E in cycle 5 (Fig. 3(bottom)) can be 
interpreted as follows. With repeated cycling further loss in cross-
links continues to occur until all the loose links (weak chemical 
bonds to fillers or physical entanglements) are removed from the 
system. For larger values of  (and resulting larger s) a larger 
fraction of these links are removed during the several-week-long 
annealing period (i.e. before the first stress-strain cycle), which is 
consistent with a higher degree of softening and a decreasing E
with increasing  in cycle 1. As a consequence, any additional 
softening in subsequent cycles is higher for smaller values of . 

This effect, in conjunction with a decreasing |E/1| with 
increasing D in cycle 1 (see Fig. 3(top) or Fig. 6) leads to less 
negative values of E/1 in cycle 5 (as compared to cycle 1), 
which can even become positive for large D (as seen in Fig. 
3(bottom) for D = 17 Mrad). 

V. SUMMARY

In summary, as a follow-up to our recent work we have carried 
out mechanical stress-strain measurements on an elastomeric 
rubber material subjected to controlled radiation dosages under 
finite strain. Interesting trends in the measured Young’s modulus 
is observed as a function of radiation dosage and the strain at 
which the radiation exposure is performed. More specifically, at 
lower radiation dosages and earlier stress-strain cycles the 
modulus is found to decrease with increasing strain of exposure, 
while the trend gets reversed at higher dosages and later cycles. 
We show that the above behavior arises due to the interplay of 
two opposing effects, i.e., materials softening due to the Mullins 
effect and radiation hardening due to the creation of new cross-
links. Using the framework of Tobolsky’s 2-stage independent 
network theory we develop a phenomenological model that can 
quantitatively interpret the experimentally observed modulus as a 
function of radiation dosage and strain history.
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