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We apply the ab initio no-core shell model/resonating group method (NCSM/RGM) approach
to calculate the cross section of the 7Be(p,γ)8B radiative capture. This reaction is important for
understanding the solar neutrino flux. Starting from a selected unitary-transformed chiral nucleon-
nucleon interaction that accurately describes two-nucleon data, we performed parameter-free many-
body calculations that predict simultaneously both the normalization and the shape of the S-factor.
We study the dependence on the number of 7Be eigenstates included in the coupled-channel equa-
tions and on the size of the harmonic oscillator basis used for the expansion of the eigenstates and
of the localized parts of the integration kernels. Our S-factor result at zero energy is on the lower
side of, but consistent with, the latest evaluation.

The core temperature of the Sun can be determined
with high accuracy through measurements of the 8B neu-
trino flux, currently known with a ∼ 9% precision [1]. An
important input in modeling this flux is the 7Be(p,γ)8B
reaction [2] (the final step of the nucleosynthetic chain
leading to 8B). At solar energies this reaction proceeds
by external, predominantly nonresonant E1, S- and D-
wave capture into the weakly-bound ground state (g.s.)
of 8B. Experimental determinations of the 7Be(p,γ)8B
capture consist in direct measurements with a proton
beam and 7Be targets [3–5] as well as indirect measure-
ments from the breakup of a 8B beam into 7Be and
proton in the Coulomb field of a heavy target [6–8].
Theoretical calculations needed to extrapolate the mea-
sured S-factor to the astrophysically relevant Gamow en-
ergy were performed with several methods: the R-matrix
parametrization [9], the potential model [10–12], micro-
scopic cluster models [13–15] and, recently, also using the
ab initio no-core shell model wave functions for the 8B
bound state [16]. The most recent evaluation of the the
7Be(p,γ)8B S-factor at zero energy, S17(0), has a ∼10%
error dominated by uncertainty in the theory [2].
In this Letter, we present the first parameter-free ab

initio many-body calculations of the 7Be(p,γ)8B capture
starting from a nucleon-nucleon (NN) interaction that
describes two-nucleon properties with high accuracy. We
apply a recently developed technique that combines ab

initio no-core shell model (NCSM) [17] and resonating-
group method (RGM) [18, 19] into a new many-body ap-
proach [20–22] (ab initio NCSM/RGM) capable of treat-
ing bound and scattering states of light nuclei in a unified
formalism. We use, in particular, the orthonormalized
NCSM/RGM many-body wave functions given by

|ΨJπT 〉 =
∑

νν′

∫

drr2
∫

dr′r′2 Âν |Φ
JπT
νr 〉

×N
−1/2
νν′ (r, r′)

χJπT
ν′ (r′)

r′
, (1)

with inter-cluster antisymmetrizer Âν , clusters’ center of

mass separation ~rA−a,a, and binary-cluster channel states
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The wave functions χJπT
ν (r) of the relative inter-cluster

motion satisfy the integral-differential coupled-channel
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with bound- or scattering-state boundary conditions.
The Hamiltonian and Norm kernels,

HJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
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contain all the nuclear structure and antisymmetrization
properties of the problem. Further relevant details of the
NCSM/RGM formalism are given in Ref. [20].
In the present case A is equal to 8, and the projec-

tile is a proton [a=1 in Eq. (2)]. The input into Eq. (3)
are: i) the chiral N3LO NN potential [23], which we
soften by a series of unitary similarity renormalization
group (SRG) transformations [24, 25] characterized by
an evolution parameter Λ; and ii) the eigenstates of
the target, i.e.

7Be, calculated within the NCSM. In
Fig. 1, we show the energy dependence of the 7Be g.s.
on the harmonic-oscillator (HO) frequency (a) for the
HO basis sizes Nmax = 4 to 12, with the 12~Ω results
obtained using the importance-truncation scheme [26].
The frequency dependence is quite flat and, with the
selected NN potential, we reach converge for the g.s.
within Nmax = 12 basis. The g.s. energy minimum is
found for ~Ω = 18 MeV, frequency that we then choose
for all subsequent calculations (including eigenstates and
integration kernels). The convergence of the absolute en-
ergies of the lowest five 7Be states is presented in panel
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FIG. 1. (Color online) Calculated NCSM 7Be eigenenergies
using the SRG-N3LO NN potential with Λ = 1.86 fm−1.
Panel (a) shows the dependence of the g.s. energy on the HO
frequency for Nmax = 4−12 (with Nmax = 12 results obtained
within the importance-truncated basis). Absolute energies of
the lowest 5 eigenstates for Nmax = 4− 10 and ~Ω = 18 MeV
are compared to experimental values in panel (b).

TABLE I. 7Be g.s. energy (in MeV), point-proton rms radius
(in fm), g.s. quadrupole (in e fm2) and magnetic (in µN) mo-
ments and M1 transition (in µ2

N) obtained within the NCSM
using the SRG-N3LO NN potential with Λ = 1.86 fm−1. Ex-
perimental values are from Refs. [27, 28].

Eg.s. rp Q µ B(M1; 1
2

−

→
3

2

−

)

NCSM -38.46 2.25 -4.95 -1.15 3.14

Expt. -37.60 2.36(2) - -1.3995(5) 3.71(48)

(b) of Fig. 1. Compared to the experimental values, we
observe a slight overbinding of the g.s. and an overesti-
mation of the 7/2− and 5/2−2 state excitation energies,
but, overall, the agreement is reasonable. In Table I, we
compare some of our (IT-)NCSM 7Be results based on
calculations up to Nmax = 14 to experimental values.
Using the five lowest Nmax = 10 eigenstates of 7Be, we

first solve Eq. (3) with bound-state boundary conditions
to find the g.s. of 8B. We note that the same Nmax (Nmax
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FIG. 2. (Color online) Dominant P -wave components of the
2+ 8B g.s. wave function for Nmax = 10 and ~Ω = 18 MeV,
using the SRG-N3LO NN potential with Λ = 1.86 fm−1. The
NCSM/RGM calculation includes 7Be g.s. and 1/2−, 7/2−,
5/2−1 and 5/2−2 excited states.The calculated s.e. is 136 keV.

+1 for the positive parity states) value is used to expand
the localized parts of the integrations kernels (4) and
(5). The chosen SRG-N3LO NN potential with Λ = 1.86
fm−1 leads to a single bound state, 2+, with separation
energy (s.e.) 136 keV, quite close to the experimental 137
keV. For the calculation of the low-energy behavior of the
S17 S-factor, a correct s.e. is very important. The fact
that the experimental s.e. of 8B can be found using the
SRG potential with a Λ from a“natural”-value range, i.e.
≈1.8−2.1 fm−1, is reassuring. In Fig. 2, we plot the most
significant components of the radial wave functions χ(r)
for the 8B 2+ g.s. The dominant component is clearly the
channel-spin s = 2 P -wave of the 7Be(g.s.)-p that extends
to a distance far beyond the plotted range. Remarkably,
we notice a substantial contribution from the 7Be(5/2−2 )-
p P -wave. Clearly, for a realistic description of the 8B
g.s., this state must be taken into account. The influence
of still higher 7Be resonances on the S-factor results will
be discussed at the end of this Letter.
Next, we solve the same NCSM/RGM equations (3)

with scattering-state boundary conditions for a chosen
range of energies and obtain scattering wave functions
and the scattering matrix. Corresponding calculated
phase shifts and cross sections are displayed in Fig. 3. All
energies are in the center of mass (c.m.). We find sev-
eral P -wave resonances in the considered energy range.
The first 1+ resonance, manifested in both the elastic
and inelastic cross sections, corresponds to the experi-
mental 8B 1+ state at Ex = 0.77 MeV (0.63 MeV above
the p-7Be threshold) [29]. The 3+ resonance, responsible
for the peak in the elastic cross section, corresponds to
the experimental 8B 3+ state at Ex = 2.32 MeV. How-
ever, we also find a low-lying 0+, an additional 1+ and a
2+ resonances that can be distinguished in the inelastic
cross section. In particular, the s=1 P -wave 2+ reso-
nance is clearly visible. There is also an s=2 P -wave 2+
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FIG. 3. (Color online) Selected P -wave (b) diagonal phase
shifts of p-7Be elastic scattering, inelastic 7Be(p,p′)7Be(1/2−)
cross section (c) and elastic 7Be(p,p)7Be differential cross sec-
tion at Θc.m. = 1480 (d). Calculations as described in Fig. 2.

resonance with some impact on the elastic cross section.
These resonances are not included in the current A = 8
evaluation [29]. We note, however, that the authors of the
recent Ref. [30] do claim observation of low-lying 0+ and
2+ resonances based on an R-matrix analysis of their p-
7Be scattering experiment. Their suggested 0+ resonance
at 1.9 MeV is quite close to the calculated 0+ energy of
the present work.
With obtained bound- and scattering-state wave func-

tions that are properly orthonormalized and antisym-
metrized (1), we calculate the 7Be(p,γ)8B radiative cap-
ture by using a one-body E1 transition operator. The
resulting S17 factor is compared to several experimental
data sets in panel (a) of Fig. 4. In the data, one can see
also the contribution from the 1+ resonance due to the
M1 capture. Our calculated S-factor is somewhat lower
than the recent Junghans data [5] but the shape repro-
duces closely the trend of the GSI data [8] and is quite
similar to that obtained within the microscopic cluster
model [15] used in the most recent S17 evaluation [2].
The contributions from the initial 1−, 2− and 3− partial
waves are shown in panel (b) of Fig. 4. Our calculated
S17(0)≈19.4 eV b is on the lower side, but consistent with
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FIG. 4. (Color online) Calculated 7Be(p,γ)8B S-factor as
function of the energy in the c.m. compared to data (a). Only
E1 transitions were considered. Initial-state partial wave con-
tributions are shown in panel (b). Calculation as in Fig. 2.

the latest evaluation 20.8±0.7(expt)±1.4(theory) eV b.
We studied the convergence of the 7Be NCSM calcu-

lations in Fig. 1. To verify the behavior of our S-factor
with respect to HO basis size and number of included
7Be eigenstates, we performed additional calculations as
summarized in Fig. 5. To study the dependence on the
HO basis size, shown up to Nmax = 12 in panel (b), we
use the importance truncation scheme and, due to com-
putational limitations, we include only the three lowest
eigenstates of 7Be. The Nmax = 10 and 12 S-factors are
very close. In panel (a), we present results with up to 8
7Be eigenstates obtained in a Nmax = 8 basis. Calcula-
tions with more than 5 eigenstates are presently out of
reach for larger Nmax values. We can see a significant
impact of the 5/2− states (the 8B calculation with only
3 7Be states is unbound in this case). Among the others
only the 8th state, 7/2−2 , contributes somewhat to the
s.e. and flattening of the S-factor at higher energies. We
note that we selected different SRG-N3LO NN poten-
tials with the aim to match closely the experimental s.e.
in each of the largest calculation. From these results we
conclude that the use of the Nmax = 10 space is justi-
fied and a limitation to the five lowest 7Be eigenstates is
quite reasonable (or that Nmax = 8 space is insufficient
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FIG. 5. (Color online) Convergence of the 7Be(p,γ)8B S-factor
with the number of 7Be eigenstates (a) and the size of the HO
basis used to expand the 7Be eigenstates and localized parts
of the integration kernels (b). The number of eigenstates and
the calculated separation energy in each case is shown in the
legend. HO frequencies of ~Ω = 19 MeV (a) and 17 MeV (b)
corresponding to the respective minima of 7Be g.s. were used.

and a limitation to just 3 states is unrealistic). Also,
based on these results we estimate the uncertainty of our
calculated S17(0) to be ≈ 0.7 eV b.
In conclusion, we performed parameter-free ab initio

many-body calculations of the 7Be(p,γ)8B radiative cap-
ture that predict simultaneously both the normalization
and the shape of the S-factor. Our S-factor result at
zero energy, S17(0)=19.4(7) eV b, is on the lower side of,
but consistent with, the latest evaluation, and its shape
follows closely the data from Ref. [8]. Our calculations
can be further improved by including effects of additional
higher-lying 7Be resonances. This can be best done by
coupling the NCSM/RGM binary-cluster basis with the
NCSM calculations for 8B as outlined in Ref. [31]. The
inclusion of three-nucleon interactions, both chiral and
SRG-induced [32], is also desirable. Efforts in these di-
rections are under way.
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[26] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501

(2007); R. Roth, Phys. Rev. C 79, 064324 (2009).
[27] D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).
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