
LLNL-PROC-482163

Inferring Tracklets for
Multi-Object Tracking

J. Prokaj, M. A. Duchaineau, G. Medioni

May 2, 2011

1st Workshop of Aerial Video Processing (WAVP)
Colorado Springs, CO, United States
June 20, 2011 through June 25, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Inferring Tracklets for Multi-Object Tracking

Jan Prokaj1, Mark Duchaineau2, and Gérard Medioni1

1University of Southern California , Los Angeles, CA 90089 , {prokaj|medioni}@usc.edu
2Lawrence Livermore National Laboratory , Livermore, CA 94550, duchaineau@llnl.gov

Abstract

Recent work on multi-object tracking has shown the
promise of tracklet-based methods. In this work we present
a method which infers tracklets then groups them into
tracks. It overcomes some of the disadvantages of exist-
ing methods, such as the use of heuristics or non-realistic
constraints. The main idea is to formulate the data associ-
ation problem as inference in a set of Bayesian networks.
This avoids exhaustive evaluation of data association hy-
potheses, provides a confidence estimate of the solution,
and handles split-merge observations. Consistency of mo-
tion and appearance is the driving force behind finding the
MAP data association estimate.

The computed tracklets are then used in a complete
multi-object tracking algorithm, which is evaluated on a ve-
hicle tracking task in an aerial surveillance context. Very
good performance is achieved on challenging video se-
quences. Track fragmentation is nearly non-existent, and
false alarm rates are low.

1. Introduction

Object tracking is a well studied problem that has re-
ceived considerable attention in the computer vision com-
munity, and does not need much of an introduction. Solv-
ing this problem will immediately benefit many applica-
tions, such as surveillance and human computer interaction,
and provide necessary information with high confidence for
higher-level reasoning tasks, such as activity or event recog-
nition, and behavior analysis. Many approaches have been
proposed [17], each having advantages in a particular con-
text. Here we focus on multi-object tracking, where the goal
is to determine a spatio-temporal description of the moving
objects in the scene.

Tracking of multiple objects naturally has to deal with
the same issues encountered in classic tracking, such as oc-
clusion, and changes in illumination and appearance. It

also brings additional challenges, namely associating the
evidence in the video with an unknown number of ob-
jects, and object-object interaction, which results in a many-
many mapping between observations (detections or mea-
surements) and objects in every frame. In other words,
one observation may be associated with multiple objects,
or multiple observations may be associated with one object
due to occlusion or noise. This presents a large data as-
sociation problem, which is expensive to solve optimally:
a correct data association requires looking ahead in time,
but this in turn causes an exponential growth of the search
space.

Currently the most successful algorithms for multi-
object tracking solve the data association problem hierar-
chically [13, 2, 6, 8]. They first determine short tracks, or
tracklets, and then link these tracklets into longer tracks in
one or more steps. Tracklets are usually determined by us-
ing a nearest neighbor association [13], some affinity mea-
sure [6], or particle filtering [8]. However, each of these
has some disadvantages. Nearest neighbor association is a
heuristic that is likely to make incorrect associations when
objects are close together. Affinity measures, while con-
servative, assume a non-overlap constraint. Particle filter-
ing works better, but with a lot of objects or noise in the
scene, and longer time intervals, the number of hypothe-
ses significantly increases, and the computational cost be-
comes prohibitive. An alternative solution is proposed in
[15] where the scene is first divided into grid cells and the
Hungarian algorithm is then used to estimate the association
of detections from one frame to the next. One disadvantage
here is that weights in the bipartite graph matching problem
are based on local context that is assumed to stay constant,
which may not work as well in urban areas where vehicles
make turns.

The primary contribution of this work is an algorithm
for inferring tracklets, which does not require an exhaus-
tive evaluation of data association hypotheses, is a MAP
estimate, rather than a heuristic, does not assume one-one
mapping between observations and objects, and provides

a confidence measure on each tracklet. The algorithm ac-
complishes this by formulating the problem as inference in
a set of Bayesian networks, and uses consistency of motion
and appearance as the driving force. The computed track-
lets are then used in a complete multi-object tracking algo-
rithm, which is evaluated on a vehicle tracking task in an
aerial surveillance context.

2. Related Work
The classic algorithms for multi-object tracking are Joint

Probabilistic Data Association filter (JDPAF) [4], and Mul-
tiple Hypothesis Tracking (MHT) [14, 3]. Both of these
methods operate on a set of data association hypotheses.
JPDAF uses all hypotheses, weighted according to the pos-
terior, in determining the next state, while MHT keeps the
candidate hypotheses in memory and does not make a de-
cision until any ambiguities are resolved. In addition to re-
quiring exponential space and time, a significant weakness
of these algorithms is that they assume one-one mapping
between observations and objects.

More useful approaches that handle occlusions in multi-
object tracking are [19] and [7]. In [19], a globally optimal
data association was achieved by encoding the data associ-
ation problem in a network flow graph, and solving with a
minimum cut. While this strategy is compelling, the method
assumes that two tracks cannot have overlapping observa-
tions, which happens with merged observations. A linear
programming formulation, which allows for occlusions, but
assumes spatial layout constraints, was presented in [7].

There have been several attempts to handle multiple
split-merge events in observations. A particle filtering ap-
proach was presented in [9]. There, a more efficient solution
is obtained by assuming Gaussian motion, and computing
the target state analytically for each sampled data associa-
tion. A particle filtering approach using Adaboost for more
robust detections is presented in [12]. Another sampling al-
gorithm, using data-driven MCMC, was introduced in [18].
Spatio-temporal smoothness in motion and appearance was
key to recovering the tracks of an unknown number of tar-
gets.

Perera et al. described an algorithm for multi-object
tracking that handles long occlusions, and split-merge con-
ditions in [13]. They begin with detecting a set of tracklets,
and subsequently link these tracklets into long tracks. Link-
ing is accomplished with the Hungarian algorithm and using
an approximation that does not require an exhaustive search
of associations. This algorithm requires that the initial set
of tracklets be reliable. More tracklet-based approaches to
multi-object tracking followed in [6, 8]. An affinity mea-
sure to determine tracklets was used in [6], and a particle
filter in [8].

It is clear that tracklet-based approaches have merit, but
as mentioned earlier, the current algorithms to determine

Figure 1: The role of tracklets in multi-object tracking. The
first step is the main focus of this paper.

tracklets have some disadvantages. In this work we present
an approach to infer the tracklets that tries to overcome
these disadvantages.

3. Approach

The goal of our algorithm is to infer tracklets, each rep-
resenting one object, over a (sliding) window of frames.
This window is usually 4-8 seconds in length. The input
to our algorithm is a set of object detections (blobs) in each
frame. These can be as simple as connected components
taken directly from background subtraction, or they can be
the output of a more complex object detector. Each object
detection also has an associated appearance representation,
such as the raw image patch, or a histogram.

We would like to emphasize that our goal is to find valid
tracklets within a window that shifts with each frame. Ag-
gregation of these tracklets into tracks that span several win-
dows is done by the (higher-level) tracking algorithm. Also
if the detections of an object become split (or merged) for
a period longer than the window size, this algorithm will
find several (or one) tracklets in the window. This must be
handled at the higher-level as well. An example of a multi-
object tracker that takes care of these issues is in Section 4.
A flow-chart that clarifies multi-object tracking using track-
lets is in Figure 1.

We do not assume an a priori number of objects in the
scene, and the number can vary over time. Determining the
tracklets optimally with this relaxation is difficult, because
the number of possible associations is unknown. The tradi-
tional way to handle this is to sample the space of different
object counts, or try a different number of objects in an it-
erative fashion, and use an energy function to determine the
answer. Unfortunately, unless simplifying assumptions are
made, this energy function is nonconvex, and there may be
multiple local minima that one get trapped in.

To avoid this problem, we assume that each detection in
the first frame of the window is a potential object. There-
fore, we find an optimal tracklet, or a set of tracklets, start-

ing at each detection in the first window frame. This is not
a problem, because for detections that are false alarms, the
model of a valid tracklet (consistency of motion and appear-
ance) is not satisfied, and the tracklet is discarded. Track-
lets that start in the second or later frame of the window are
found when the sliding window shifts to that frame.

3.1. Problem formulation

If the initial detection of an object is given to us, we
know there must be another detected instance of that object
located “nearby” in subsequent frames. We are assuming
there are no missed detections (due to occlusion or else) for
now, but split detections, or split-merge detections, do not
pose a problem, and this statement still holds. Therefore,
the optimal tracklet, or a set of tracklets, that we want to
find must be composed of a series of “nearby” detections.
This can be expressed in a detection tree. For a window size
of T frames, this tree would have T levels. A node in level
t has links to those nodes in level t+1, which are “nearby.”
The root of the tree, t = 0, represents the initial detection.
The definition of nearby can vary with dataset, but, for ex-
ample, in aerial surveillance of urban areas, this value can
be set according to the maximum expected velocity of vehi-
cles, and video resolution.

The number of possible tracklets and tracklet combina-
tions arising from this detection tree is huge, and we cer-
tainly do not want to evaluate every hypothesis. Instead,
we realize that every such hypothesis is making a decision
about including or not including each detection. In other
words, this is just a binary labeling, or segmentation prob-
lem. The valid detections need to be separated from the
invalid detections. The invalid detections are detections due
to noise, or due to objects other than the one that gener-
ated the initial detection. One consequence of this view is
that given the valid detections, it is not always known which
tracklets generated them. For example, when there are mul-
tiple valid detections in several window frames, it could be
that a single object generated them (and they correspond to
multiple split/merge events), or it could be two (or several)
objects being very close to each other. It may seem that
nothing was gained by the segmentation, but actually solv-
ing this problem is easier than before, because the search
space is significantly reduced.

There are several ways that the segmentation problem
can be solved. One way is to use a min-cut formulation
similar to [19] or [5]. This, however, produces a “hard”
segmentation without a confidence estimate, and restricts
the form of the interaction between different detections. An
alternative way that we pursue here is to determine the la-
beling in a generic probabilistic framework.

Figure 2: Example of the structure of the graphical model.
Each yti is a binary variable that represents a detection label.
The shaded nodes represent the measurements associated
with each detection (location, appearance, etc.).

3.2. Segmenting Detections

Let the label of each detection i at frame t be a binary
random variable yti , and let y denote all labels in the win-
dow. Let the observed properties of each detection (loca-
tion, appearance, etc.) be denoted as ot

i, and let o denote all
observations Then, the segmentation problem is

argmax
y

p(y|o) . (1)

Solving this problem depends on how the joint distribution
is formalized, allowing a great deal of flexibility. Here we
factorize the joint distribution into a product of prior and
conditional probabilities,

p(y,o) = p(y0)
∏

i,j,t>0

yt
inear yt−1

j

p(yti |yt−1
j)

∏
i,t>0

p(ot
i|yti) . (2)

We let y0 = 1 to denote the assumption that each detection
in the first frame is valid. ot

i denotes the observed properties
of each detection (location, appearance, etc.). This factor-
ization corresponds directly to the detection tree discussed
earlier, and is illustrated in Figure 2.

One assumption that we are making here that may not
be immediately apparent is that when a detection has mul-
tiple parent detections, independence of the parents is as-
sumed. As a result, the conditional distribution conditioned
on multiple parents is factorized into a product of simple
conditional distributions, each conditioned on only one par-
ent:

p(yti |yt−1
1 , yt−1

2 , · · · , yt−1
K) ∝

K∏
k=1

p(yti |yt−1
k) . (3)

This assumption is not correct when the parent detections
come from one object (i.e. they are split), but it significantly
simplifies the computation, and is not a big problem in prac-
tice. Without this assumption, the conditional probability
table for a distribution conditioned on K parents would be
2 by 2K .

Once the prior and conditional probabilities are speci-
fied, the solution to the segmentation problem is given by
MAP inference. In addition, the max-marginals provide us
with a confidence estimate of each detection. MAP infer-
ence is a well-studied problem, and can be solved using the
max-product algorithm [10] or LP relaxation algorithms,
such as [16]. Note that the structure of the factorization will
have cycles in general, and as will be seen shortly, the con-
ditional probability distributions, when viewed as energy
functions, are not submodular, so the solution will be an
approximation.

The conditional probability p(ot
i|yti) reflects the appear-

ance similarity between the corresponding detection yti and
the initial detection y0. Any appearance similarity measure
can be used. It can be as simple as a sum of squared differ-
ences, or as complex as output of a classifier. For appear-
ance similarity a that ranges in [0, 1], the distribution is just

yti = 0 yti = 1
p(ot

i|yti) 1− a(ot
i,o

0) a(ot
i,o

0)

The conditional probability p(yti |y
t−1
j) is based on both

the appearance similarity between the corresponding de-
tections, as well as the motion likelihood of this detection
given the preceding detections. The preceding detections
are those which are on the path up to the root in the detec-
tion tree. There is a problem with this definition when a
particular detection has multiple parents, because the mo-
tion model, which is described below, assumes only one
observation at each timestep. To solve this problem we take
the parent detection which gives the maximum motion like-
lihood, and call it the “motion parent.” The effect of this
is not to unfairly penalize valid detections that follow this
ambiguity. For a motion likelihood m that ranges in [0, 1],
the conditional probability table is shown in Table 1.

This conditional distribution is a little bit complicated
due to the asymmetry. The asymmetry is necessary, because
we need a different behavior when the parent label is 0 (in-
valid detection) and when it is 1 (valid detection). When the
parent detection is valid (bottom row), the distribution ex-
presses that the probability is high when the detection label
appears similar to the parent, and the motion likelihood af-
ter observing this detection is high (the motion is smooth).
When the parent detection is invalid, however, we can not
say anything about the appearance similarity. This is be-

yti = 0 yti = 1
yt−1
j = 0 0.5 0.5
yt−1
j = 1 1− a(ot

i,o
t−1
j)m(ot

i) a(ot
i,o

t−1
j)m(ot

i)

Table 1: Conditional probability distribution used in the
graphical model.

cause a parent detection that is a false alarm (noise) may
still have a similar appearance and motion. Therefore, in
this case the distribution does not give a “hint” about the
label of the detection.

Any motion model can be used to determine the motion
likelihood. Here we use a simple linear-Gaussian model:

zt+1 = Azt + w (4)
xt+1 = Hxt + v (5)

where zt+1 is the state vector, which includes the object
position and velocity, xt+1 is the measurement vector of the
object position, w ∼ N (0,Q) is the process noise, and v ∼
N (0,R) is the measurement noise. The motion likelihood
m is then

m(yti) = exp

(
−1

2
eT
i P−1

i ei

)
(6)

where ei = zit − z̄it and Pi = AP̄iA
T . z̄it is the poste-

rior state estimate, Pi is the prior state covariance, and P̄i

is the posterior state covariance in the previous time step.
The model is initialized using the first two detections in the
sequence.

Having specified the joint distribution, the MAP labeling
is given by MAP inference. As indicated earlier, the valid
detections in this labeling do not always define one tracklet.
There may be extra detections due to noise, limitations of
our model (a simplified factorization of the joint), the use
of approximate inference, or when two objects with merged
detections are splitting in this window. We describe how to
handle this problem next.

3.3. Tracklets from detections

One way to solve this problem is to generate possible
tracklets (hypotheses), and find zero or more that best ex-
plain the detections. Note that the search space is signif-
icantly reduced than before the segmentation, as we only
need to explain the valid detections. Quite often there will
be only one hypothesis.

The possible tracklets are generated by following the
motion parent pointers up to the root of the tree from each
valid detection, and removing any tracklet that is a prefix of
another. See Figure 3 for an example. An elegant way to de-
termine which (combination) of these best explains the de-
tections is to set up a Quadratic Boolean Problem, as in [11].
We are investigating this approach, but here we present a
reasonable, though admittedly ad-hoc, solution that works
well.

First, we remove those tracklets that do not satisfy cer-
tain criteria. These criteria are:

• the number of detections in the temporal window must
be at least half the window size

Figure 3: Generating possible tracklets from valid detec-
tions. Valid detections are denoted with thick outlines. In
this case, two possible tracklets are generated as indicated
by the shaded regions.

• the average acceleration of the object must be less than
a threshold (≈ 6m/s2)

• the object must be undergoing a smooth motion.

The average acceleration is estimated from the position of
the detections, which are at least half a second apart. The
elapsed time requirement is necessary to avoid bad esti-
mates due to discretization noise. To determine motion
smoothness for the third criterion, we compute the dot prod-
uct of successive motion directions (at least half a second
apart), transform it to [0, 1] range, and compute the average.
This average must be greater than a threshold (≈ 0.80) for
the criterion to be satisfied. Note that this does not rule out
tracklets that are making a turn, since the large change in
direction will be filtered out by the average.

Another criterion that may be useful in aerial surveil-
lance is to require that the object moves with some mini-
mum speed, or travels a minimum distance. The effect of
this is to filter out motion due to parallax. This is not ap-
plicable in all applications, however, so it is not included
above. Other application-specific criteria can be defined.

The second step is to merge tracklets that are a result
of split-merge events. This is done by repeatedly merging
tracklets that have similar appearance and motion. More
precisely, the similarity of two tracks τ1 and τ2 is computed
using

sim(τ1, τ2) =
1

T

T∑
1

sim(τ1, τ2, t) (7)

sim(τ1, τ2, t) = a(τ t1, τ
t
2) ∗ p(xt

1,x
t
2) ∗ v(vt

1,v
t
2) (8)

p(x1,x2) = exp(−‖x1 − x2‖/c) (9)
v(v1,v2) = exp(−‖v1 − v2‖/c) , (10)

where a(·) is the appearance similarity measure as before,
x is the position of the detection, p(·) is a distance measure,
v is the velocity at the time of the detection, v(·) is veloc-
ity similarity measure, and c is a constant to increase the

dynamic range (c ≈ 32). If the two tracklets share a detec-
tion in a particular frame, the similarity is automatically 1
for that frame, and if one tracklet has a detection in a frame,
but the other one does not, a(·) is calculated using the previ-
ous detection, and x, v are interpolated. When sim(τ1, τ2)
exceeds a threshold (≈ 0.90), the two tracks are merged.

3.4. Occlusion handling

So far in the discussion we have assumed there is no oc-
clusion or missing data. It turns out that when an object is
occluded but the occluder is detected, the algorithm as pre-
sented still works. This is because the detection tree does
not really change, except that no detections in the frame
where the object is occluded will be valid. A tracklet is still
found, provided that the object is not occluded for most of
the window. In that case, the tracklet would fail the first
criterion above.

The real problem that needs to be handled is missing de-
tections. When there is a missed detection, the detection
tree will be shorter than T . If it is too short, any track-
lets that are found will not have enough detections and fail
the first criterion above. This problem is solved by adding
“virtual detections” to the detection tree. These are added
whenever a detection in frame t has no nearby detections
in frame t+ 1. The position of this virtual detection is esti-
mated using the motion model, and the appearance is copied
from the (detected) parent. This procedure is recursive, so
that when a newly added virtual detection does not have
nearby detections in the next frame, the process is repeated.

4. Multi-object tracking
A multi-object tracker based on tracklets found by the

presented algorithm works as shown in Figure 1. The step
that we now address is the second one – associating track-
lets with existing tracks. The task of this step is to form long
tracks from tracklets found in the sliding window. Many
strategies can be used here, but an important property to
keep in mind is the many-many mapping. When two ob-
jects merge, and stay merged for a period longer than the
window size, this association step must associate the one
tracklet found with both existing tracks. Similarly, when
one object has split detections for a period longer than the
window size, the tracklets found need to be associated with
the one existing track. Here we present one strategy that
allows a many-many mapping.

We proceed again by defining an association similarity
measure, resembling (7):

sim2 (τ1, τ2) =
1

T

T∑
1

sim2 (τ1, τ2, t) (11)

sim2 (τ1, τ2, t) = a(τ t1, τ
t
2) ∗ ps(xt

1,x
t
2) (12)

ps(x1,x2) = exp(−‖x1 − x2‖/c) . (13)

One difference here is that x is a vector containing the de-
tection position as well as size. Also, if a track that we are
comparing to does not have a detection at a particular frame
(there must be at least one such frame since the sliding win-
dow shifted), the position of the detection is interpolated or
extrapolated as necessary, and the appearance is taken from
the most recent detection. This allows matching tracklets to
tracks across long sensor gaps, assuming the motion of the
existing track can be estimated accurately.

For a many-many mapping, we associate each tracklet
with an existing track as long as sim2 is above a threshold.
If we are only interested in matching each tracklet to one ex-
isting track, then we associate with a track having the maxi-
mum similarity, provided the similarity is above a threshold.
In the latter case, a reasonable threshold is ≈ 0.40.

4.1. Implementation notes

We have implemented the algorithm just presented in
C++. The implementation is available on the author’s web-
site. The runtime of the algorithm depends on the number
of moving objects in the scene. When the number of ob-
jects is small (≈ 50), the runtime is around 1-2 frames per
second on a 640x480 video. When the number of objects is
in the hundreds, the runtime is several seconds per frame.
Also, max-product was used for MAP inference.

5. Results

We have evaluated the multi-object tracker on sequences
captured from an airborne sensor. The sequences come
from the publicly available CLIF 2006 dataset [1]. The
video is captured at roughly 2 Hz, and it is in grayscale. As
this is a large format video roughly 6600x7500 pixels, we
chose 640x480 subregions over an expressway for the pur-
poses of evaluation. The sequences were stabilized prior to
tracking. All of the sequences used in evaluation are avail-
able for download.

The only moving objects in the video are vehicles, but
they are in very low resolution. Each vehicle is only about
7x7 pixels, which makes detection and tracking quite chal-
lenging. Since this low resolution gives very limited ap-
pearance information, we used a simple sum of squared
differences function as our appearance similarity. This is
computed after doing a least-squares alignment of the two
image patches. The alignment is parameterized by transla-
tion and rotation. In this context, this parameterization is
satisfactory.

The moving object detection was done using background
subtraction. The background is modeled as the mode of a
(stabilized) sliding window of frames. We have also tried a
mixture of Gaussian model, but we did not see a significant
difference. A window size of 16 frames, corresponding to
about 8 seconds of video was used.

Ground truth tracks were manually generated for an 80-
frame sequence containing 168 vehicles. Tracks shorter
than the window size were not used in evaluation (for a
window size of 16, this left 123 tracks). Several metrics
were used to measure performance: object detection rate
(ODR), false alarm rate (FAR), normalized track fragmen-
tation (NTF), and ID consistency (IDC). The definition of
the ODR and NTF is the same as in [13]. False alarm rate
is the number of false detections divided by the number of
total detections (NOT computed per track and averaged).
The last metric is introduced to measure the tendency of the
tracks to “jump” or switch IDs. To calculate this metric,
we first label each detection in a ground truth track with the
ID(s) of a test track(s), if any, which contains an overlapping
detection. The ID consistency measures the largest fraction
of detections in a ground truth track labeled with one label.
Just as NTF, it is weighted by the length of the track to avoid
favoring short tracks. More formally, let G = {gi} be the
set of ground truth tracks, let gi = {gij} be the set of detec-
tions in each track, and L(gij) be the label of the test track
associated with the detection gij . The ID consistency of a
track gi is

IDCi = max
l

|{gij s.t. L(gij) = l}|
|gi|

(14)

and the overall ID consistency is

IDC =
1∑

gi
|gi|

∑
gi

|gi|IDCi . (15)

The best ID consistency is 1.

Quantitative results using these metrics are shown in Ta-
bles 2 and 3. The first table shows the effect of using vir-
tual detections in tracking. The second table shows the ef-
fect of different sliding window sizes on tracking. Quali-
tative results are shown in the following figures. Figure 4
shows tracking results on sample frames of the sequence
used for evaluation. Figure 5 shows a specific example of
handling merge-split events. Example of handling occlu-
sion and sensor-gap is shown in Figure 6.

ODR FAR NTF IDC
With virtual det. 0.72 0.04 1.01 0.84
No virtual det. 0.61 0.03 1.04 0.90

Table 2: Effect of virtual detections on tracking perfor-
mance.

Figure 4: Tracking results on sequence 1. A green box denotes a real detection, whereas a yellow box denotes an interpolated
detection.

(a) Frame 38 (b) Frame 46 (c) Frame 51

Figure 5: Example of merge event handling. Other tracks
are not shown for clarity.

(a) Frame 49 (b) Frame 51 (c) Frame 54

Figure 6: Example of occlussion handling.

Window Sz. ODR FAR NTF IDC
10 0.76 0.04 1.06 0.86
12 0.73 0.04 1.00 0.85
14 0.72 0.04 1.00 0.87
16 0.72 0.04 1.01 0.84
18 0.71 0.05 1.00 0.83
20 0.63 0.04 1.00 0.89

Table 3: Effect of sliding window size on tracking per-
formance.

(a) Frame 8 (b) Frame 10 (c) Frame 13

Figure 7: Example of a temporary ID switch. Other tracks
are not shown for clarity.

5.1. Discussion

It is clear from the quantitative evaluation that the algo-
rithm presented is very good at making detection associa-
tions. This is supported by the track fragmentation score,
which is nearly perfect, as well as the ID consistency score.
Once a track is established, tracking is unlikely to stop pre-
maturely. The ID consistency score indicates that while it is
possible that during tracking the ID may switch to another
object, it is only a temporary change, as it never results in
the original track being fragmented. An example of this can
be seen in Figure 7.

Given the challenging nature of the video sequence, the
object detection rate is quite good. Many of the detection
failures are due to poor contrast between the object and the
background. Another factor limiting the detection rate is
the appearance similarity function. In our experiments we
used sum of squared differences, which worked well, but
there were cases where the alignment of two image patches
did not converge correctly, and the computed similarity was
low. However, thanks to the use of a sliding window and
virtual detections, a missed detection in one frame does not

cause the tracking to fail.
As a matter of fact, virtual detections are critical to

achieving high object detection rate. Table 2 indicates that
the object detection performance drops significantly when
virtual detections are not used. It also shows that the false
alarm rate slightly increases, however, it is more than com-
pensated for the increased object detection rate.

The sliding window size mainly affects the object detec-
tion rate. As the sliding window size increases, more de-
tections are necessary in order to declare a potential track
valid. We would expect the false alarm rate to increase with
decreasing window size, although it is not evident in the se-
quence used in evaluation. The false alarm rate is very low,
despite some parallax motion due to buildings and trees in
the scene.

6. Conclusions

Our primary contribution is a new algorithm for deter-
mining tracklets in a window of frames. This is a large data
association problem between detections and an unknown
number of objects, which we solve using inference in a set
of Bayesian networks. Exhaustive evaluation of data associ-
ation hypotheses is avoided, while allowing for split-merge
conditions. The separation of valid detections from invalid
detections is optimal in a MAP sense. In addition, we get a
confidence estimate of each detection.

The algorithm was evaluated on a vehicle tracking task in
an aerial surveillance video. The results show excellent per-
formance in terms of object detection rate, track fragmenta-
tion, and false alarm rate on challenging video sequences.

We are currently working on a principled way to deter-
mine tracklets from valid detections using the Quadratic
Boolean Problem. One avenue for future research is de-
veloping a more robust structure of the inference problem
using higher-order relationships instead of using just pair-
wise. Another possible extension is to take advantage of
other, application-specific, sources of information by incor-
porating them into the graphical model. For example, in the
case of aerial surveillance, this can be a road network.

7. Acknowledgements

This work was supported in part by grant DE-FG52-
08NA28775 from the U.S. Department of Energy. For the
second author, this work was prepared by Lawrence Liver-
more National Lab under contract DE-AC52-07NA27344.

References
[1] CLIF 2006. https://www.sdms.afrl.af.mil/. 6
[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-

detection and people-detection-by-tracking. In IEEE Con-
ference on CVPR, pages 1–8, 2008. 1

[3] I. Cox and S. Hingorani. An efficient implementation of
reid’s multiple hypothesis tracking algorithm and its evalu-
ation for the purpose of visual tracking. IEEE Transactions
on PAMI, 18(2):138–150, Feb 1996. 2

[4] T. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking
of multiple targets using joint probabilistic data association.
Oceanic Engineering, IEEE Journal of, 8(3):173–184, Jul
1983. 2

[5] D. Greig, B. Porteous, and A. Seheult. Exact maximum a
posteriori estimation for binary images. Journal of the Royal
Statistical Society, 51(2):271–279, 1989. 3

[6] C. Huang, B. Wu, and R. Nevatia. Robust object tracking by
hierarchical association of detection responses. In European
Conference on Computer Vision, pages 788–801, 2008. 1, 2

[7] H. Jiang, S. Fels, and J. Little. A linear programming ap-
proach for multiple object tracking. In IEEE Conference on
CVPR, pages 1–8, 2007. 2

[8] S. L. Junlian Xing, Haizhou Ai. Multi-object tracking
through occlusions by local tracklets filtering and global
tracklets association with detection responses. In IEEE Con-
ference on CVPR, pages 1200–1207, 2009. 1, 2

[9] Z. Khan, T. Balch, and F. Dellaert. Multitarget tracking with
split and merged measurements. In IEEE Conference on
CVPR, volume 1, pages 605–610, 2005. 2

[10] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. Information Theory, IEEE
Transactions on, 47(2):498–519, Feb 2001. 4

[11] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 878–885, 2005. 4

[12] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and
D. Lowe. A boosted particle filter: Multitarget detection and
tracking. In ECCV, volume 3021 of LNCS, pages 28–39,
2004. 2

[13] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu.
Multi-object tracking through simultaneous long occlusions
and split-merge conditions. In IEEE Conference on CVPR,
volume 1, pages 666–673, 2006. 1, 2, 6

[14] D. Reid. An algorithm for tracking multiple targets. Auto-
matic Control, IEEE Transactions on, 24(6):843–854, Dec
1979. 2

[15] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of
large number of targets in wide area surveillance. In ECCV,
volume 6313 of LNCS, pages 186–199. 2010. 1

[16] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening lp relaxations for map using message
passing. 2008. 4

[17] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Comput. Surv., 38(4):13, 2006. 1

[18] Q. Yu and G. Medioni. Multiple-target tracking by spa-
tiotemporal monte carlo markov chain data association.
IEEE Trans. on PAMI, 31(12):2196–2210, Dec. 2009. 2

[19] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. In IEEE Confer-
ence on CVPR, pages 1–8, 2008. 2, 3

https://www.sdms.afrl.af.mil/

