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Corrigenda:

Barham, M., Steigmann, D. J., McElfresh, M, and Rudd, R. E.: Finite deformation of a pressurized

magnetoelastic membrane in a stationary dipole field, Acta Mech. 191, 1-19 (2007).

Equations (58), (59) and (60) should read:∫
Ω

(Gf · ∇ṙ +Ge · ė)dA =
∫

Ω

pαn · ṙ dA+µ0

∫
Ω

ṙ· ρκ(gradha)µdA, (58)

Ge = 0 and div(Gf ) + pαn +µ0ρκ(gradha)µ = 0 in Ω, (59)

div(εGf ) + Pαn +µ0ρ̂κ(gradha)µ = 0, (60)

In equation (84) µ0 needs to be changed to µ2
0, resulting in:

g := ρ̂κ(gradha)µ =
µ2

0ερ
2
κ

A
(gradha)ha. (84)

In equation (85) %6 needs to be changed to %8, resulting in:

g =
H

%8

{
(%a · k)k− [1 + 4(a · k)2](%a)

}
, (85)

In equation (86) µ0 needs to be changed to µ2
0, resulting in:

H := 3D2µ
2
0ερ

2
κ

A
. (86)

In equations (89)1 and (89)2 %
6 needs to be changed to %8, resulting in:

v2 · g =
H

%8

{
4(h− z) (h− z)2

%2
sinφ+

[
1 + 4

(h− z)2

%2

]
u cosφ

}
,

and

v2 · g =
H

%8

{
4(h− z) (h− z)2

%2
cosφ−

[
1 + 4

(h− z)2

%2

]
u sinφ

}
, (89)

The text beginning with the last paragraph on p.12 and concluding at the bottom of p.17 contains

numerical errors. The corrected text, including corrected figures, is appended here:

The effect of varying the height of a dipole source of fixed intensity (H̄ = 10) above the base plane

z = 0 is depicted in Fig. 2. The hoop stretch at the outer radius is Λ = 1, corresponding to the absence

of pre-stretch. The upper figure shows the shape of the deformed meridian of the membrane at various

values of the dipole height h̄. As expected, the membrane is more severely deformed as the height is

decreased (for a monotonically decreasing sequence of height values), due to the ever closer proximity

of the source to the membrane material. The variation of h̄ with elevation of the pole above the base

plane, denoted by z0, is shown in the lower figure. This response exhibits a turning point at around

h̄ = h̄min = 2.01 - the minimum source height possible in equilibrium - followed thereafter by increasing

values of h̄ (source farther from the base plane) as z0 continues to increase. In a purely mechanical
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analogue to this problem we would interpret the field exerted on the membrane as a surrogate for a

distributed mechanical force. Our results would then indicate that a limit-point instability is encountered

as the source height approaches its minimum. It is thus appropriate to conclude that a limit-point

instability is encountered in the present problem, and thus that the decreasing branch of the response

curve (h̄ increasing), after h̄min is encountered, corresponds to unstable equilibrium. We conjecture that

a full dynamic analysis of this problem would predict that, after the equilibrium limit point is reached,

the membrane is pulled into the dipole source dynamically. The membrane is substantially strained at

h̄ = h̄min, with a maximum stretch of 1.22 occurring in the meridional direction.

Figure 2: Deformation induced by varying the height of a dipole source of fixed intensity (H̄ = 10).

There is no pre-stretch.

The effect of pre-stretch (Λ = 1.5) is shown in Fig. 3. The features of the response to a dipole source

of the same strength (H̄ = 10) are qualitatively similar to those for the problem with no pre-stretch.

In the present case the stable branch of the equilibrium response is stiffer, and the turning point is
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encountered later (i.e., when the source is closer to the base plane), at h̄ = h̄min = 1.72. At this stage

the maximum stretch in the membrane is 1.58 and again occurs in the meridional direction. Figure 4

exhibits the computed response of the pre-stretched membrane to a strong dipole source (H̄ = 100).

The deformation is more severe, as expected, with a maximum (meridional) stretch of 1.64 occurring at

the turning point (h̄min = 2.37), which is encountered at a greater distance from the base plane.

Figure 3: Deformation induced by varying the height of a dipole source of fixed intensity (H̄ = 10). The

pre-stretch is Λ = 1.5.

Figure 5 illustrates the response of the pre-stretched membrane to dipoles of increasing strength held

at a fixed distance (h̄ = 2.0) above the base plane. Limit-point behavior is again predicted, corresponding

to a maximum dipole strength (H̄max ≈ 29.4) for which equilibrium is possible, followed by an increase

in pole displacement attending a decrease in dipole strength. The response is qualitatively similar to

that produced by varying the height of a source of given intensity, producing a peak (meridional) stretch

at H̄max of 1.6.

3



Figure 4: Deformation induced by varying the height of a dipole source of fixed intensity (H̄ = 100).

The pre-stretch is Λ = 1.5.
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Figure 5: Deformation generated by a sequence of dipoles of varying strength at fixed height (h̄ = 2.0).

The pre-stretch is Λ = 1.5.
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Figure 6 illustrates the response of the pre-stretched membrane to a uniform pressure of fixed inten-

sity (P̄ = 0.3) and a dipole source of fixed strength (H̄ = 10). The height of the source above the plane

is varied, as in Fig. 3, and limit-point behavior is again predicted. The effect of pressure is to promote

instability, with h̄min(= 1.86) exceeding that predicted in the case of no pressure. The deformation at

the turning point is also more severe, producing a peak meridional stretch of 1.61.

Figure 6: Deformation of a pressurized membrane (P̄ = 0.3) induced by varying the height of a dipole

of fixed strength (H̄ = 10). The pre-stretch is Λ = 1.5.

Since the paper was published, subsequent work that confirms the accuracy of the model, and the

existence of a limit-point instability, has been conducted:
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