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Monte Carlo implementation of up- or down-scattering due to collisions with material

at finite temperature
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The Monte Carlo All Particle Method generator and collision physics library features two models
for allowing a particle to either up- or down-scatter due to collisions with material at finite tem-
perature. The two models are presented and compared. Neutron interaction with matter through
elastic collisions is used as testing case.

I. INTRODUCTION

The Monte Carlo All Particle Method (MCAPM) gen-
erator and collision library provides a means for client
codes to access the All Particle Method (APM) data-base
and simulate in-flight nuclear reaction physics. Here,
“All” stands for the following finite list of particles that
can be “followed” or “tracked” by the library: neutron,
proton, deuteron, triton, 3He, alpha, and photon. All
tracked particle types are coupled through the collision
physics [1]. Provided an incident particle among those
treated in the library, its initial energy, and the compo-
sition of the background material, the collision physics
performed within the MCAPM library consists of three
main parts: i) sampling the target isotope with which the
collision will take place; ii) sampling the reaction that
will occur for the sampled isotope; and iii) sampling the
characteristics (number, type, speed and direction) of the
exiting particles produced by the sampled reaction. This
sequence is appropriate for a background composition in
which the target isotopes are at rest. However, in any
real medium at a temperature above absolute zero the
nuclei are in thermal agitation and possess a distribution
of velocities. Therefore, the extra steps of sampling the
velocity (speed and direction) of the target isotope at the
time of collision and correcting data for its motion have
to be taken.
To include the temperature of the target, the col-

lision physics of point i) is performed using Doppler-
broadened (or heated) cross-section data [2]. The
Doppler-broadened cross section in the laboratory ref-
erence frame for a projectile of kinetic energy E is

σ(E, T ) =
1

v

∫

~Vt

vr σ(Er , 0)M(~Vt, T ) d~Vt . (1)

Here v = |~v| is the projectile speed, ~Vt is the target ve-

locity, vr = |~v − ~Vt| and Er are the relative speed and
relative kinetic energy, respectively, σ(Er , 0) is the cold

(0 K) cross section, and M(~Vt, T ) = (4π)−1M(Vt, T ) is
the normalized distribution of the target velocity, which
we assume to be an isotropic, Maxwell-Boltzman distri-
bution [3]:

M(Vt, T ) =
4√
π

(mt

2T

)
3
2

exp

(

−mtV
2
t

2T

)

. (2)

We have used the notation mt to denote the target
mass. Point-wise tabulated cross sections can be Doppler
broadened exactly using the SIGMA1 kernel broadening
method of Cullen and Weisbin [4]. Heated cross sections
are pre-computed and stored for a fixed number of tem-
peratures in the APM data-base generated by the MCF-
GEN package [5]. If the cross section in the data library
is not processed to the temperature that is needed in the
problem, MCAPM uses linear interpolation.
Once an isotope is selected from the background mate-

rial, the collision library samples the velocity of the target
at the time of collision. Given a projectile of velocity ~v,

the velocity ~Vt should be randomly chosen from the veloc-
ity distribution of target particles which collide with that
projectile. The (conditional) probability for a collision

with a target at velocity ~Vt in a time δt is proportional
to the probability of a collision, δt ρ vr σ(vr , 0), times the

probability that the target has velocity ~Vt, M(~Vt, T ), for
a resulting probability density

P (~v, ~Vt) =
vr σ(Er , 0)M(~Vt, T )

v σ(E, T )
, (3)

where ρ is the density of the selected target isotope and
σ(E, T ) is the heated cross section of Eq. (1). The rela-
tive velocity vr and hence the cold cross section σ(Er, 0)

are functions of ~Vt. Therefore, sampling from Eq. (3)
is very difficult, unless some approximations are intro-
duced. Particularly, it is very hard to develop a sam-
pling method that is both efficient and general enough
to be applicable to a wide range of cross section shapes.
In this report we describe the two models now available
in MCAPM to sample the target velocity starting from
Eq. (3). The first is the constant elastic cross section
(CECS) model used in MCNP [6] (where it is known as
free gas thermal model ) and THERMAL [7], which is
implemented uniquely for neutron elastic scattering and
based on the approximation that the elastic cold cross
section is constant. A brief description of this model is
given in Sec. II. The second model, applicable to all six
projectiles of finite mass treated in MCAPM and to all
types of reactions, replaces the continuum-energy cross
section with a multi-group approximation and is pre-
sented in Sec. III. For both models, we describe how
the motion of the target is taken into account when the
kinematics of a collision are being calculated. The pro-
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jectile energy distributions produced by the two models
are compared in Sec. IV, where we present, as a test
case, neutrons interacting with matter through elastic
collisions. Concluding remarks are shown in Sec. V.

II. CONSTANT ELASTIC CROSS SECTION
MODEL

This model is similar to the thermal treatment known
as the free-gas thermal model in MCNP [6], and is char-
acterized by the following restrictions and assumptions:

1) Only neutron elastic scattering corrected:
Thermal down- or up-scattering is only imple-
mented for neutron as the incident particle when
the neutron energy is comparable with the thermal
energy of the target [8]. That is, when the neu-
tron speed is much greater than the target thermal
speed, thermal effects can be ignored. Only correc-
tions to the elastic scattering data are performed.
For all other cases the target is considered at rest.

2) Constant cross section: The neutron elastic
cross section is assumed to be constant, σ(Er , 0) =
σ0, when sampling the velocity of the target. This
is a good approximation for neutron elastic scat-
tering on light nuclei, for which the cross section
σ(Er, 0) at low energies is a nearly-constant func-
tion of Er. For heavy nuclei, where σ(Er , 0) can
vary rapidly at low energy, the approximation is
justified if the moderating effect of scattering is
small.

3) Free gas: It is assumed that intermolecular forces
between target atoms can be ignored.

4) Maxwellian speed distribution for the tar-

get: The target is assumed to be a Maxwellian
with temperature T , as defined in Eq. (2).

With these assumptions, the probability distribution
for a target velocity of modulus Vt and direction µ =

cos(ϑ) = ~Vt · ~v/(Vtv) following from Eq. (3) is

P (Vt, µ) = C vr M(Vt)V
2
t , (4)

= C
vr

v + VT
(v + Vt)M(Vt)V

2
t ,

where C is a normalization constant and vr = (v2+V 2
t −

2µ v Vt)
1/2. The convenience of multiplying and dividing

by (v+VT ) will become apparent in the next paragraph.
The sampling of Eq. (4) is done using the rejection

method described in Ref. [7], which we summarize here
for completeness. The direction µ and the speed Vt are
sampled independently, as if they were uncorrelated. The
direction µ is sampled from a uniform probability density
function in the range [−1, 1], and the speed is sampled

from the normalized envelope function

E(Vt) =
(v + Vt)M(Vt)V

2
t

v + (2/
√
παt)

(5)

=
v

v + (2/
√
παt)

P1(Vt) +
2/

√
παt

v + (2/
√
παt)

P2(Vt) ,

where αt = mt/2T , and P1(Vt) and P2(Vt) are the two
normalized probability density functions given by:

P1(Vt) = M(Vt)V
2
t , (6)

P2(Vt) =

√
παt

2
M(Vt)V

3
t . (7)

The rejection technique is implemented as follows. First,
if r1 < v/[v + (2/

√
παt)], where r1 is a random de-

viate in the interval [0, 1), Vt is sampled from P1(Vt),
else Vt is sampled from P2(Vt). The sampled values of
µ and Vt are then accepted if r2 < vr/(v + Vt), where
r2 is a second random deviate in the interval [0, 1), else
they are rejected and the procedure is repeated. Inci-
dentally, we note that vr/(v + Vt) ≤ 1, by definition.
The sampling of Vt from P1 is performed using the rejec-
tion method, with a comparison function suggested by
Dermott E. Cullen [7]. Alternatively, the substitution
Vt = x/

√
2αt reduces P1 to sampling the distribution

√

2/π exp(−x2/2)x2 for the variable x as discussed in
Appendix A. Defining x = αt V

2
t , the sampling of P2(Vt)

reduces to sampling from the distribution x exp(−x).
The sampling of the target isotope and reaction are

performed using heated cross section data. If the sam-
pled reaction is elastic, then the target velocity is sampled
as described above, and the sampling of the exiting par-
ticles’ characteristics is implemented assuming that the
cold elastic cross section is constant.

A. Non-relativistic kinematics of an elastic collision

In the CECS thermal model, which is restricted to elas-
tic neutron-scattering data, the only outgoing particles
are the neutron and the target. Assuming that the col-
lision is isotropic in the center-of-mass (c.m.) frame, the
angles of the neutron and target post-collision velocities
with respect to the neutron initial velocity are obtained
in a non-relativistic kinematics framework as follows.
In the c.m. frame, the velocities of the neutron and

target before the collision are (with m the mass of the
neutron):

~u = ~v − ~vc.m. =
mr

m
~vr , (8)

~Ut = ~Vt − ~vc.m. = −mr

mt
~vr , (9)

where we have introduced the c.m. velocity ~vc.m., the rel-
ative velocity ~vr, and the reduced mass mr = mmt/(m+
mt) for the neutron-target system. We further define a
system of Cartesian axis by choosing the x-axis to be
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aligned with the neutron’s initial velocity in the labora-
tory frame, and the y-axis to be aligned with the com-
ponent of the target velocity that is perpendicular to the

incident-neutron velocity (i.e., ~Vt = µ x̂+
√

1− µ2 ŷ). In
the c.m. frame, after the elastic collision, neutron and
target speeds are the same as before the collision and
only their directions change. The final velocities in the
c.m. frame can be written as,

~u′ = ~v′ − ~vc.m. =
mr

m
vr (α x̂+ β ŷ + γ ẑ) , (10)

~U ′
t = ~V ′

t − ~vc.m. = −mr

mt
vr (α x̂+ β ŷ + γ ẑ) , (11)

where ~v′ and ~V ′
t are the final velocities in the laboratory

frame. For MCAPM, only the components of ~v′ and ~V ′
t

parallel and perpendicular to ~v are needed. For these
components, γ only appears as γ2 and it is removed via
the identity α2 + β2 + γ2 = 1. Hence, only α and β need
to be sampled (their sampling is explained in Appendix
B). Let v′‖ (V ′

t ‖) and v′⊥ (V ′
t⊥) be the components of ~v′

(~V ′
t ) parallel and perpendicular to ~v. After some math,

the parallel components can be written as,

v′‖ =
mv +mt (µVt + α vr)

m+mt
, (12)

V ′
t ‖ =

mt µVt +m (v − α vr)

m+mt
, (13)

and the perpendicular componets as,

v′⊥ =
mt

[

(1− µ2)V 2
t + (1− α2)v2r + 2β

√

1− µ2Vtvr

]

m+mt

1/2

, (14)

V ′
t⊥ =

[

m2
t (1− µ2)V 2

t +m2(1− α2)v2r + 2mmtβ
√

1− µ2Vtvr

]

m+mt

1/2

. (15)

Equations (12)-(15) are derived for isotropic scattering
in the c.m. frame. For non-isotropic elastic scattering,
the only outgoing data present in nuclear data evalua-
tions are the probabilities for scattering by an angle θ′r
where θ′r is the angle between the projectile’s velocity
and the scattered neutron’s velocity in the c.m. frame
as seen in the relative frame. In this case, Eqs. (12)-
(15) are still valid provided we rotate α′ = cos(θ′r) and

β′ =
√

1− α′2 cos(2π rr) in the relative frame to those
in the c.m. frame. Here, α′ is sampled from the angular
data and rr is a random deviate in the interval [0,1). The
rotation yields,

α = cos(θr)α
′ − sin(θr)β

′ (16)

β = sin(θr)α
′ + cos(θr)β

′ (17)

where θr is the angle between the projectile’s velocity and
the relative velocity (i.e., cos(θr) = (v − µVt)/vr derived

from ~v · ~vr = ~v · (~v − ~Vt).

III. MULTI-GROUP CROSS SECTION MODEL

This model is less restrictive than the CECS thermal
treatment in that it can be applied to all kinds of re-
actions involving projectiles and targets of finite mass.
Restrictions and assumptions are as follows:

1) Only reactions involving particles with fi-

nite mass are corrected: Thermal down- or up-

scattering is implemented for six (neutron, proton,
deuteron, triton, 3He, alpha) of the seven projec-
tiles treated in MCAPM and for all targets of finite
mass. Photon scattering data are left unchanged.

2) Multi-group cross section: We make the ap-
proximation of using the cross section σ(Er , 0) av-
eraged with a particle spectrum Φ(E) over energy
intervals or groups. The value of this multi-group
cross section is taken to be constant over a group:

σ0
g =

∫ Eg+1

Eg
σ(E, 0)Φ(E) dE

∫ Eg+1

Eg
Φ(E) dE

. (18)

For this study, the energy flux is constant over each
group, Φ(E) = 1.

3) Free gas: It is assumed that intermolecular forces
between target atoms can be ignored.

4) Maxwellian speed distribution for the target:
The velocity distribution of the target is assumed
to be a Maxwellian with temperature T , as defined
in Eq. (2).

In a medium at temperature T , the most probable
speed for a target of mass mt is the thermal value of
V Th
t =

√

2T/mt. Given an incident particle of veloc-
ity ~v traveling in the hot medium, for a sufficiently large
β the interval Iβ = [v − β V Th

t , v + β V Th
t ] will contain
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the majority of the allowed values for the relative speed

vr = |~v − ~Vt|. Following from Eq. (3), the probability
distribution for the target velocity can then be written
as:

P (Vt, µ) = C
vrσ(Er , 0)

qmax
qmaxM(Vt)V

2
t (19)

where C is a normalization constant and qmax represents
the maximum of vr σ(Er , 0) over the values of vr specified
by the interval Iβ ,

qmax = max
vr∈Iβ

vr σ(Er, 0) . (20)

The quantity vr σ(Er, 0)/qmax is smaller than one for vr
values in the interval Iβ . Therefore, the target velocity
can be sampled from Eq. (19) according to the follow-
ing rejection technique. First, Vt is sampled from the
normalized envelope function

E(Vt) = M(Vt)V
2
t . (21)

This can be done using the inversion method. Defining
x2 = 2αtV

2
t the sampling from E(Vt) reduces to sampling

from the distribution
√

2/π exp(−x2/2)x2 as discussed
in Appendix A. Second, the target direction µ is sampled
from a uniform probability density function in the range
[−1, 1]. Third, vr = (v2+V 2

t −2µvVt)
1/2 and σ(Er , 0) are

calculated from the sampled values of Vt and µ. Finally,
the sampled target speed and direction are rejected when
r qmax > vrσ(Er, 0), where r is a random deviate in the
interval [0, 1).
The rejection method described above is easy to im-

plement and has the advantage of being applicable to a
wide range of cross section shapes. However, it can be
quite inefficient if used with point-wise data, particularly
for cross sections that present a sharp maximum for a
very narrow interval of energies, in which case there is a
high rate of rejection. In practice, we make the approx-
imation of using the cross section averaged over energy
intervals or groups introduced in Eq. (18). The value
of this so-called multi-group cross section is taken to be
constant over a group: The boundaries for the speed
intervals corresponding to the energy groups are calcu-
lated ahead of time according to the relativistic expres-
sion vg =

√

Eg(Eg + 2m)/(Eg +m)2, where m is the
mass of the incident particle, and the constant qmax is
obtained from

qmax = max
g∈[Gmin,GMax]

vgσ
0
g , (22)

where Gmin and Gmax are group boundaries such that
vGmin

≤ v − βV Th
t < vGmin+1 and vGMax

≤ v + βV Th
t <

vGMax+1, respectively. Finally, target speed and di-
rection are rejected when r qmax > vrσ

0
G, where vr ∈

[vG, vG+1). For our tests we adopted β = 2. The use of
larger values of β made no significant difference in the
results.

A. Non-relativistic kinematic transformations

The MCAPM data are given in the rest frame of the
target. Accordingly, in the multi-group cross section
(MGCS) model we i) boost the velocity of the projectile
to the target’s rest frame, where we ii) sample the reac-
tion and exiting particles’ characteristics using the cold
cross section and, finally, iii) transform the velocities of
the collision products back to the laboratory frame. In
this section we describe the kinematic transformations
involved in steps i) and iii).
In the laboratory frame (xyz) we take the x-axis to be

along the projectile’s velocity

~v = v x̂ (23)

and the target’s laboratory velocity to be in the x-y plane

~Vt = Vt

(

µ x̂+
√

1− µ2 ŷ
)

. (24)

The boost described in i) changes the projectile’s initial
velocity. In the reference frame where the target is at
rest (x′y′z′), the initial velocity of the projectile coincides
with the relative velocity

~vr = vrx̂
′ = (Vt µ− v) x̂+ Vt

√

1− µ2 ŷ . (25)

The collision physics of point ii) is performed by the col-
lision routine of MCAPM, which returns the speed us of
the collision product, and its direction µs relative to the
projectile’s initial boosted velocity. The velocity of the
collision product can be written as

~us = us

(

µs x̂
′ + µp

√

1− µ2
s ŷ

′ +
√

1− µ2
p

√

1− µ2
s ẑ

′
)

,

(26)
where we have chosen the y′ axis in the x-y plane, and
µp is a random number between −1 and 1. The x′y′z′

reference system is given by a rotation of θr = arccos(µr)
degrees around the z = z′ axis, where

µr =
~vr · x̂
vr

=
Vt µ− v

√

V 2
t + v2 − 2µVtv

. (27)

To perform the final step, iii), we must first rotate the
product’s velocity through the negative of the angle θr,
which yields,

~v ′
s = us













(

µrµs − µp

√

1− µ2
r

√

1− µ2
s

)

x̂
(

√

1− µ2
r µs + µrµp

√

1− µ2
s

)

ŷ

√

1− µ2
s

√

1− µ2
p ẑ













.(28)

Finally, by adding the target’s velocity to ~v ′
s we get the

velocity of the collision products in the laboratory refer-
ence frame:
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~vs =













[(

µrµs − µp

√

1− µ2
r

√

1− µ2
s

)

us + v2µt

]

x̂
[ (

√

1− µ2
r µs + µrµp

√

1− µ2
s

)

us + v2
√

1− µ2
t

]

ŷ

√

1− µ2
s

√

1− µ2
p us ẑ













.

IV. NEUTRON INTERACTION WITH
MATERIAL AT FINITE TEMPERATURE

THROUGH ELASTIC COLLISIONS

The two thermal scattering models described in Sec. II
and III and the corresponding MCAPM routines have
been tested by means of a Monte Carlo simulation in
which an initial monochromatic source of fast neutrons
interacts with matter and achieves thermal equilibrium
through elastic collisions.

A. Test

Specifically, the simulation consisted in starting with a
monochromatic source of (N = 5×105) neutrons and let-
ting it diffuse in a box containing thermal nuclei of a sin-
gle isotope target at a temperature T . The Monte Carlo
test code used for this simulation, relaxToMaxwellian,
is part of the MCAPM package.
The program starts (at the time t = 0) by setting the

energy of each neutron to some initial value E0 and cal-
culating the corresponding speed v0, characteristic time

τ0 =
1

ρ v0 σ(E0, T )
, (29)

and free-flight time ϑ0 (at the time t = 0). Here σ(E, T )
is the hot elastic cross section for the chosen isotope.
In general, the free-flight time is a random variable and
can be determined by sampling it from the probability
distribution P (ϑ) = exp(−ϑ/τ)/τ using the formula

ϑ = −τ ln(r) , (30)

with r a random number sampled from a uniform distri-
bution in the interval [0, 1).
The program then follows the neutrons for a total of

104 time steps. At each time step i, the program up-
dates the time that each neutron can spend in free flight
by subtracting the elapsed time interval δti. When the
free-flight time of one of the neutrons becomes zero or
negative, the program calls the MCAPM collision rou-
tine (i.e. the neutron undergoes a collision) and updates
its energy Ei, speed vi, characteristic time τi, and free-
flight time ϑi. The time intervals δti are chosen in such
a way that thermalization is reached in about half of the
total number of time steps independently of the target
isotope chosen in the simulation. This is achieved by
setting

δti = 0.002
(mt

m

)0.8

〈τi〉 , (31)

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

0.0 2.0 4.0 6.0 8.0 10.0

P
(E

n
)d

E
n

En [keV]

16O target,   T = 1.0 keV,   E0 = 10.0 keV

t = 0        
〈  Nc 〉  = 7.4     

= 16.8   
= 35.6   
= 72. 2  
= 132.5 

FIG. 1. Time-evolution, in terms of the average number of
collisions 〈Nc〉, of the neutron energy distribution for neu-
trons interacting with 16O at T = 1.0 keV through elastic
scattering, when the motion of the target is ignored. The
initial energy of the neutrons is E0 = 10.0 keV.

where 〈τi〉 is the average characteristic time, 0.002 is an
arbitrary small factor, m and mt are neutron and tar-
get mass, respectively, and the “energy-exchange factor”
(mt/m)0.8 is a good empirical fit to compensate for the
fact that a projectile loses, on average, less energy per
collision the heavier the target.
Finally, every 100 time steps, the program tallies the

number of neutrons per energy interval and updates the
neutron-energy distribution P (En).

B. Results

In the scenario described in the above section, where
only one kind of target isotope is considered and only
elastic collisions are allowed, after a sufficient number of
collisions the neutrons should thermalize and their en-
ergy distribution should relax to a Maxwell-Boltzmann
distribution of temperature identical to that of the target
nuclei. In our tests we considered three different isotopes,
4He, 16O, and 238U.
We start by describing what happens in the simulation

outlined above when the thermal motion of the target is
ignored, and the target is considered at rest. As we will
see, this can lead to serious error. Indeed, every time
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0.0
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t = 0     
〈  Nc 〉  = 1.3  
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= 22.7

FIG. 2. Time evolution, in terms of the average number of
collisions 〈Nc〉, of the energy distribution for neutrons inter-
acting with 4He at T = 0.1 keV, obtained within the CECS
thermal model. The neutrons have an initial energy of E0 = 1
keV.

a neutron performs an elastic collision with one of the
target nuclei (16O in the example of Fig. 1), part of its
energy is passed onto the target. In the situation shown
in Fig. 1, in which the neutrons have an initial energy
E0 = 10 keV (t = 0 distribution) and the 16O targets
a temperature T = 1 keV, at each elastic collision the
neutrons always down-scatter and slowly cool down to
zero energy, when in fact they should have relaxed to
a Maxwell-Boltzmann distribution corresponding to the
temperature of the background material.
As the time elapsed at each time step depends on the

target’s mass and neutron elastic cross section, in Fig. 1
and following we have chosen to label the time-evolution
of the neutron-energy distribution by the average number
of collisions, 〈Nc〉. This allows for a more immediate
comparison of the distributions we present.
Figure 2 shows the evolution with time of the energy

distribution for neutrons interacting with 4He at T = 0.1
keV, obtained within the CECS thermal model. The neu-
trons have an initial (t = 0) P (En) = δ(En −E0) energy
distribution with E0 = 1 keV. At first the number of 1
keV neutrons gradually decreases, as they mostly down-
but also up-scatter through the elastic collisions with the
4He target. Already after about six collisions, the neu-
trons have an average energy of 〈En〉 = 0.2 keV, and con-
tinue to cool down until they reach thermalization after
about 23 collisions. As anticipated, for a light isotope
such as 4He, the neutron elastic cross section is nearly
constant at these low energies, and the CECS thermal
scattering model is appropriate and leads to the correct
neutron-energy distribution. Repeating this test within
the MGCS model, we obtain equivalent results. This is
to be expected, as the MGCS scattering model reduces
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FIG. 3. Time evolution, in terms of the average number of
collisions 〈Nc〉, of the energy distribution for neutrons inter-
acting with 16O at T = 0.1 keV, obtained within the CECS
thermal model. The neutrons have an initial energy of E0 = 1
keV.

to the CECS thermal model when the cold cross section
is constant.
With 16O we obtain analogous results, as shown in

Fig. 3. Here, because of the larger mass of 16O, the
amount of energy transferred from the neutrons to the
target at each collision is smaller than in the 4He case,
and the neutrons are down-scattered at a slower pace.
The average number of collisions required to reach
thermalization is 〈Nc〉 ≈ 71.4.

The 4He and 16O results obtained within the CECS
thermal model are reexamined in Fig. 4 under a different
perspective, and compared to calculations with a 238U
target isotope. This time, we present the behavior of
the neutrons’ average energy 〈En〉 as a function of the
average number of collisions. As the energy of the tar-
get nuclei follows a Maxwell-Boltzmann distribution with
T = 0.1 keV, in all three cases we expect that the average
energy of the neutrons will reach the value 3T/2 = 0.15
keV once thermalization is achieved. This is indeed the
case for the light isotopes, whereas the neutrons scatter-
ing off 238U come to the larger value of 〈En〉 = 0.181(1)
keV.
The reason for this error can be quickly found in

the plot of the T ≈ 0 neutron elastic cross section for
4He, 16O, and 238U, presented in the bottom panel of
Fig. 4. While the assumption of constant cross section
for En ≃ T (which the CECS thermal model relies
upon) is very good in the first two cases, clearly it is far
from being valid for 238U, for which the neutron elastic
cross section presents several narrow resonances in the
energy range of interest. As a result, in a 238U medium
the neutron energy distribution does not relax to a
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FIG. 4. Top panel: Average energy 〈En〉 as a function of the
average number of collisions 〈Nc〉, for neutrons interacting
with 4He (short-dashed line), 16O (long-dashed line) and 238U
(solid line) at T = 0.1 keV, obtained within the CECS thermal
model. The neutrons have an initial energy of E0 = 1 keV.
Bottom panel: T ≈ 0 elastic cross section for n-4He (short-
dashed line), n-16O (long-dashed line), and n-238U (solid line)
elastic scattering. In the low-energy limit the elastic cross
section is not constant and assumes a 1/v behavior (with v the
neutron speed) because it has been heated to (the very small,
but finite) room temperature, which is the lowest temperature
in the MCAPM library.

Maxwellian, but rather to a widely oscillating function,
as shown in the upper panel of Fig. 5.

To understand the origin of the oscillations observed in
the top panel of Fig. 5, in the bottom panel we compare
the 〈Nc〉 = 1166 distribution to the T = 0.1 keV n-238U
elastic cross section: peaks in the cross section corre-
spond to dips in the distribution, and vice versa. This
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FIG. 5. Top panel: Time evolution, in terms of the average
number of collisions 〈Nc〉, of the energy distribution for neu-
trons interacting with 238U at T = 0.1 keV, obtained within
the CECS thermal model. The neutrons have an initial en-
ergy of E0 = 1 keV. Bottom panel: The energy distribution
after 1166 collisions compared to the T = 0.1 keV n-238U
elastic cross section.

behavior is caused by an imbalance between the sampling
of the free-flight time of the neutrons and that of the ve-
locity of the target. Indeed, while the first is based on
the cross section heated from the T = 0 n-238U rate of
Fig. 4 (bottom panel) according to Eqs. (29) and (30),
the sampling of the target velocity is performed within
the CECS thermal scattering model, and assumes that
the T = 0 cross section is constant. The result of this
inconsistency between heated and cold cross sections is
that, whenever the heated cross section has a peak, neu-
trons are scattered at a faster rate than they are ther-
malized, giving a dip in the neutron energy distribution.
Vice versa, when the heated cross section presents a dip,
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FIG. 6. Top and bottom panels: Same as in Fig. 5, but
obtained within the MGCS thermal model using the heated
cross section respectively as in Eqs. (35) and (33). Central
panel: T = 0.1 keV n-238U elastic cross section of Eqs. (33)
(dashed line) and Eq. (35) (solid line).

the neutrons are not scattered fast enough and accumu-
late, creating a peak in the distribution. As we have seen
from Fig. 4, this can lead not only to a neutron distribu-
tion that oscillates around a Maxwellian, but also to an
incorrect average energy for the thermalized neutrons.
The MGCS thermal scattering model should offer a so-

lution to the problem of low-energy cross sections with
narrow resonances, as in the case of 238U. As antici-
pated earlier, the results of this model for light targets
such as 4He and 16O (for which the low-energy cross sec-
tion is a nearly-constant function of energy) are equiva-
lent to those obtained within the CECS thermal model.
The run-time for the simulations within the two different
models is also comparable for these light isotopes.
The time-evolution of the energy distribution for an

initial 1 keV source of neutrons interacting with 238U at
T = 0.1 keV, obtained within MGCS model, is shown
in the upper panel of Fig. 6. In this case, the neutrons
do thermalize to a Maxwell-Boltzmann distribution in
about 1241 collisions. As expected, the rate at which
the neutrons loose energy through the collisions with the
238U targets is about an order of magnitude smaller than
for the much lighter 16O (see Fig. 3). For cross sections
that present narrow resonances in the energy region of
interest, the MGCS model leads to a somewhat larger
run time than that of the CECS thermal model, about
three times larger for this specific simulation with 238U.
This is caused by a higher rate of rejection during the
sampling of the target velocity, as explained in Sec. III.
Caution has to be used in the implementation of the

test described in Sec. IVA. In particular, to speed up the
code, one could be tempted to make the approximation
of using the multi-group cross section when calculating
the characteristic time of the neutrons and set

τi =
1

ρ vi σT
gi

, Egi ≤ Ei < Egi+1 , (32)

with the multi-group heated cross section, calculated
from point-wise data according to Eq. 1, given by (with
Φ(E) the energy flux)

σT
gi =

∫ Egi+1

Egi

σ(E, T )Φ(E) dE
∫ Egi+1

Egi

Φ(E) dE
. (33)

In our simulations we used Φ(E) = 1. Having said that,
the success of the simulation depends heavily on the con-
sistency between the cross section used to sample the tar-
get velocity and that used to sample the free-flight time.
In the MGCS model, the target velocity is sampled based
on the T = 0 multi-group cross section of Eq. (18), σ0

g .
Consequently, the correct characteristic time to achieve
detailed balance, is given by

τi =
1

ρ vi σ∗(Ei, T )
(34)

where σ∗(Ei, T ) is a “point-wise” cross section obtained
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from heating the T = 0 multi-group cross section [9]:

σ∗(Ei, T ) =
1

vi

∫

~Vt

vr
∑

g

σ0
g χ[Eg,Eg+1)(Er)M(~Vt, T ) d~Vt ,

(35)

where vr = |~vi − ~Vt|, and χ[Eg,Eg+1)(Er) is the step func-
tion equal to one for Eg ≤ Er < Eg+1, and zero else-
where,

χ[Eg,Eg+1)(Er) =

{

1 if Er ∈ [Eg, Eg+1) ,

0 elsewhere .
(36)

Although the differences between σT
gi and σ∗(Ei, T )

might seem minimal, as shown in the central panel of
Fig. 6, the bottom panel of this same figure demonstrates
the deleterious effects of choosing the former cross sec-
tion over the latter when sampling the free-flight time
of the neutrons in the case of a 238U target: once again
the neutron energy distribution relaxes to an oscillating
function rather than to the expected Maxwell-Boltzmann
distribution.
We note that this distinction between σT

gi and
σ∗(Ei, T ) becomes important only when the T = 0 cross
section presents narrow resonances in the energy-region
of interest. Indeed, for a nearly constant T = 0 cross
section σT

gi ≈ σ∗(Ei, T ).
Finally, for the tests within the MGCS model we used

a modified APM data-library with σ∗(E, T ) in place of
σ(E, T ). The modified data-base was generated with the
program heatGroupXSec.py (Python based) that invokes
the MCFGEN package [5] and is part of the MCAPM
package.

V. CONCLUSIONS

In this report we reviewed the treatment of thermal
scattering in MCAPM. First, we gave a brief description
of the constant elastic cross section thermal model, which
was ported from MCNP [6] (where it is known as free gas
thermal model) and is based on the approximation that
when sampling the target’s velocity, the cold elastic cross
section is treated as being constant. In MCAPM this
model is implemented uniquely for neutron elastic scat-
tering. Then, we presented the multi-group cross section
model that replaces the continuum-energy cross section
with a multi-group approximation. This second model is
implemented for all six projectiles of finite mass treated
in MCAPM and for all types of reactions. For both mod-
els, we described also how the motion of the target is
taken into account when the kinematics of a collision are
being calculated.
In the second part of the report we adopted the

MCAPM collision routine to study the interaction of neu-
trons with matter at finite temperature through elastic
collisions, and we compared the neutron energy distri-
butions produced by the two thermal scattering mod-
els. Of the three target isotopes chosen for our simula-

tions, the neutrons thermalize to a Maxwell-Boltzmann
distribution using either of the thermal scattering mod-
els for the first two, 4He and 16O. However, for 238U, the
correct thermalization is achieved only using the MGCS
model. Indeed, the n+238U elastic cross section at low
energies, far from being nearly constant (an assumption
of the CECS thermal model), presents several narrow
resonances.
In general, the MGCS model is the safest thermal scat-

tering model in MCAPM. In the cases in which the CECS
thermal model is accurate, the MGCS model gives equiv-
alent results in about the same amount of time. For
heavy nuclei, where the T = 0 cross section can vary
rapidly at low energy, and the CECS thermal model can
lead to serious error, the somewhat larger run time of the
MGCS model is a small price to pay for achieving correct
thermalization of the system.
Although it would be desirable to avoid the approx-

imation of the continuum-energy cross section with a
multi-group cross section, the MGCS thermal scattering
model can become very inefficient if implemented with
point-wise cross section data, particularly for cross sec-
tions that present a sharp maximum for a very narrow
interval of energies, in which case there is a high rate of
rejection in the sampling of the target speed.
Finally, caution has to be used when implementing the

MGCS model into a thermalization program. Indeed,
the success of the simulation depends heavily on the
fulfillment of detailed balance. That is, the “right” cross
section for the sampling of the free-flight time of the
projectiles is that obtained by heating the T = 0 cross
section used for the sampling of the target velocity.
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Appendix A: Sampling from (
√

2/π) exp(−x2/2) x2

We start by noting that

√

2

π

∫ x

0

e−
1
2
x′ 2

x′ 2dx′

=
1

(2π)
3
2

∫ x

0

e−
1
2
x′ 2

x′ 2dx′

∫ π

0

sin(ϑ) dϑ

∫ 2π

0

dφ

(A1)

=
1

(2π)
3
2

∫ x1

0

∫ x2

0

∫ x3

0

e−
1
2
(x′ 2

1 +x′ 2
2 +x′ 2

3 ) dx′
1dx

′
2dx

′
3 (A2)

= I3 , (A3)

where the Cartesian variables x′
1, x

′
2, and x′

3 (integration
limits x1, x2 and x3) are given by the orthogonal trans-
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formation of the polar coordinates x′, ϑ, and φ (x, ϑ, and
φ):

x′
1 = x′ sin(ϑ) cos(φ) , (A4)

x′
2 = x′ sin(ϑ) sin(φ) , (A5)

x′
3 = x′ cos(ϑ) , (A6)

and I is the integral quantity:

I =
1√
2π

∫ x1

0

e−
1
2
x′ 2
1 dx′

1 . (A7)

While inverting I is not obvious, it is straight forward to
invert I2, by moving to the bi-dimensional polar coordi-
nates ρ′ and α′, with x′

1 = ρ′ cos(α′) and x′
2 = ρ′ sin(α′)

(and integration limits ρ =
√

x2
1 + x2

2, α = arctan x2

x1
):

I2 =
1

2π

∫ x1

0

e−
1
2
x′ 2
1 dx′

1

∫ x2

0

e−
1
2
x′ 2
2 dx′

2 (A8)

=
1

2π

∫ ρ

0

e−
1
2
ρ′ 2

ρ′ dρ′
∫ α

0

dα′

=

∫ y

0

e−y′

dy′
1

2π

∫ α

0

dα′ . (A9)

In Eq. (A9) we used the variable substitution y′ = ρ′ 2/2
(and y = ρ2/2). Very easily now, we can use inversion
techniques to sample the quantity y from the distribution
e−y, and the angle α from a uniform probability density
function in the range [0, 2π]. Given two random deviates,
r1 and rα in the interval [0, 1) this sampling yields y =
− ln(r1) and α = 2π rα and hence:

x2
1 = −2 ln(r1) cos

2(2π rα) , (A10)

x2
2 = −2 ln(r1) sin

2(2π rα) . (A11)

The third coordinate in Eq. (A2) can be sampled, once
again, by choosing two more random deviates, r2 and r3

in the interval [0, 1) as x2
3 = −2 ln(r2) cos

2(2π r3) [or,
equivalently, x2

3 = −2 ln(r2) sin
2(2π r3) ].

Overall, three independent random deviates, r1, r2,
and r3, are sufficient to sample x from the distribution
(
√

2/π) exp(−x2/2)x2:

x =
√

−2 ln(r1)− 2 ln(r2) cos2(2π r3) . (A12)

Appendix B: Sampling isotropic direction in 3D

The algorithm used to sample the quantities α and β
of Sec. II A is as follows. Given two random deviates rx
and ry in the interval [0, 1), we generate the quantities x
and y uniformly distributed in the interval (−1, 1):

x = 1− 2 rx , (B1)

y = 1− 2 ry . (B2)

We then calculate ρ2 = x2 + y2, and reject and repeat

the sampling if ρ2 > 1. Next we calculate z =
√

1− ρ2.
Finally, the random quantities α and β are given by:

α = 2 x z , (B3)

β = 2 y z . (B4)

This rejection technique is used in alternative to cal-
culating

α =
√

1− µ2 cos(φ) , (B5)

β =
√

1− µ2 sin(φ) , (B6)

where µ = cos(ϑ) is sampled uniformly in the interval
(−1, 1) as 2rϑ − 1 and φ is sampled uniformly between 0
and 2π as 2πrφ, with rϑ and rφ random deviates in the
interval [0, 1).
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