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Abstract

Proton-nucleus (p+A) collisions have long been recognized as a crucial

component of the physics programme with nuclear beams at high en-

ergies, in particular for their reference role to interpret and understand

nucleus-nucleus data as well as for their potential to elucidate the par-

tonic structure of matter at low parton fractional momenta (small-x).

Here, we summarize the main motivations that make a proton-nucleus

run a decisive ingredient for a successful heavy-ion programme at the

Large Hadron Collider (LHC) and we present unique scientific opportu-

nities arising from these collisions. We also review the status of ongoing

discussions about operation plans for the p+A mode at the LHC.

∗Current address: ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland
†On leave of absence, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
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1. EXECUTIVE SUMMARY

Heavy-ion physics is an integral part of the baseline experimental programme of the CERN

Large Hadron Collider (LHC). After normal operations have been established, the LHC is run-

ning for about 8 months per year with proton beams and for one month per year with nuclear

beams. Three of the four experiments (ALICE, ATLAS and CMS) participate in the LHC nu-

clear beam programme1. So far, only collisions with Pb nuclei are firmly scheduled, while

operational plans for proton-nucleus (p+A ) collisions are still preliminary. However, the LHC

is a versatile hadron collider that allows, in principle, the collision of asymmetric (A+B) nuclear

beams. All three LHC experiments have included p+A collisions in their physics performance

studies and have discussed their importance.

The proton-nucleus programme serves a dual purpose. It provides, on the one hand, base-

line measurements for the nucleus-nucleus program. Experience from previous heavy ion pro-

grams (CERN SPS, RHIC) shows that a p+A baseline is essential for the interpretation of some

of the main discoveries (e.g. J/ψ-suppression, jet quenching, ...). This document identifies an

analogous need for p+A collisions at the LHC. A p+A programme also offers unique possibili-

ties for specific investigations in various domains of Quantum Chromodynamics (QCD).

This document presents an updated description of: i) the accelerator issues for collision

of asymmetric systems at the LHC; ii) the uncertainties in nuclear parton distribution functions

and benchmark cross section for hard processes; iii) the new opportunities made available to

study parton saturation, ultra-peripheral collisions and measurements, which are of interest to

astrophysics; and iv) the experimental issues related to the special conditions of the p+A run.

The main conclusions of this document are the following:

• Preliminary considerations indicate the feasibility to run the LHC in p+A mode without

major modifications of the machine. We consider here a canonical situation in which the

energy of the p+Pb run (
√
s = 8.8 TeV) corresponds to the charge-over-mass ratio scaling

with respect to the proton top LHC energy. The estimated luminosity is L = 1029cm−2s−1

for p+Pb collisions. Asymmetric collisions imply also rapidity shifts with respect to the

A+A and p+p systems. This effect can be reduced by colliding deuterons with nuclei

instead of protons. The realisation of the d+A mode, however, needs significant hardware

modifications of the injector chain.

• The knowledge of nuclear parton distributions is deficient for the kinematics accessi-

ble at the LHC. This has negative consequences for the interpretation of the A+A data

and a p+A run is indispensable for benchmarking: For most of the duration of the LHC

programme, a p+A run will be the only experimental possibility to reduce systematic un-

certainties arising from yet unmeasured parton distributions. In this document we study

possible constraints from different processes. Assuming a running time of 106 s the cor-

responding integrated luminosity of 0.1 pb−1 will make the measurements considered in

this document feasible. A significantly smaller integrated luminosity will compromise

the performance for several observables. On the contrary, an increase in luminosity by a

factor of 10 will be beneficial for observables with the smallest cross sections, especially

those involving high-pT photons and heavy bosons.

• p+A collisions at the LHC offer unique possibilities for the study of small-x physics with

1Although LHCb has not so far considered running with nuclear beams, there is in principle no technical

difficulty preventing this experiment from doing so. Their excellent detection capabilities at forward rapidities

would be very useful for proton-nucleus measurements.



nuclear targets, extending the kinematically accessible regime by several orders of mag-

nitude in x and Q2 from those presently available. This provides an excellent opportunity

for the study of the saturation of partonic densities. Other physics opportunities include

ultra-peripheral (electromagnetic) collisions and measurements of cross sections of inter-

est for cosmic ray physics.

• The LHC experiments have proven capabilities to exploit the physics opportunities of

a p+A run at the quoted luminosity. For some observables, running p+Pb at the same

nucleon-nucleon centre-of-mass energy as Pb+Pb would have the advantage of reducing

systematic uncertainties for benchmark perturbative processes. Further reduction of the

uncertainties, for the case of rapidity asymmetric detectors, necessitates operation of both

p+A and A+p modes. For nuclear PDF and small-x studies, the largest possible energy

is preferred. This document provides important arguments for the timely scheduling of

p+A runs.



2. INTRODUCTION

With the LHC, high-energy nuclear collisions have reached the TeV scale for the first time.

This has opened up a discovery regime, which is currently being vigorously explored exploiting

the first long run with Pb+Pb collisions at
√
sNN= 2.76 TeV. The corresponding first results on

multiplicities, elliptic flow, jet quenching and other observables have been published [1, 2, 3, 4,

5]. The top LHC energy of
√
sNN=5.5 TeV exceeds that of the Relativistic Heavy Ion Collider

(RHIC) by almost a factor of 30. The increase in centre-of-mass energy will be even larger for

p+Pb collisions (
√
sNN=8.8 TeV). This large jump in energy translates into a kinematical reach

in Bjorken-x and virtuality Q2 that is several orders of magnitude beyond that achieved in all

other previous experiments with nuclear collisions.

Based on the current understanding of nucleus-nucleus collisions, there are in particular

two classes of questions where the extended kinematic reach of the LHC is expected to give

access to qualitatively new phenomena. i) Hard probes are produced at unprecedented rate

at the LHC. The established strong sensitivity of these hard probes provides a promising and

diverse method for a detailed characterization of the properties of the produced dense QCD

matter; ii) Much smaller momentum fractions x become relevant for particle production. On

the one hand, the large parton densities at small-x are expected to make the system initially

produced in the collision denser, hotter and thus longer lived. As a result, a characterization of

parton distributions at small-x is important for the understanding of the initial conditions from

which dense QCD matter emerges — as also demonstrated by the first particle multiplicity

data [1] showing striking scaling features with respect to the smaller energy (RHIC) data. On

the other hand, the dense initial partonic system is of interest in its own, since one expects to

access with increasing
√
s a novel high density regime of QCD in which parton distributions are

saturated up to perturbatively large virtualities. As discussed in this document, measurements

of proton-nucleus collisions are crucial for exploiting the opportunities of these two classes of

measurements at the LHC.

Normalization runs with proton-nucleus (p+A) collisions have long been recognized as a

crucial component of the LHC heavy-ion program. More generally, this is because the charac-

terization of signatures of the QCD matter created in heavy ion collisions relies on benchmark

processes with elementary collision partners, in which final-state medium effects such as col-

lective phenomena are largely absent. To some extent, such benchmarking can be done with

data from proton-proton collisions which characterize production processes in the absence of

both initial and final state medium effects. However, to disentangle the initial state effects from

those final state effects which characterize the properties of the produced dense QCD matter,

proton-nucleus collisions are crucial. The absence of strong final state medium effects in proton-

nucleus collisions provides a unique opportunity for characterizing the nuclear dependence of

parton distribution functions at a hadron collider. This benchmarking of the initial conditions

is of particular importance for heavy-ion collisions at the LHC, since e+A DIS data will not be

available any time soon for a large range of the kinematically relevant small-x values. Beyond

benchmarking, proton-nucleus collisions are also expected to provide access to qualitatively

new features of the small-x structure of matter.

Since the last extensive discussions of proton-nucleus collisions at the LHC [6, 7, 8, 9],

significant experimental and theoretical developments have occurred in this area. In particular,

the technical challenge of running a hadron collider in an asymmetric mode has been mastered

at RHIC, where deuterium-gold measurements have provided the decisive benchmark experi-

ments for discoveries in the corresponding nucleus-nucleus program. The extrapolation of these



results allow us now to substantiate statements about the required luminosity and experimental

coverage for a successful proton-nucleus normalization run at the LHC. Further, recent theo-

retical developments in studying the energy evolution of Quantum Chromodynamics at high

parton densities and small-x have added significantly to the physics case for a proton-nucleus

run at the LHC. In fact, a growing physics community has started to work towards a dedicated

electron-nucleus collider for elucidating the small-x structure of matter [10, 11]. The question

arises to what extent proton-nucleus runs at the LHC can help to prepare and complement such

a future large scale project.

The purpose of this document is to provide a brief update of our current understanding of

how the LHC could operate in p+A mode, how a proton-nucleus run could be exploited to op-

timally support a successful heavy-ion programme at the LHC, and which additional scientific

opportunities arise from proton-nucleus collisions at the LHC.

3. THE LHC AS A PROTON-NUCLEUS COLLIDER

Although proton-nucleus collisions (p+A ) at the LHC had been discussed in the physics com-

munity for some years, they were not formally included in the initial “baseline” LHC machine

design [12], which included only symmetric p+p and Pb+Pb collisions. The p+A mode of op-

erations (as well as collisions between lighter ions) was considered as an option, to be studied

and implemented later. The rationale for this at the time was twofold:

• The need to focus available resources on what was needed for the startup of the LHC.

• The baseline modes of operation are the most difficult in many respects.

With the LHC starting to explore the p+p and Pb+Pb physics programmes, a need to in-

vestigate the feasibility of the p+A mode of operation of the LHC appears. Meanwhile some

concerns have emerged from the experience gained at RHIC. In this document we have tried to

respond to these concerns with a preliminary study of the feasibility and potential performance.

3.1 RHIC Experience

RHIC operated with deuteron-gold collisions (d+Au ) in 2003 and 2008 [13, 14]. The 2003 run

was the first for an asymmetric hadron collider, and faced several challenges. Some relevant

to the LHC proton-ion programme include multi-species injector performance, setup time con-

straints, injection with equal rigidity vs. equal revolution frequency between the two beams,

and collision geometries of dissimilar species. At RHIC a proton-gold run was considered but

required either large deviations in the arcs or movement of the common DX magnets. So, the

option of a more symmetric charge-over-mass ratio as in a d+Au colliding system was adopted.

Careful attention should be given to dual-species injector performance and reliability, par-

ticularly since any bottleneck will significantly impact the performance of short LHC p+Pb runs.

Injector emittance and intensity development ultimately limited RHIC performance during the

2003 d+Au run. Later improvements in injector Au performance for dedicated Au+Au operations

provided the basis for the 2008 d+Au run, which delivered six times the integrated luminosity

of that in 2003.

RHIC d+Au took 18 days of development to first collisions, and an additional 20 days to

the start of physics development. This time included the development of new acceleration/β-

squeeze ramps (see below) and about 6 days of detector setup operations. The LHC p+Pb setup

will likely be shorter since LHC p+p and Pb+Pb will precede p+Pb operations.



Early in the RHIC 2003 d+Au run, injection and ramping setup were changed from the

same magnetic rigidity in both rings to the same RF frequency in both rings—this was necessary

to avoid beam-beam modulation and serious beam losses (up to 50 % of stored beam) during

injection and ramping, even with interaction region beam separations of 10 sigma. For the

LHC, beam-beam compensation and transverse dampers should be investigated, perhaps with

modifications, to control emittance growth and beam loss from this mechanism.

The collision geometry of the LHC for p+Pb should be studied for asymmetries, in con-

junction with the LHC experiments. The RHIC d+Au run required swaps of power supply

shunts on DX dual-ring magnets to satisfy the orbit geometry requirements of different Z/A
species in each ring. This created a 1µrad collision angle within the experiments, marginally

affecting detector acceptances.

3.2 Injector chain for proton-ion or deuteron ion operation of the LHC

For the reasons given above, only preliminary considerations on LHC filling for p+A or d+A ope-

ration have been made. The injector chains for protons and ions are distinct at the low energy

end, i.e., the initial Linac and the first synchrotron. Clearly, as much as possible of the existing

LHC injector chains must be used to allow proton (deuteron)-ion operation of the LHC at a

reasonable cost.

We assume that one of the two LHC rings will be filled with ions featuring the nominal

bunch pattern for ion-ion operation. Furthermore, we assume that the second LHC ring must be

filled with protons or deuterons in the same nominal ion bunch pattern. The “lazy” solution, to

fill the other ring with the usual p+p bunch pattern and to have at least some encounters at the

interaction points (but some ion bunches may never collide with a proton bunch), would have

many disadvantages and is not envisaged.

3.21 Injector chain for proton-ion operation

Assuming that one LHC ring is filled with a nominal Pb-ion beam (bunch population, emit-

tances, filling pattern) and that the proton bunches have the same geometric beam sizes and

bunch pattern, an intensity of the order of 1010 protons per bunch is needed to reach the re-

quired luminosity of the order of 1029cm−2s−1.

The LHC ion ring will be filled using the standard ion injector chain in the standard way

(yielding the nominal LHC ion bunch pattern). The problem consists in finding a scheme that

allows the LHC proton ring to be filled with protons in the same bunch pattern as the ions. Two

distinct schemes have been identified (although many more probably exist). Each of them uses

the LHC proton injector chain but applies longitudinal gymnastics that are very different from

nominal proton filling.

• The first scheme is based on the experience with generation of LHC (proton) pilot bunches

in the PS Booster. Every Booster ring provides one bunch per cycle and each of these

bunches corresponds to one LHC bunch (no bunch splitting along the rest of the chain).

These bunches are injected into adjacent PS buckets. The harmonic number of the PS

(h = 16 may be a good choice) is chosen so that the bunch spacing is sufficient for the

PSB recombination line kicker. The PS harmonic number must be increased gradually to

h = 21 to obtain the right 100 ns bunch spacing and the 40 MHz and 80 MHz RF systems

must be used to shorten the bunches before ejection towards the SPS. The four bunches

provided per PS proton cycle correspond to the four ion bunches per PS ion cycle. The



rest of the LHC injector chain is very similar (accumulation of up to 13 injections on an

SPS low energy plateau, acceleration and transfer to the LHC) for proton and ion filling

and even slightly simpler (no stripping in the transfer line between PS and SPS and, thus, a

higher magnetic field in the SPS, no “fixed” frequency non-integer harmonic acceleration

needed for protons).

• The second scheme aims at faster filling of the LHC proton ring. Every bunch provided

by the PS Booster corresponds to one LEIR/PS ion cycle and, thus, has to provide four

LHC proton bunches. This scheme requires more elaborate longitudinal gymnastics than

the first one (but they are still simpler than the gymnastics applied routinely in operations

to provide, e.g., the beam for LHC p+p operation).

At a first glance, the proton beam needed for ion-proton operation of the LHC can be

provided by the injector chain at a reasonable cost and without major hardware upgrades.

3.22 Injector Chain for Deuteron-Ion Operation of the LHC

Schemes for filling one LHC ring with deuterons have been given only very preliminary con-

sideration. In principle, one could imagine one of the following two scenarios:

Deuterons via the ion injector chain (Linac 3 and LEIR): In order to provide both ions

and deuterons via the ion injector chain, sufficiently fast switching between these two species at

the low energy part of Linac3 would be required. Furthermore the radio-frequency quadrupole

(RFQ) used for ions would not perform well for deuterons. Thus, a dedicated deuteron RFQ,

adjusted to higher input particle velocity and voltage for extraction from the source, would be

necessary. In summary it is clear that a dedicated deuteron source and RFQ and a switchyard

allowing switching between ions and deuterons is the minimum requirement.

Deuterons via the proton injector chain (Linac 2 PSB): Linac4 will replace the present

Linac2 as PS Booster injector from 2015 on, so this option will not be available after that time.

The PS Booster will then be converted for H− charge exchange injection so deuterons for the

LHC would have to be produced from D− injection. Whereas the simple drift tube structure of

Linac2 could, in principle, accelerate D− (with a velocity half that of protons), this is not the

case for Linac4 which consists of three different accelerating structures. A dedicated D− source

and RFQ would be needed in any case and represents a significant investment.

Using Linac2 for D− acceleration would have limited impact on proton beams for other

facilities.

These very preliminary investigations lead to the conclusion that the injector chain cannot

be upgraded for LHC deuteron-ion operation without major hardware upgrades and investments

(in equipment and manpower). Further detailed investigations are needed to confirm whether

either of the schemes outlined above is feasible. In any case, deuterons in the LHC will require

several years’ lead time.

3.3 LHC Main Rings

The LHC differs from RHIC in its two-in-one magnet design, a single magnet ring with two

beam apertures, rather than the two rings of independent magnets of the Brookhaven machine.

With asymmetric beams in the machine this difference is crucial and determines many key beam

parameters and experimental conditions.



p+p Pb+Pb p+Pb d+Pb

EN/TeV 7 2.76 (7,2.76) (3.5,2.76)√
sNN/TeV 14 5.52 8.79 6.22

∆y 0 0 0.46 0.12

Table 1: Beam energy per nucleon,EN ≈ (pproton, pPb)c/A, center-of-mass collision energy per nucleon,
√
sNN,

and central rapidity shift, ∆y, of colliding nucleon pairs for maximum rigidity colliding beams in the LHC; ∆y is

in the direction of the lighter ion.

For definiteness, we consider the case of protons colliding with lead ions; the case with

other beams is analogous. The LHC accelerates protons through the momentum range

0.45TeV (injection from SPS) ≤ pproton ≤ 7TeV (collision). (1)

Since the magnetic field is equal in the two apertures, there is a relation (equal magnetic rigidity)

between the momenta of proton and lead ion:

pPb = Qpproton, (2)

where Q = Z = 82 and A = 208 for fully stripped Pb ions.

While this places many constraints on p+Pb operation, it does, on the other hand, simplify

some aspects: the geometry of the beam orbits does not change at all so there are no compli-

cations with separation magnets (c.f., the movement of “DX” magnets to adjust the collision

geometry in RHIC).

The centre-of-mass energy and central rapidity shift for colliding nucleon pairs within

ions (Z1, A1), and (Z2, A2)

√
sNN ≈ 2c pproton

√

Z1Z2

A1A2
, ∆y ≈ 1

2
log

Z1A2

A1Z2
(3)

are direct consequences of the two-in-one magnet design via (2); see also Table 1.

Because of (2), the two beams have different speeds and revolution periods on nomi-

nal orbits of the same length. The RF systems of the two rings of the LHC are perfectly

capable of operating independently at the different frequencies required during injection and

ramping. However they must be locked together at identical frequencies in physics condi-

tions to keep the collision points between bunches from moving. This forces the beams onto

distorted, off-momentum orbits of different lengths but identical revolution periods. The am-

plitude of the distortion remains within the limits considered acceptable for the LHC only for

pproton > 2.7TeV/c. This imposes a lower bound on possible collision energies.

At lower energies, therefore, the beams necessarily have different revolution periods.

Each Pb ion bunch encounters up to 5 or 6 proton bunches as it traverses one of the straight

sections around the LHC experiments where the two beams circulate in a common beam pipe.

At injection energy, these encounter points move along the straight section (in the direction of

the proton beam) at a rate of 0.15 m per turn. They then disappear into the arcs only to re-

emerge a few seconds later in the next experimental straight section. As the main bend field is

ramped up, this motion slows down, finally freezing when the energy is high enough that the

RF frequencies can be locked together. A re-phasing operation (known as “cogging”) to peg



the collision points in their proper places may still need to be carried out (although it may be

possible to arrange the timing so that this takes place in the last part of the ramp).

During injection and ramping the bunches are separated in all the common sections of

the LHC so that they never collide head-on but nevertheless have some long-range beam-beam

interaction. It was shown [15] that the separation is sufficient that the magnitudes of these

interactions, expressed either as kicks or parasitic beam-beam tune-shifts, are very small. The

strength of the corresponding “overlap knock-out” resonances [16] is also relatively small. For

these reasons, it appears unlikely that the moving beam-beam encounters will have the severe

consequences experienced in analogous conditions at RHIC (see above) and, earlier still, at the

ISR [16]. However this is a tentative conclusion requiring more detailed justification.

Moreover, the LHC, unlike RHIC, will have the benefit of four independent transverse

feedback systems, one per plane and per ring, with bandwidth high enough to act on individual

bunches. This promises to be a powerful tool in damping any coherent motion induced by the

moving encounters.

The moving encounters might also affect the operation of those beam position monitors

that see both beams. Some modifications of their electronics may be necessary in order to

implement appropriate signal gating.

With the fairly conservative assumptions of bunches of 7 × 107 Pb ions (nominal inten-

sity for the Pb+Pb mode) colliding with bunches of 1.15 × 1010 protons (10% of the nominal

p+p mode intensity), with the usual beam emittances, optics and bunch train structure for Pb

beams, a typical initial peak luminosity would be

L ≈ 1.5× 1029cm−2s−1. (4)

Performance beyond this level might be attainable with, most likely, higher proton bunch inten-

sity. However it should be remembered that p+Pb runs at the LHC are likely to be rather short,

with limited time available to maximise performance. On the other hand, by the time a p+Pb run

is scheduled, operational procedures ought to be well-established and smooth. More concrete

luminosity projections will come from deeper studies and, most importantly, initial experience

of running the LHC with proton and nuclear beams.

For a given luminosity, this choice of the maximum possible number of bunches is more

likely to generate some cancellation among multiple, weaker, moving parasitic encounters.

However alternative sets of parameters (e.g., half the number of nominal intensity Pb bunches

against the same number of 2.3×1010 proton bunches), would lead to similar luminosity. These

could be of interest if the total Pb intensity is limited because of collimation inefficiency (e.g.,

before the proposed dispersion suppressor collimators are installed in the collimation inser-

tions).

The question of switching the directions of the p and Pb beams has been raised. This

is perfectly feasible. Clearly the experimental advantages would have to be weighed against

the set-up time (presently hard to estimate) during a short p+A run. If only one direction is

possible, it appears that all experiments would prefer—or accept—protons in Ring 1 and Pb

ions in Ring 2.

In conclusion, preliminary studies since have found no major obstacles, in terms of hard-

ware modifications or beam dynamical effects, to colliding protons and lead nuclei in the

LHC with adequate luminosity. However further studies of the beam dynamics are essential

to demonstrate the feasibility of what will probably be the most complicated mode of operation

of the LHC.



4. p+A AS A BENCHMARK FOR A+A

Historically, the benchmark role of p+A (or d+Au at RHIC) collisions has been essential for the

interpretation of the heavy-ion results. At RHIC, two main examples arise: i) the absence of

suppression in the transverse momentum spectrum of the inclusive hadron production [17, 18]

proved the jet quenching hypothesis as the genuine final-state effect at work to explain the ob-

served deficit of high-pT hadrons in Au+Au collisions [19, 20]; ii) the moderate suppression

of the J/ψ at central rapidities [21] contrasts with the stronger suppression predicted by mod-

els extrapolating from SPS data, affecting the interpretation of the corresponding hot nuclear

matter effects in Au+Au . At the CERN SPS, the experimental data on several p+A systems at

different energies are fundamental for the interpretation of the results on J/ψ suppression in

Pb+Pb collisions [22].

The nuclear modifications of the production cross sections for hard processes in p+A com-

pared to p+p collisions are studied here with special emphasis on those involving large virtuali-

ties. Predictions for cross sections with different degrees of nuclear effects are collected. These

processes are expected to provide key measurements of the validity of QCD factorization in

nuclear collisions as well as constraints on the nuclear parton distribution functions.

The QCD factorization theorem [23] provides a prescription for separating long-distance

and short-distance effects in hadronic cross sections. The leading power contribution to a gen-

eral hadronic cross section involves only one hard collision between two partons from the in-

coming hadrons with momenta pA and pB . The cross section can be factorized as [23]

Eh

dσAB→h(p′)

d3p′
=

∑

ijk

∫

dx′fj/B(x
′)

∫

dx fi/A(x)

∫

dz Dh/k(z)Eh
dσ̂ij→k

d3p′
(xpA, x

′pB,
p′

z
),

(5)

where
∑

ijk runs over all parton species and all scale dependence is implicit. The fi/A are twist-

2 distributions of parton type i in hadron A (parton distribution functions, PDFs) and the Dh/k

are fragmentation functions for a parton of type k to produce a hadron h.

In the nuclear case, the incoherence of the hard collisions implies that the nuclear PDFs

(nPDFs) contain a geometric factor, so that the hard cross sections are proportional to the over-

lap between the two nuclei. The degree of overlap can be estimated experimentally in a proba-

bilistic approach proposed by Glauber [24]. This fixes the baseline, i.e. the “equivalent number

of p+p collisions”, Ncoll, to which the central A+A cross section measurements are compared,

to quantify the effects on such observables of the hot and dense matter. The Glauber model is,

however, not a first-principles calculation and experimental checks of this model are of utmost

importance for the interpretation of the main results expected in the A+A runs.

4.1 Nuclear parton distribution functions

Equation (5) reveals the need for a precise knowledge of the PDFs for the LHC physics pro-

gramme. For the proton case, the PDFs are constrained by a large number of data — especially

from HERA and the Tevatron — in global fits performed at LO, NLO or NNLO. In the nuclear

case, much less extensive experimental data on nuclear DIS are available in the perturbative

region (Q2 & 1 GeV2), only for x & 0.01. As a result, there are large uncertainties in the

nPDFs relevant for LHC kinematics. The most recent versions of the nPDFs global fits at NLO

are EPS09 [25], HKN07 [26] and nDS [27] — also Schienbein et al. [28] performed a similar

global fit but did not release a set for public use yet. Studies of the uncertainties following the

Hessian method are available [25, 26] and also released for public use. All sets of nPDFs fit



data on charged leptons DIS with nuclear targets and Drell-Yan in proton-nucleus collisions.

Checks of the compatibility with other hard processes are also available: the inclusive particle

production at high transverse momentum from d+Au collisions at RHIC has been included in

the analysis of [25] without signs of tension among the different data sets; the compatibility with

neutrino DIS data with nuclear targets has also been checked in Ref. [29]2. Moreover, the most

recent data from Z-production at the LHC [30] also show good agreement with the factoriza-

tion assumption although errors are still moderately large. In spite of these successes, the gluon

distribution remains poorly constrained for the nucleus, as can be seen in Fig. 1 where different

sets of nPDFs are shown, together with the corresponding uncertainty bands. DGLAP evolution

is, however, very efficient in removing the nuclear effects for gluons at small-x, which quickly

disappear for increasing Q2. In this way, these uncertainties become smaller for the hardest

available probes — see Fig. 1 — except for the large-x region where substantial effects could

survive for large virtualities. This region is, however, dominated by valence quarks which in

turn are rather well constrained by DIS data with nuclei.

An alternative approach [31] computing the small-x shadowing by its connection to the

hard diffraction in electron-nucleon scattering has been used to obtain the nuclear PDF at an

initial scale Q0 which are then evolved by NLO DGLAP equations. The inputs in this calcula-

tion are the diffractive PDFs measured in DIS with protons at HERA. These distributions are

dominated by gluons, resulting in a stronger shadowing for gluons than the corresponding one

for quarks. In Fig. 1 the results from this approach for the gluon case are also plotted. The

differences at small-x become even larger at smaller virtualities (not shown) [31].
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Fig. 1: Current knowledge of nuclear PDFs, shown as the ratio of bound over free proton gluon distributions,

RPb
g (x,Q2), obtained by the NLO global fits EPS09 [25], HKN07 [26] and nDS [27] at two different virtualities,

Q2 = 1.69 GeV2 and Q2=100 GeV2. Also shown for Q2 = 100 GeV2 are the results from Ref. [31] (FGS10) in

which gluon shadowing is computed from the DIS diffraction cross section measured at HERA.

It is worth noticing that in contrast to RHIC, where there are constraints at mid-rapidity

(x >∼ 10−2) for nuclear distributions from DIS and DY data, the LHC will probe completely

unexplored regions of phase space. This complicates the interpretation of the A+A data before

a p+A benchmarking programme removes these uncertainties, e.g. for the suppression of high

transverse momentum particles observed in [3]. The experimental data from d+Au collisions at

RHIC have already proven to be an appropriate testing ground for nPDFs studies: as mentioned

before, data on inclusive production at high-pT has been included in global fits, providing con-

straints for gluons; nPDFs are also extensively used in phenomenological studies of hard probes

2See, however, Ref. [28] for contradicting results.



at RHIC. On the other hand, the strong suppression found in forward rapidity hadron data [32]

has challenged the interpretation in terms of a modification of PDFs alone. Indeed, a global

fit including these data is possible [33] but resulting in a sizable tension with DIS data. The

presence of final-state effects and/or the inadequacy of the collinear factorization formalism —

and the corresponding onset of saturation of partonic densities — are two possible explanations

for new mechanisms at work in this rapidity range.

Reducing the uncertainties on the initial structure of the colliding nuclei is extremely im-

portant also for central conceptual insights expected from the LHC, such as the evolution of the

system in A+A collisions from cold nuclear matter to hot partonic matter. For all dynamical

models of this evolution, knowledge of the initially-produced particle density is crucial. Ul-

timately, however, this density varies with the uncertainty of the nPDFs and controlling these

uncertainties is a decisive step in addressing one of the central issues in the dynamics of heavy-

ion collisions.

In summary, no other experimental conditions, except p+A collisions at the LHC, exist or

will exist in due time to pin down the parton structure of the nucleus in the necessary kinematic

regime for the A+A studies.

4.2 Processes of interest for benchmarking

The characterization of the medium properties in heavy-ion collisions is performed through

processes which couple to the medium in a theoretically well-controlled manner. Among these

processes, the hard probes — e.g. jets, heavy flavor, or quarkonia — require good knowledge

of the nPDFs and other cold nuclear matter effects. Soft probes such as collective flow do not

require, in principle, any benchmark as the corresponding signals have so far not been observed

in more elementary collisions — although some recent results from CMS p+p collisions [34]

admit an interpretation in terms of collective phenomena. Other hard processes, which do not

involve the strong interaction in the final state, such as direct photon production or W /Z pro-

duction, may also serve as benchmarks and as checks of the factorization hypothesis, Eq. (5).

In this section we review the uncertainties associated with hard processes due to nPDFs. We

select processes involving large virtualities, where the nuclear effects in the parton densities are

expected to be small, and processes involving smaller virtualities where the effects are larger.

4.21 Jets

The modification of the spectrum of particles produced at large transverse momentum, jet

quenching, is one of the main probes for the properties of the hot and dense matter formed

in heavy ion collisions at RHIC. Some of the most interesting results from the first year LHC run

refer to this observable [3, 4, 5]. For this reason, studies of (multi)jet production in p+A collisions

are of great importance as a “cold QCD matter” benchmark. Jet rates in minimum bias p+Pb collisions

at the LHC (2.75+7 TeV per nucleon) have been computed at NLO using the Monte Carlo code

in [35, 36, 37], with a renormalization/factorization scale µ = ET /2 where ET is the total

transverse energy in the event, and using the CTEQ6.1M [38] nucleon parton densities. Imple-

menting a fixed-order computation, this code produces at most 3 jets and contains no parton

cascade. The precision of the computation, limited by CPU time, and the uncertainties due to

the choice of nucleon and nuclear parton densities, isospin corrections, scale fixing,. . . , together

with the influence of the jet finding algorithm and the possibilities to explore different nuclei

and collision energies, have been discussed elsewhere [6, 7].



Figure 2 shows the results for 1-, 2- and 3-jet yields within two central, one backward and

one forward pseudorapidity windows in the LHC frame (asymmetric for these beam momenta),

as a function of the ET of the hardest jet within the acceptance. The yields, computed here

for a luminosity L = 1029 cm−2s−1 integrated in one month (106 s) run, are quite large — for

simplicity, the corresponding scale can be read in the two right panels of Fig. 2. For example,

in the backward region, −4.75 < η < −3, yields above 105 1-jet events per GeV can be

achieved for EThardest < 80 GeV. In the same region, the yields of events with 2 jets within the

acceptance are not reduced by than a factor 100. Thus, studies of cold nuclear matter effects on

multi-jet production should be feasible.

The effect of nuclear corrections to PDFs is very small [O(20%) at most] and hardly

visible in the yields in Fig. 2. The corresponding hot nuclear matter effects in Pb+Pb are ex-

pected to be much larger. The energy interpolation to make the ratios with the expectations

from p+p without nuclear effects should be safe enough for the required degree of accuracy.
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Fig. 2: 1-, 2- and 3-jet cross section as a function of the ET of the hardest jet within the acceptance. Different

pseudorapidity windows (in the laboratory frame) computed for minimum bias p+Pb collisions at the LHC (2.75+7

TeV per nucleon) are considered. Dashed lines are the results without nuclear modification to the PDFs; solid lines

are the results with EPS09 [25]; dotted lines are results with EKS98 nuclear corrections [39, 40] to nucleon parton

densities. Also shown is the scale for corresponding yields for a luminosity L = 1029 cm−2s−1 in one month of

running.

4.22 Processes involving electroweak bosons

The production of electroweak bosons has not been studied in nuclear collisions before the LHC

due to the limitations in energy. However, already during the first lead-lead run, Z production

has been reported by ATLAS [30] and CMS [41]. At leading order, the main mechanism of

W/Z production is the quark-antiquark channel and the fact that valence quark distributions are

rather well constrained by nuclear DIS at large-x makes this probe a good one for constraining

the sea quark distributions [42, 43]. In fact, the asymmetrical nature of p+A collisions provide

an excellent opportunity for nuclear PDF studies [43].



On the other hand, the increasing relevance of jet physics in heavy-ion collisions render

Z+jet measurements of great importance to improve the jet energy calibration. The inclusive

Z+1jet cross section is known at next-to-leading order in the strong coupling both for light and

heavy-quark jets [44, 45, 46, 47].

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -3 -2 -1 0 1 2 3 4

With no nuclear effects

With EPS09 nuclear effects

With no nuclear effects &
only QED couplings

yR

Z-Spectrum, pPb at = 8.8TeV, M=MZ

d
2

/d
M

2
d

y
R

[p
b

/G
e
V

2
]

√

s

min

T
p

20 40 60 80 100

) 
(p

b
)

m
in

T
>

 p
je

t

T
(pσ 410

510 solid: pPb @ 8.8 TeV

 pp @ 8.8 TeV×dashed: 208 

MCFM with CTEQ6.6M + EPS09

 [red]
T

 [blue]; p
Z

= m
F

µ=
R

µ

Fig. 3: Left: Rapidity distributions (in the centre-of-mass frame of the p+Pb collision) for dimuon pairs at the peak

of the Z boson in p+Pb with and without nuclear effects in the PDFs — the corresponding bands correspond to the

uncertainties in the proton PDFs and the nuclear PDFs as given by CTEQ6.6M [49] and EPS09 [25] respectively.

For comparison, also the corresponding spectrum for only QED couplings (multiplied by a factor 1100) is shown

by a red line — Figure from [43]. Right: Integrated cross section σ(pp → Z[→ µ+µ−]+jet) as a function of

the minimum transverse momentum of the leading jet, pmin
T , with two different scale choices (upper curves at

pmin
T = 10 GeV µR = µF = pT , lower curves µR = µF = mZ).

In Fig. 3 Left we plot the rapidity distribution for the NLO production of dimuon pairs

at the peak of the mass of the Z-boson in p+Pb collisions at LHC energies (notice that the

rapidity refers to the p+Pb centre-of-mass frame and cross section is per nucleon). The fact that

the isospin corrections are almost negligible for Z boson production yields a spectrum which

is almost rapidity-symmetric before nuclear corrections to PDFs are implemented. This fact

provides a clear advantage of the p+Pb system over the Pb+Pb system as forward-backward

asymmetries provide direct information about the nuclear PDFs without the need for reference

p+p data [43].

In Fig. 3 Right we plot the corresponding NLO inclusive cross section σ(pp → Z+jet),

for Z decaying into leptons, as a function of the minimum transverse momentum of the leading

jet, pmin
T . The cross section has been computed with the MCFM package [48] integrating the

dimuon invariant mass region in the range 60 GeV < Mµ+µ− < 120 GeV. This provides a real-

istic estimate of the experimental conditions for measuring the Z mesons at the LHC, as done,

in particular in the corresponding measurement in Pb+Pb collisions from Ref. [41]. Nuclear ef-

fects are included using the parameterization of Ref. [25] and cross sections are absolute — for

comparison, the p+p cross section at the same energy and scaled by the corresponding atomic

number of the lead nucleus is also shown. In this integrated cross sections, the nuclear effects

on the integrated cross sections were found to be small and are difficult to disentangle from

the typical theoretical uncertainties of the NLO calculation. More differential distributions are



expected to provide further tests of the nuclear PDFs.

Using the default luminosity quoted in this document, one would expect on the order

of 4000 events with dimuons per unit rapidity in an integrated invariant mass region around

the Z peak at midrapidity — see also [43] — and a factor of 2 smaller yields for the case of

Z+1jet with pjetT > 10 GeV. The corresponding values decrease quickly with increasing pT .
For example, the yield with pjetT > 60 GeV is a factor of ∼ 10 smaller. From these results

it is clear that a minimum luminosity of ∼ 1029 cm−2s−1 is required for these studies to be

feasible. Moreover, in realistic experimental conditions, the efficiency in the reconstruction of

jets would impose a limit on the minimum pT . A factor of at least 10 more luminosity than the

one reported in the previous section would be a prerequisite for high enough statistics in Z+jet
measurements.

It is also worth noting that similar yields are expected in Pb+Pb collisions where no extra

hot-matter effects are present for the production of electroweak bosons. The comparison of

these two systems will cross-check the universality of the nPDFs and the Glauber model as well

as precise studies of jet quenching in Z+jet events.

4.23 Photons

Prompt photon production cross sections have been computed in p+p collisions in QCD at NLO

accuracy. We used for the computation the CT10 parton densities [50] and the Bourhis, Fontan-

naz and Guillet (BFG, set II) photon fragmentation functions [51, 52]. Fig. 4 (Left) shows the

production cross sections at mid-rapidity for p+p collisions at
√
s = 5.5, 8.8 and 14 TeV. The

theoretical uncertainties are estimated by simultaneously varying the renormalization, factor-

ization and fragmentation scales from pT/2 to 2 pT leading to a rather stable 20% systematic

error.

Additional uncertainty should actually come from the rather poorly determined parton-

to-photon fragmentation functions [51, 52, 53]. Although the fragmentation contribution to the

photon cross section is about 20% or less for the fixed target energies, it can easily make up for

about half of the observed photons at collider energies. An “isolation” cut of photon signal can

help reduce significantly the less accurate fragmentation contribution [54]. Furthermore, the

“isolation” cut can help improving the signal-to-background ratio because of the abundance of

π0’s, which decay into two photons that could be misidentified as one photon at high momen-

tum.

For the production cross sections in p+Pb collisions we use the same setup as in p+p colli-

sions supplemented with different sets of nuclear PDFs. In Fig. 4 (Right) we present the nu-

clear modification ratios for the photon production cross section in p+Pb collisions over that in

p+p collisions scaled by the atomic number of the lead nuclei. Also plotted is the ratio com-

puted with proton PDFs but including the corrections due to the different quark content of the

neutrons and the protons inside the Pb nuclei (isospin corrections). The effects are rather small

over the entire range of transverse momentum studied.

As in previous cases, the p+p benchmark for photon production in p+Pbwould need an

interpolation from the lower energy and the top energy p+p runs. A potential experimental

problem, which could lead to systematic uncertainties in the comparison, is the rapidity shift

incurred for asymmetric collision systems.

Inclusive photon production will also be measured in Pb+Pb collisions at the LHC. The

possible presence of additional hot-matter effects make the constraints on nuclear PDFs less
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stringent than in the p+Pb case as the actual size of these effects suffers from large uncertainties.

Turning the argument around, a precise knowledge of the photon production in p+Pb collisions

is a necessity to pin down the presence of additional effects in Pb+Pbwhich are not expected to

be large.

Finally, we comment on typical counting rates in p+Pb collisions at
√
s = 8.8 TeV as-

suming a luminosity of L = 1029 cm−2 s−1. While one could expect as many as 1.2 105 events

at pT = 25 GeV in a one month run, this rate decreases to 5000 events for 50 GeV photon. Still,

such a luminosity would guarantee rather high precision measurements in the pT range from 25

to 50 GeV.

4.24 Heavy flavor

The description of heavy quark production in hadronic collisions provided by the so-called

FONLL (Fixed Order plus Next-to-Leading Log resummation) approach [56] has in recent years

been shown to predict successfully bottom and, to a slightly lesser extent, charm cross sections

in p+p collisions at RHIC and p+ p̄ collisions at the Fermilab Tevatron.

For this report we shall restrict ourselves to the small transverse momentum limit, our

main goal being an assessment of nuclear shadowing effects in p+Pb collisions. In this limit

FONLL coincides by construction with the NLO calculation [57]: it is therefore the latter which

we shall use, complemented with non-perturbative fragmentation functions identical to those

used in [58], and the EPS09 parameterization [25] of the shadowing effects implemented in the

FONLL package for this purpose. The charm and bottom mass are set to 1.5 and 4.75 GeV

respectively, and the CTEQ6.1 [38] proton parton distribution functions are employed.

The results are shown in Fig. 5 for both charm and bottom. In both cases the transverse

momentum distributions and the nuclear modification ratio RpA are plotted. The bands cor-

respond to uncertainties only on the PDFs. In the case of the total spectra, they include the

uncertainties for the proton and the nuclear PDFs in quadrature, while the ratios include only
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for both charm and bottom together with the corresponding uncertainties as given by the EPS09 set of nPDFs.

those from EPS09 — this procedure is explained in Ref. [25]. Although the nuclear effects

are not very large, we note that the associated uncertainties are of the same order as the effects

themselves. Hence, the additional effects expected in Pb+Pb collisions would necessitate the

p+Pb control experiment for a precise interpretation.

4.25 Quarkonium

The calculation of quarkonium cross sections in the color evaporation model is described in

Refs. [8, 59]. The total yield of lepton pairs from quarkonia decays in p+Pb collisions at
√
s =

8.8 TeV and nominal integrated luminosity is 3.9 × 107 inclusive J/ψ and 2.5 × 105 inclusive
Υ [8].

We have included intrinsic transverse momentum, kT , broadening on the quarkonium pT
distributions. We found that 〈k2T 〉 value of 2.5 GeV2 is needed for agreement with the Tevatron

data. A simple logarithmic dependence on the energy, 〈k2T 〉p = 1 + (1/6) ln(s/s0) GeV2 with√
s0 = 20 GeV, can account for the increase with increasing

√
s. Thus for

√
s = 8.8 TeV,

〈k2T 〉p = 3.03 GeV2. The kT broadening due to the presence of nuclear matter is applied as in

Ref. [60].

Sample J/ψ and Υ pT distributions in 8.8 TeV p+p and p+Pb collisions at the LHC are

shown in Fig. 6 in the central region, |y| ≤ 1 and the forward region 3 < y < 4. The broadening
of the pT distributions in p+Pb collisions is rather small. The effects of initial-state shadowing

on the pT distribution, included using the EKS98 parameterization, are likely to be more impor-

tant.

The low pT shadowing effect on the rapidity distributions can be rather substantial at low

x. High pT is less affected. In addition to the EKS98 parameterization in the dashed histogram,

the nDS (dot-dashed) and EPS08 (dotted) shadowing parameterizations are also shown on the

right-hand side of Fig. 6. Note that at backward rapidity (larger x for the nucleus assuming

the Pb beam moves right to left), the curves tend to coincide with the p+p curve although the

strong anti-shadowing of EPS08 manifests itself for the Υ at y < −3. The deviations from

the p+p baseline become stronger with increasing y (smaller x). The nDS parameterization of

the gluon distribution gives the weakest effect while the EPS08 parameterization is strongest.



Fig. 6: The inclusive J/ψ (top) and Υ (bottom) pT (left) and y (right) distributions, calculated in the color evap-

oration model for p+p (solid) and p+Pb (dashed) collisions at 8.8 TeV. The pT distributions are calculated using

the MRST PDFs and, in p+Pb , the EKS98 shadowing parameterization. They are shown for the central (|y| < 1)

and forward (3 < y < 4) rapidity regions. The forward curves are divided by a factor of 5 for clarity. The

rapidity distributions at 8.8 TeV are shown for the p+p baseline and p+Pb collisions with the nDS (dot-dashed),

EKS98 (dashed) and EPS08 (dotted) shadowing parameterizations. Notice that all cross sections are per nucleon

and rapidity refers to the centre-of-mass frame of the p+Pb system.

(Note that the rapidity shift of the p+Pb center of mass is not shown on the plot.) For a com-

plete discussion of the effects of shadowing and nucleon absorption in d+Au and p+A collisions

as a function of rapidity and centrality, see Ref. [61]. For recent results on the rapidity de-

pendence of cold matter effects at the LHC, including calculations with the EPS09 shadowing

parameterization, see Ref. [62].

From these results it is clear that any conclusion about the effects observed in Pb+Pb colli-

sions on quarkonia production need the p+Pb benchmark.

In summary, the luminosity quoted in this document is sufficient for unique studies of

perturbative observables. The cases of electroweak boson or photon production will suffer from

a smaller luminosity. The two main issues to overcome are the c.m. energy interpolations

(between the energies of the A+A and p+A runs) and the rapidity shifts. For the later, i.e. for

those observables for which acceptance is the limiting factor, more specific studies would be

required and collider operations in the A+p as well as the p+A modes are needed.

5. NEW PHYSICS OPPORTUNITIES: TESTING PERTURBATIVE SATURATION

Parton saturation [63] is expected to occur at low values of Bjorken x — i.e. when the gluon

density inside protons and nuclei becomes large. It can be described by an effective theory

derived from QCD: the Color Glass Condensate (CGC) — see e.g. [64] for a recent review

— which generalizes the BFKL evolution equation [65, 66] to situations where the large den-

sity of gluons leads to non-linear effects such as recombination. Searches have been made for

the evidence of parton saturation effects in small-x data from lepton-proton or lepton-nucleus

collisions as well as in RHIC data from Au+Au and d+Au systems. Although with the last theo-



retical developments the agreement with experimental results is rather good, no firm evidence of

the relevance of saturation physics has been found partly because the usual DGLAP approaches

still provide a very successful description of the data also in the small-x region.

Rather general geometrical considerations make saturation effects larger in nuclei by a

factor ∼ A1/3 as compared to the proton. As a result, if xsat,p is a typical value at which non-
linear effects appear at a given scale Q2

sat in the proton, the corresponding value for a nucleus

is larger, xsat,A ∼ A
1

3λxsat,p, for a gluon distribution behaving as x
−λ. This fact makes nuclear

collisions especially suitable for the study of parton saturation physics.

The bulk of particle production in nucleus-nucleus collisions has been computed using

methods from the CGC and, in fact, this approach has been rather successful in predicting

the measured Pb+Pbmultiplicities at the LHC [67]. Heavy-ion collisions, however, are not a

very good testbed if one is interested in the study of saturation phenomena per se. Indeed,

in these collisions final state effects appear which complicate the study of properties of the

wave-function of the incoming projectiles. To take an extreme view, if the system formed in

nucleus-nucleus collisions reaches a state of local thermal equilibrium, then by definition it

has no memory of its early stages beyond inclusive properties such as the energy density and

perhaps some long-range correlations in rapidity.

The cleanest experimental situation to look for saturation physics would be in nuclear DIS

experiments at the highest possible energies. There, one would have direct access to the small-x
region of phase space. HERA experiments so far provide the smallest values of x with protons,
x & 10−5 for Q2 & 1 GeV2, while nuclear data reaches x ∼ 10−2 at most. New proposals

such as the EIC or the LHeC [10, 11] could extend these ranges significantly. However, there

will be no overlap in time with the LHC nuclear programme, at least not in the coming next

ten years. Therefore, proton-nucleus collisions at the LHC offer a unique opportunity to study

the physics of gluon saturation. The smallest possible values of x in nuclei can be studied at

forward rapidities and with final states that have a moderate transverse mass.

Several different observables have been proposed as good probes of the saturation of

partonic densities. In most of them only one universal object appears, the so-called “dipole

cross-section”. This universality can be checked by different measurements at the LHC and by

comparing to smaller energies, in particular with RHIC and with HERA data.

Here, we shall not review the different predictions expected from the saturation of parton

densities. A general effect is that the presence of non-linear terms in the evolution equations di-

minish the growth in the corresponding observables relative to the linear case. Another generic

property of the present implementations is a correspondence between the rapidity- and
√
s-

dependencies of the non-linear effects which will be testable in p+A collisions at the LHC.

Naively, the effects at yLHC ∼ 0 are expected to be similar to those at yRHIC ∼ 3.5. In order to
visualize this fact, we compare in Fig. 7 the nuclear effects in inclusive hadron production com-

puted in collinear factorization [68] with a calculation which uses dipole cross sections evolved

with non-linear Balitsky-Kovchegov (BK) equations including running coupling effects [69].

The last framework is able to reproduce RHIC data at forward rapidities. Although the BK ap-

proach used here is expected to break at a certain value of the transverse momentum, the large

differences between the two predictions and the large pT -range available at the LHC will allow

to identify a window where the two scenarios could be cleanly discriminated. It is worth noting

here that, at variance with the collinear factorization approach where the hard cross section is

computed, the CGC approach provides only the spectra of produced particles. This limitation

can be traced back to the fact that dipole amplitudes are distributed in transverse position and



need to be integrated while this integration is implicit in the PDFs obtained in the collinear

factorization. In this situation, the computation of the ratios needs information external to the

theoretical framework of the CGC about the inelastic p+p and p+A cross sections, or, alterna-

tively, about the average number of nucleon-nucleon collisions 〈Ncoll〉, usually computed in the
Glauber model. This additional ingredient translates into a normalization factor in the ratio

RpA(pT , η)— 〈Ncoll〉 has been fixed to be the same as for RHIC in Fig. 7 but could be larger at

the LHC. If the presence of saturation effects turns out to be a matter of precision, e.g. compat-

ibility of different data sets within a global fit in either a DGLAP or a CGC approach, a good

control over the normalization cross sections and/or the validity of the Glauber model is needed.
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Fig. 7: Nuclear modification factor for inclusive charged hadrons in p+Pb collisions for different rapidities —

notice, centre-of-mass rapidities here — computed in the saturation approach of [69] compared with the same

quantity computed in collinear factorization [68] using EPS09 nuclear PDFs [25], including the corresponding

uncertainty bands — notice that they overlap in most of the pT -region plotted. As explained in the text, the total

normalization of the CGC calculation is proportional to the 〈Ncoll〉 computed within the Glauber model. For this
particular case, this quantity has been fixed to the one computed by the BRAHMS experiment for RHIC conditions,

〈Ncoll〉 = 3.6.

Another generic feature of the presence of saturation of partonic densities is the modifica-

tion of particle correlations due to collective effects in the initial wave function. In the extreme

case, the momentum imbalance of one given particle can be shared among a large number of

other particles, leading to a loss of the correlation signal. Preliminary data from RHIC [70]

find such a decorrelation, compatible with a calculation in saturation physics [71], although

alternative explanations have also been put forward [72].

The present status of the phenomenological calculations within the CGC framework have

strongly benefited from the inclusion of NLO terms in the corresponding BK evolution equa-

tions. These terms are essential to make the comparison with experimental data meaningful

at the quantitative level and to convert this framework into a predictive tool for which the

p+A programme at the LHC will provide ideal testable conditions. Improvements in the limi-

tations of the formalism mentioned above are being worked out and have partly already been

used [73] in the description of the centrality dependence of multiplicities in Pb+Pb collisions

measured by ALICE [67].



6. OTHER OPPORTUNITIES

6.1 Ultra-peripheral Collisions

Charged hadrons accelerated at very high energies generate strong electromagnetic fields, equiv-

alent to a flux of quasi-real photons, which can be used to study high-energy γ + γ, γ+p and
γ+A processes in ultraperipheral collisions (UPCs) where the colliding systems pass close to

each other without interacting hadronically. The effective photon flux, which can be translated

into an effective luminosity, is proportional to the square of the charge, Z2, and thus signifi-

cantly enhanced for heavy ions. The figure of merit for photoproduction is the effective γ+A
luminosity, LAB n(ω), where LAB is the accelerator luminosity and n(ω) is the photon flux per
nucleus. Figure 8(a) compares LABn(ω) for γ+p and γ+Pb collisions in p+Pb interactions to
the case where the photon is emitted from an ion in a Pb+Pb collision. Figure 8(b) compares

the same quantity for γ + γ collisions.
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Fig. 8: Left: Effective γ+A luminosity LAB n(ω) for three cases at the LHC: the photon is emitted from the

proton (labeled γPb), from the ion (γp), and from the ion in a Pb+Pb collision (γPb@Pb+Pb). Right: Effective

two-photon luminosities LAB(dLγγ/dWγγ) for p+p , p+Pb and Pb+Pb collisions at the LHC.

UPCs in p+A collisions present advantages with respect to both ultraperipheral A+A and

p+p collisions. First, relative to A+A collisions, the p+A luminosities are three orders of mag-

nitude larger, and the hadronic center-of-mass energies are also larger. Moreover, the γ + γ
centre-of-mass energies are also higher, resulting from a harder proton photon spectrum and a

smaller distance between the centers of the radiating charges. In addition, it is easier to remove

other photoproduction backgrounds than in A+A collisions characterized by additional photon

exchanges which lead to forward neutron emission. It is also possible to tag the scattered pro-

ton using Roman Pot detectors (CMS/TOTEM [74], ATLAS/ALFA [75], FP420 [76]), allowing

full kinematic reconstruction by separating the momentum transfers from the proton and the

ion. The advantage of p+A with respect to p+p UPCs is threefold. First, the photon flux of

one beam increases by Z2. It is also possibile to trigger on and carry out measurements with

almost no event pileup and also removemost of the exclusive diffractive backgrounds. Since the

nucleus is a fragile object, Pomeron-mediated interactions in p+A collisions will, at variance

with p+p, almost always lead to the emission of a few nucleons detectable in the zero degree

calorimeters.

The interest in UPCs at the LHC includes QCD studies such as probing the low-x gluon
distributions in protons and nuclei, beyond the reach of HERA and RHIC respectively, via

inclusive and exclusive dijet, heavy-flavour and vector meson measurements; as well as elec-



troweak processes and new physics searches [77, 78, 79]. An extensive report on the physics of

UPCs at the LHC is available in Ref. [80]. UPC studies are integral part of the ALICE [81, 82],

ATLAS [83] and CMS [84] heavy-ion programmes.

6.11 Physics potential of photon-proton/nucleus physics

Ultraperipheral p+A collisions will play a dual role in both extending studies of the hadron

structure to a new kinematic domain and serving as a reference for similar studies in ultrape-

ripheral A+A collisions.

Inclusive photonuclear processes are of particular interest for the study of small-x parton
densities. Dijet [85], heavy flavor [86] and quarkonia photoproduction can be used to extract

small-x gluon densities in protons and nuclei. At comparable virtualities, LHC measurements

will extend those at HERA to an order of magnitude smaller x. For example, the b quark rate
in p+Pb collisions is measurable to x ∼ 10−4 at pT ∼ 5 GeV [87]. The c quark rate could

be measured at even smaller x by going to lower pT . Comparison of the rapidity dependence
of leading charm in γ+A and γ+p scattering will be a very sensitive test of the onset of the
nonlinear regime.

Exclusive photoproduction of heavy quarkonia, γ+A(p) → V +A(p), where V = J/ψ,Υ
and the nucleus A or proton p remains intact) offers a useful means to constrain the small-x

nuclear gluon density down to values x = m2
V /W

2
γ+A,p. The mass,MV , and rapidity, y, of the

final-state vector meson can be used to determine the photon energy, ω, in the laboratory frame
from y = ln(2ω/MV ). This determination is ambiguous in A+A collisions as it is not possible

to distinguish which nucleus emitted the photon and which was the target, and thus it is only

possible to convert dσ/dy, into σ(γ + A → V + A) (in the nuclear target frame) for a single
photon energy corresponding to y = 0. This ambiguity is avoided in p+A collisions because the

photon is most frequently emitted by the heavier nucleus. Thus measuring dσ/dy as a function
of y corresponds to measuring the energy dependence of the photoproduction cross section.

Exclusive vector meson photoproduction has been studied in UPCs at RHIC by STAR [88,

89, 90, 91] and PHENIX [92, 93]. The LHC p+Ameasurements would be extremely valuable as

a ‘benchmark’ for understanding similar UPC A+A data and measuring nuclear shadowing. The

ratio of cross sections σ(γ+ A → V + A)/[A ·σ(γ+ p → V + A)] at the sameWγ+N allows

for a rather direct measurement of nuclear shadowing. The A+A data provides the numerator

while the p+A data are used in the denominator. Many theoretical and experimental systematic

uncertainties cancel in the ratio.

Last but not least, the cross section for the electromagnetic proton dissociation reaction

in the field of the nucleus, p+Pb → Pb+X, can be reliably calculated (±5% uncertainties) and

thus usable as “luminometer”. Ultraperipheral d+Au interactions along with electromagnetic

deuteron dissociation have been measured at RHIC, with a cross section of σEMDdAu = 1.99 b

[94], and compared to theoretical predictions [95] to directly determine the luminosity needed

to calibrate the cross sections of other processes produced in d+Au collisions [96].

6.12 Physics potential of two-photon and electroweak processes

Photon-photon interactions in UPCs at LHC energies can access a rich QCD, electroweak, and

even beyond the Standard Model (BSM) programme at the TeV scale. In the QCD sector,

double vector meson production γ + γ → V + V [78], will be accessible with similar rates in

p+A and A+A collisions. In addition heavy flavor meson spectroscopy can distinguish between



quark and gluon-dominated resonances, search for glueballs [77, 78], and study ηc spectroscopy
through radiative J/ψ decays with larger rates than in direct γ + γ production [79].

QED dilepton production is also of interest as a luminosity monitor [97]. In CMS [74],

the CASTOR/TOTEM forward detectors can measure low-pT e+e− pairs, corresponding to

large impact parameters, where theoretical calculations are most reliable. Higher-order QED

corrections are expected to reduce the huge dielectron cross sections in Pb+Pb UPCs (σee ≈
200 b). The p+Pb data could provide experimental verification of the predicted deviations from
theZ4 scaling expected for symmetric ion-ion collisions, as yet unobserved at RHIC or the SPS.

Tagging forward protons at the LHC with Roman Pots will enhance the detection ca-

pability of electroweak processes, improving the background suppression. The addition of

far-forward detectors at ±420 m [76] would improve forward light-ion detection, allowing

p+A events to be double tagged. A process well suited to testing the electroweak (γWW)

gauge boson self-interaction is single W photoproduction [98] from a nucleon in ultraperiph-

eral p+A and A+A [99] collisions. Similarly, 10 γ + γ → W+ + W− events are expected

in a 106 s p+A run. These W+W− pairs, characterised by small pair pT , are sensitive to the
quartic gauge boson couplings. Lastly, even Higgs boson production would be measurable if

the p+A luminosity were increased by a factor of 60 [100].

6.2 Measurements of Interest to Astroparticle Physics

Current cosmic-ray data reveal a rapid increase of the average mass number 〈A〉 of the cosmic-
ray flux — i.e. a transition from lighter (p, He,...) to heavier composition— in the energy range

around ∼ 1015 eV in the laboratory frame, coinciding with a steepening of the cosmic-ray

flux. In the energy range around ∼ 1018 eV there are indications that the composition becomes

lighter again, correlated with a hardening of the spectral slope of the cosmic-ray flux [101].

The most recent data from the Pierre Auger Observatory points to yet another change back to a

heavier composition in the highest energy range ∼ 1019 eV [102]. A precise determination of

this quantity would have a profound impact on the knowledge of the sources of the high-energy

cosmic rays.

Direct measurements of the cosmic-ray mass number A are possible only up to E <
1015 eV. Above this energy attempts to infer the A of the primary particle are based on the

measurements of the extensive air shower (EAS) induced when the cosmic ray interacts upon

entering the atmosphere. The main source of uncertainty in the predictions of the EAS observ-

ables stems from our limited knowledge of the features of hadronic interactions in this energy

range, in particular at forward rapidities, where most of the energy of the shower flows. In

fact, none of the existing hadronic interaction models currently used for modeling EAS devel-

opment [103, 104, 105] is able to provide a consistent and satisfactory description of cosmic-

ray data due to the unconstrained extrapolations from energies reached at accelerator based

experiments. In this situation, data from the LHC helps to constrain these models and to im-

prove the interpretation of cosmic ray measurements [106]. In particular, a proton-nucleus run

would be of utmost importance since the EAS are predominantly generated in collisions of the

cosmic-rays with Nitrogen and Oxygen nuclei in the upper atmosphere. The measurements

of particle production at very forward rapidities, accessible to existing LHC detectors such as

the Zero-Degree-Calorimeters [107] and the LHCf [108] experiment, are therefore of special

importance.



7. EXPERIMENTAL CONSIDERATIONS

In Fig. 9 the expected kinematical regions measured in the (x,Q2) plane for different processes3

accessible with an integrated luminosity of 0.1 pb−1 in a p+Pb run are plotted inside the band

indicating the maximum kinematical reach. Also shown in the same figure is the reach of the

current data used to constrain the present knowledge of nuclear PDFs. The rest of the phase

space to be studied at the LHC is basically unconstrained with regard to nuclear effects. Notice

that the band corresponding to RHIC kinematics has to be compared with the total kinematic

reach of the LHC, as the region accessible with actual processes, is, in fact, much smaller

[109]. This clearly illustrates the wide new region opened at the LHC for both benchmarking

perturbative processes in A+A collisions, and for the new physics opportunities discussed in

this report.
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Fig. 9: Total kinematical reach of p+Pb collisions at
√
s =8.8 TeV at the LHC. Also shown is the reach with an

integrated luminosity of 0.1 pb−1 for some of the particular probes studied in the present document for ALICE and

CMS, respectively.

The LHC detectors are designed to run under the much more demanding conditions of

Pb+Pb and high-luminosity p+p collisions. Extensive studies of the detector capabilities and

performance, including p+A runs, are available [81, 82, 84, 83], which include discussion of

the centrality determination in p+A and performance for various observables. We focus here

on topics related to the rapidity shifts and the energy interpolations for benchmarking as well

as the need of p+A and A+p collisions during the same running period. The luminosity quoted

in this document, L = 1029cm−2s−1, is expected to be sufficient to carry out the proposed

measurements and matches the detector capabilities. Assuming an effective running time of

106 s, the total integrated luminosity is 0.1 pb−1. Any significant reduction of this quantity

would significantly impair the measurement of some of the observables — e.g. electroweak

boson (γ, W and Z) production — for benchmarking or other physics studies as explained

previously in the text. On the other hand, a larger luminosity would allow one to measure with

3 These limits correspond to 2 → 2 or 2 → 3 processes. If 2 → 1 kinematics is relevant, as e.g. in Drell-
Yan production or in inclusive hadron production in the CGC approach, the relevant values of x may become

significantly smaller.



high enough precision other relevant observables such as Z+jet, important for jet calibration in
jet quenching measurements and for nPDF studies.

Benchmarking in p+A is essential for all perturbative studies relevant for the Pb+Pb pro-

gramme at the LHC. The usual procedure is to study ratios between the A+Aor p+A cross

sections with the corresponding p+p one scaled by the appropriate factor. This is, in principle,

the same procedure to be used at the LHC. One of the questions is how to produce such ratios,

when the energy of the collision is different for different colliding systems, as it is the case

for the top LHC energies in p+p , p+A and A+A . Ideally, benchmarking p+p runs at the same

energy have to be done. This possibility has been explored in a short p+p run at
√
sNN = 2.76

TeV in 2011 with an integrated luminosity of around 20 nb−1 for ALICE and about a factor of

10 larger for CMS and ATLAS. These luminosities are of the same order as the ones considered

here and should provide the needed conditions for benchmarking without theoretical input. In

the absence of p+p data at the same energy as the Pb+Pb or the p+Pb runs, interpolations among

different energies will be needed through a ratio of the type [110]

σ(pp→ X ;
√
sPbPb/pPb) =

σTH(pp→ X ;
√
sPbPb/pPb)

σTH(pp→ X
√
spp)

σEXP(pp→ X ;
√
spp) . (6)

where X depends on the process under consideration4. However, the accuracy of this interpo-

lation is process dependent. Uncertainties are quite smallO(5%) for the hardest processes, e.g.
electroweak boson production, but are usually larger otherwise. For example they are 12% (8%)

in charm (beauty) production when extrapolating from
√
s = 14 TeV down to

√
s = 5.5 TeV

[82]. At the time of the p+A run some of these uncertainties could be further reduced through

constraints arising from the p+p program.

Different observables could need slightly different benchmarking strategies depending on

the theoretical or experimental capabilities to isolate different nuclear effects if present — for

example modifications in the hadronization. For those effects solely depending on a modifi-

cation of the PDFs in the nuclear environment, the use of ratios with respect to p+p and the

corresponding interpolation (6) is strictly speaking not essential, especially if quantities not

depending on the knowledge of the proton PDFs can be built, see e.g. [43]. In general the

same consideration applies for factorization in the fragmentation functions when computing

e.g. inclusive particle production at high transverse momentum. In this case, good control over

the normalization of the cross sections would significantly improve the comparisons as well as

allow for precision checks of the Glauber model.

In this document a canonical energy for a p+Pb run of
√
s = 8.8 TeV has been considered.

This means that a second interpolation to the Pb+Pbmaximum energy will be necessary. The

potential problem for this second interpolation lies on the possible energy dependence of effects

which are not factorizable in terms of nuclear PDFs. With the present knowledge from RHIC

and SPS, this will be especially relevant for quarkonia production — in this case a p+Pb run

at the same energy of the Pb+Pb one would be preferred. For other observables such effects

are not expected. For nuclear PDF studies and for the new physics opportunities quoted in

this document, the highest energy run would be more interesting, also for a reduced systematic

uncertainties, if p+p data at the same energy are not available. Notice that constraints for PDFs

in a given range of x are stronger if the kinematical limit is not reached.

A second independent effect which needs to be taken into account is the rapidity shift.

This rapidity shift,∆y = 0.46, will be present irrespectively of the energy of the p+Pb run. This

4For a first study with experimental data on the relevance of these extrapolations see e.g. [3].



is especially relevant for detectors which are not symmetric in rapidity. In that case, the ideal

running conditions for benchmarking would be to have both p+A and A+p collisions during the

same running period. A fast enough switch between the two modes would, in this case, be a

requirement for a successful run.

The integrated luminosity used in this document for benchmarking purposes is 0.1 pb−1.

Any substantial reduction of this quantity would alter the performance of some of the measure-

ments presented here, in particular those involving electroweak processes and large virtualities

as mentioned above. A luminosity larger by a factor of ∼ 10, on the other hand, would give
access to new important observables.
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