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  Access to reduced core collisionality 
•  ne ~ 0.6-0.9 nG for transport, stability, start-up, 

high non-inductive current fraction scenario 
studies for future STs (e.g., NSTX-Upgrade) 

•  ne ~ 0.3-0.7 nG for adequate NBI current drive 
efficiency in scenarios relevant to fusion and 
nuclear science ST-based devices 

  Spherical tokamak: compact divertor for power 
and particle exhaust  

  NSTX (Aspect ratio A=1.4-1.5) 
•  Ip ≤ 1.4 MA, Pin ≤ 7.4 MW (NBI), P / R ~ 10 
•  qpeak ≤ 15 MW/m2, q|| ≤ 200 MW/m2 

•  ATJ and CFC graphite tiles as PFCs 

•  Typical divertor strike point region T ≤ 500 C   
 (qpeak ≤ 10 MW/m2) in 1 s discharges 

Solid lithium coatings are studied in NSTX for 
impurity and density control applications 

National Spherical 
Torus Experiment 
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Plasma-surface interactions with solid lithium 
coatings on graphite plasma-facing components  

  Solid lithium coatings in NSTX 
•  deposited by two lithium ovens (LITERs) 
-  oven T= 600-680°C 
-  Evaporation rate: 1 mg/min – 80 mg/min 

•  divertor coating thickness up to 200-400 nm  
•  up to 50 % variation in toroidal thickness  

  Interaction of solid lithium coatings with plasma 
•  Physical sputtering of lithium atoms 
-  by D ions - 2/3 lithium sputtered as Li+ 
-  by lithium (self-sputtering) and carbon 

•  Re-deposition  
•  Melting (T = 180o C) and evaporation (significant rate at T > 300o C) 
•  Reaction with D0 atoms leads to pumping of hydrogenic plasma 
-  Coating can bind D with all Li inventory up to a full thickness 
-  After saturation - high recycling, low pumping rate 

•  Reaction with H2O, C and O to form various compounds 
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Impact of lithium conditioning was investigated 
in NBI-heated H-mode discharges 
  Pumping and recycling on PFCs 
  Lithium influx from PFCs and core lithium density 
  Control of divertor carbon influx 

  Ip=0.9 MA, Bt=4.5 kG, PNBI=4-6 MW, high κ~2.3, δ~0.6 
•  Discharge without lithium (129013)  

-  boronized carbon, no prior lithium use 
•  Discharge without lithium (129059) 

-  prior use of lithium (~ 20 discharges, ~ 8 g) 
•  Discharge with 190 mg lithium (~ 190 mg total, 129061) 
•  Discharge with 600 mg lithium (2.2 g total, 129064) 

  Photometrically calibrated filtered cameras and spectrometers, tile-
mounted Langmuir probes, neutral pressure gauges 

  Γion [ion/m2/s] = 4 π Iλ [ph/m2/s/sr] S/XB [ion/ph] 
•  For deuterium, Da and Db ; for lithium, Li I λ=670 nm 
•  Outer SOL region only 
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With lithium, reduced core density operation can be 
achieved 

  ne/nG ~ 0.2-0.7 
•  Ne and ne increasing 

  WMHD increased 
  PSOL decreasing with 

lithium amount 
•  Core Prad increasing 
•  PSOL=POH+PNBI  - Prad - dW/dt 

- Pfast ion loss 

  ELMs suppressed 
•  Pedestal MHD stability 

modified due to ne (r) mod. 
No lithium (129013) 
No lithium (129059) 
190 mg lithium (129061)

600 mg lithium (129064) 
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Impact of lithium conditioning was investigated 
in NBI-heated H-mode discharges 

  Ion pumping and recycling fluxes 
  Lithium influx from PFCs and core density 
  Fueling and density evolution 
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Ion density was reduced by up to 50 % by lithium 
conditioning in NSTX 

  Particle balance equation 
  Particle inventory balance: Ne=6 NC+Nd 

  Continuous pumping  
  Cumulative coatings provide higher 

pumping rate 
  Wall in pumping state far from saturation 

! 

dNp

dt
= "gas + "NBI + "NBI _ cold + "NBI _ cryo + "wall + "pump +

dNn

dt

Change in 
ion  
inventory 

Gas 
feed 
rate 

NBI  
fueling 
rate 

NBI  
cryopump 
rate 

Turbo. 
pump 
rate 

Neutrals 
build-up 
rate 

Wall  
loading  
rate 

No lithium (129013) 
No lithium (129059) 
190 mg lithium (129061)

600 mg lithium (129064) 
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Edge neutral pressure and recycling on PFCs 
reduced, most strongly in lower divertor  

  Divertor ionization source reduced by up to 50 % 

No lithium 
(129013) 
No lithium 
(129059) 
190 mg lithium 
(129061)

600 mg lithium 
(129064) 
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Local relative recycling coefficients reduced on 
all PFCs but in the near-SOL / strike point region 

  Local recycling coefficient Rlocal=Γi
out / Γi

in 

•  Ion flux into surface Γi
in is measured by Langmuir Probes (LPs) 

•  Ion outflux Γi
out estimated from measured Dα intensity and S/XB 

(ionizations/photon) coefficient from ADAS 
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Impact of lithium conditioning was investigated 
in NBI-heated H-mode discharges 

  Ion pumping and recycling fluxes 
  Lithium influx from PFCs and core lithium density 
  Fueling and density evolution 
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Lithium flux measurements suggest lithium source 
is in lower divertor, degrades in one discharge   

  Strong scaling of lithium fluxes 
with evaporated amount in 
early phase on all PFCs 
•  In later phase, no scaling in 

upper divertor, inner wall and 
far SOL 

  In near SOL and strike point, 
strong scaling until end of 
discharge (cumulative effect) 

  Large difference between “no 
lithium” reference discharges 

No lithium (129013) 
No lithium (129059) 
190 mg lithium (129061)

600 mg lithium (129064) 
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Core lithium density low, does not scale with 
divertor source, lithium weakly accumulates in core 

•  Lithium screening efficiency high, penetration factor NLi / Γli  ~ 0.0001 

Impurity density 
profiles from 
CHERS

–  C VI, n = 8-7, 

529.1 nm

–  Li III, n = 7-5, 

516.7 nm  
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Impact of lithium conditioning was investigated 
in NBI-heated H-mode discharges 

  Ion pumping and recycling fluxes 
  Lithium influx from PFCs and core density 
  Fueling and density evolution 

  SGI-U is operated at flow rates 
50-250 Torr l /s   
 (3.5 – 17.5  x 1021 s-1)  

 
  Supersonic deuterium jet 

properties:  
•  Jet divergence half-angle:  

 6o - 25o (measured) 
•  Mach number M = 4 (measured) 
•  Estimated: T ~ 60 - 160 K,  

 n < 5 x 1023 m-3,  
 vflow = 2.4 km/s, vtherm ~ 1.1 km/s 

•  Nozzle Re = 6000 
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A long pulse H-mode discharge scenario with 
SGI fueling and controlled Ni was developed  
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Summary and plans 

  Lithium coatings are investigated in NSTX for impurity and 
density control 
•  Divertor surface pumping reduce ion density (inventory) by up 

to 50 % 
•  Pumping effect lasts ~ 1-2 discharges due to lithium coating 

degradation 
•  Plasma has some (but weak) memory of prior lithium 

evaporations 
•  Lithium coatings lead to reduced recycling, strong effect on 

divertor and pedestal plasma 
•  Exploring synergy between solid lithium pumping and efficient 

fueling by supersonic gas injector 
•  This study when completed will provide a basis for comparison 

between solid lithium coatings on graphite and molybdenum 
(planned for 2011-2012) 
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Backup 
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NSTX divertor diagnostics 
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Heat flux mitigation is more challenging in 
compact divertor of spherical torus 

  NSTX 
•  Ip = 0.7-1.4 MA, tpulse < 1.5 s, Pin ≤ 7.4 MW (NBI) 
•  ATJ and CFC graphite PFCs 
•  P / R ~ 10 
•  qpk ≤ 15 MW/m2 

•  q|| ≤ 200 MW/m2 

Quantity NSTX DIII-D 
Aspect ratio 1.4-1.5 2.7 
In-out plasma boundary area ratio 1:3 2:3 
X-point to target parallel length Lx (m) 5-10 10-20 
Poloidal magnetic flux expansion fexp at outer SP 5-30 3-15 
Magnetic field angle at outer SP (deg.) 1-10 1-2 
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A transition from conduction-limited to sheath-limited 
parallel SOL heat transport regime is observed with lithium  

ν∗e = lc/λe
  lc=10 m – typical connection length 
  λe – electron mean free path 

  νe
*=10-16 ne lc / Te


  Borderline between sheath-limited and 
conduction-limited at νe

*=10
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Li I emission profiles are highly peaked 
suggesting lithium melting in strike point region 

No lithium 
(129013) 
190 mg Lithium 
(129061) 
600 mg lithium 
(129064) 
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Supersonic gas injector is a complex computer-
controlled high gas pressure apparatus 

• Inj. 1 
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Supersonic gas injector consists of Laval nozzle 
and piezoelectric valve 

  SGI-U is operated at flow rates 
50-250 Torr l /s   
 (3.5 – 17.5  x 1021 s-1)  

 
  Supersonic deuterium jet 

properties:  
•  Jet divergence half-angle:  

 6o - 25o (measured) 
•  Mach number M = 4 (measured) 
•  Estimated: T ~ 60 - 160 K,  

 n < 5 x 1023 m-3,  
 vflow = 2.4 km/s, vtherm ~ 1.1 km/s 

•  Nozzle Re = 6000 
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SGI fueling results in higher fueling efficiency, 
lower edge neutral pressure 

  Comparison between SGI and conv. 
gas injection was only possible by 1) 
matching density in 1 MA, 6-4 MW 
discharges; 2) comparing gas injection 
rate and total gas inventory 
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  On-going study of impurity sources and 
impurity parallel and radial transport in 
SOL and pedestal 
•  Talk by F. Scotti 

  Carbon sources: wall and divertor, 
physical and chemical sputtering 

  Reduce physical sputtering yield by 
lowering divertor temperature 
•  Ei = 2kTi + 3 Zi kTe 
•  Ei ~ 50 – 300 eV -> YC ~ 0.01 
•  Need to obtain Ei ≤ 20-40 eV (Te ≤ 5 eV) 

  Low Te divertor operation established  
 in NSTX 

•  Divertor gas puffing 
•  Snowflake divertor 

Divertor with lithium coatings provides pumping – 
but what about impurity and heat flux handling ? 

Figure from R. A. Pitts et. al, PPCF (2005) B303
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Divertor D2 puffing used to reduce divertor 
carbon source and core carbon concentration 
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Various techniques developed for reduction of heat 
fluxes q|| (divertor SOL) and qpeak (divertor target) 

  Promising divertor peak heat flux mitigation solutions: 
•  Divertor geometry  

  poloidal flux expansion 

  divertor plate tilt 
  magnetic balance 

•  Radiative divertor 

  Recent ideas to improve standard divertor geometry 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

Awet = 2πR fexp λq‖qpeak !
PSOL(1− frad)fgeo sinα

2πRSP fexpλq‖
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Attractive divertor geometry properties predicted 
by theory in snowflake divertor configuration  

  Snowflake divertor 
•  Second-order null 

-  Bp ~ 0 and grad Bp ~ 0;  Bp ~ r2 

 (Cf. first-order null: Bp ~ 0;  Bp ~ r) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 

  Predicted properties (cf. standard divertor) 
•  Larger low Bp region around X-point 
•  Larger plasma wetted-area Awet  (flux 

expansion fexp) 
•  Larger X-point connection length Lx 
•  Larger effective divertor volume Vdiv 

•  Increased edge magnetic shear 

  Experiments 
•  TCV (F. Piras et. al, PRL 105, 155003 (2010)) 

   
 snowflake-minus 

snowflake-plus 

Exact 
snowflake 
divertor 

D. D. Ryutov, PoP 14, 064502 2007 
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NSTX studies suggest the snowflake divertor configuration 
may be a viable solution for present and future tokamaks 

  Snowflake divertor configuration (c.f. standard 
divertor) 
•  Higher plasma-wetted area (due to higher 

magnetic flux expansion) 
•  Higher connection length and divertor volume 

  In NSTX discharges: 
•  Steady-state snowflake up to 600 ms 
•  Good H-mode confinement (H98(y,2) ~ 1) 
•  Reduced core/pedestal carbon concentration 
•  Change in pedestal MHD stability and ELMs 
•  Significant reduction in divertor heat flux 
-  steady-state peak heat flux (from 4-8 to - 

0.5-1 MW/m2) 
-  Reduction in ELM heat and particle flux 
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 Core impurity reduction while maintaining constant D 
inventory with snowflake divertor  


