
LLNL-CONF-488591

WCET Tool Challenge 2011:
Report

R. v. Hanxleden, N. Holsti, B. Lisper, E. Ploedereder, R. Wilhelm, A.
Bonenfant, H. Cassee, S. Buente, W. Fellger, C. Ferdinand, S. Geppert,
J. Gustafson, B. Huber, M. Islam, D. Kaestner, R. Kirner, F. Krause, M.
d. Michiel, M. Olesen, A. Prantl, W. Puffitsch, C. Rochange, M.
Schoeberl, S. Wegener, M. Zolda, J. Zwirchmayr

June 17, 2011

WCET 2011
Porto, Portugal
July 5, 2011 through July 5, 2011



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



WCET TOOL CHALLENGE 2011: REPORT

Reinhard von Hanxleden1, Niklas Holsti2, Björn Lisper3,
Erhard Ploedereder4, Reinhard Wilhelm5 (Eds.),

Armelle Bonenfant6, Hugues Cassé6, Sven Bünte7,
Wolfgang Fellger4, Sebastian Gepperth4, Jan Gustafsson3,

Benedikt Huber7, Nazrul Mohammad Islam3, Daniel
Kästner8, Raimund Kirner9, Laura Kovács7, Felix Krause4,

Marianne de Michiel6, Mads Christian Olesen10, Adrian
Prantl11, Wolfgang Puffitsch7, Christine Rochange6, Martin

Schoeberl12, Simon Wegener8, Michael Zolda7, Jakob
Zwirchmayr7

Abstract
Following the successful WCET Tool Challenges in 2006 and 2008, the third event in this series was
organized in 2011, again with support from the ARTIST DESIGN Network of Excellence. Follow-
ing the practice established in the previous Challenges, the WCET Tool Challenge 2011 (WCC’11)
defined two kinds of problems to be solved by the Challenge participants with their tools, WCET
problems, which ask for bounds on the execution time, and flow-analysis problems, which ask for
bounds on the number of times certain parts of the code can be executed. The benchmarks to be used
in WCC’11 were debie1, PapaBench, and an industrial-strength application from the automotive do-
main provided by Daimler. Two default execution platforms were suggested to the participants, the
ARM7 as “simple target” and the MPC5553/5554 as a “complex target,” but participants were free
to use other platforms as well. Ten tools participated in WCC’11: aiT, Astrée, Bound-T, FORTAS,
METAMOC, OTAWA, SWEET, TimeWeaver, TuBound and WCA.

1Department of Computer Science, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
2Tidorum Ltd, Tiirasaarentie 32, FI-00200 Helsinki, Finland
3School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
4Institute of Software Technology (ISTE), University of Stuttgart, Universitätsstr. 38, 71229 Stuttgart, Germany
5FR. 6.2 - Computer Science, Universität des Saarlandes, PO-Box 15 11 50, 66041 Saarbrücken
6IRIT - CNRS, Université de Toulouse, France
7Faculty of Informatics, Technical University Vienna, 1040 Vienna
8AbsInt Angewandte Informatik GmbH, Science Park 1, 66123 Saarbrücken, Germany
9Compiler Technology and Computer Architecture Group, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB,
UK

10Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark
11Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA
12Department of Informatics and Mathematical Modeling, Technical University of Denmark, Asmussens Alle, DTU - Build-

ing 305, 2800 Lyngby, Denmark



1. Introduction

The chief characteristic of (hard) real-time computing is the requirement to complete the computation
within a given time or by a given deadline. The computation or execution time usually depends to
some extent on the input data and other variable conditions. It is then important to find the worst-case
execution time (WCET) and verify that it is short enough to meet the deadlines in all cases.

1.1. The WCET Problem Statement

Several methods and tools for WCET analysis have been developed. Some tools are commercially
available. The survey by Wilhelm et al. [42] is a good introduction to these methods and tools. Some
tools use pure static analysis of the program; other tools combine static analysis with dynamic mea-
surements of the execution times of program parts. Unlike most applications of program analysis,
WCET tools must analyse the machine code, not (only) the source code. This means that the analysis
depends on the target processor, so a WCET tool typically comes in several versions, one for each
supported target processor or even for each target system with a particular set of caches and memory
interfaces. Some parts of the machine-code analysis may also depend on the compiler that gener-
ates the machine code. For example, the analysis of control-flow in switch-case statements may be
sensitive to the compiler’s idiomatic use of jumps via tables of addresses.

In general, WCET tools use simplifying approximations and so determine an upper bound on the
WCET, not the true WCET. The pessimism, that is the difference between the true WCET and the
upper bound, may be large in some cases. For most real, non-trivial programs a fully automatic
WCET analysis is not (yet) possible which means that manual annotations or assertions are needed
to define essential information such as loop iteration bounds. The need for such annotations, and the
form in which the annotations are written, depends on both the WCET tool and on the target program
to be analysed.

1.2. The WCET Tool Challenge: Aims and History

As the term “Challenge” suggests, the aim is not to find a “winning” tool but to challenge the partic-
ipating tools with common benchmark problems and to enable cross-tool comparisons along several
dimensions, including the degree of analysis automation (of control-flow analysis, in particular), the
expressiveness and usability of the annotation mechanism, and the precision and safety of the com-
puted WCET bounds. Through the Challenge, tool developers can demonstrate what their tools can
do, and potential users of these tools can compare the features of different tools.

Jan Gustafsson of the Mälardalen Real-Time Centre organized the first WCET Tool Challenge in
2006, using the Mälardalen benchmark collection [10] and the PapaBench benchmark [31], with par-
ticipation from five tools (aiT, Bound-T, SWEET, MTime, and Chronos). The results from WCC’06
were initially reported at the ISoLA 2006 conference [8] and later in complete form [9]. Lili Tan of
the University of Duisburg-Essen did an independent evaluation of the tools on these benchmarks,
also reported at ISoLA 2006 [40].

The second WCET Tool Challenge was organized in 2008 (WCC’08) and was presented at the 8th
International Workshop on Worst-Case Execution Time (WCET) Analysis [13]. Two of the WCC’06
participants (Bound-T and MTime) as well as four new tools (OTAWA, RapiTime, TuBound and wcc)
participated in WCC’08. The second Challenge differed from the first in that it suggested a common

2



Tool Description Source-code ARM7 MPC5554 Other
in Section flow analysis (Sec. 2.4.1) (Sec. 2.4.2) target processors

aiT 3.1 + +
Astrée 3.2 +
Bound-T 3.3 +
FORTAS 3.4 + TC1796 (Sec. 2.4.3)
METAMOC 3.5
OTAWA 3.6 + + +
SWEET 3.7 +
TimeWeaver 3.8 +
TuBound 3.9 + C167 (Sec. 2.4.4)
WCA 3.10 JOP (Sec. 2.4.5)

Table 1: Participating tools and target processors used in WCC’11.

execution platform (the ARM7 LPC2138) and also defined pure flow-analysis problems. It included
less benchmarks (5 instead of 17), but increased the number of analysis problems.

1.3. Contributions and Outline

The third WCET Tool Challenge was organized in 2011 (WCC’112) and is the subject of this report.
As a first overview, Table 1 lists the tools participating in the Challenge and indicates which target
processors each participant has addressed for WCC’11; most tools support other target processors,
too.

This report combines contributions from the WCC’11 participants and is edited by the WCC’11 steer-
ing group, some of whom are also WCC’11 participants. Sec. 2 describes the organization of the
Challenge. This is followed by Sec. 3, the most substantial section of this report, where the partic-
ipants in turn describe their tools and the experiences in participating in the Challenge. The overall
results are reported in Sec. 4. In addition to the tool authors who tested their tools on the debie1 and
PapaBench benchmarks, a group of students of the University of Stuttgart, led by Erhard Ploedereder,
tried some of the tools on a proprietary benchmark supplied by Daimler; they report their experience
in Sec. 5. The paper concludes in Sec. 6.

It should be noted that not only the Challenge itself, but also this report adopts much from the pre-
vious edition, including both structure and content. Specifically, the WCET problem statement, the
descriptions of the ARM processor and the debie1 benchmark, and the presentation of the types of
analysis problems are largely cited from the WCC’08 report [13]. Maintaining most of the report
structure may facilitate tracing the development of the Challenge and the participating tools. What
we did change was to move the tool description together with the reports from the tools. Also, we
decided to fold the “Problems and Solutions” section into the section on organization, as we felt that
this time, there were not enough general problems (apart from the experiences with the individual
tools) to report on that would justify their own section.

2http://www.mrtc.mdh.se/projects/WCC/ — this web page links to the wiki of the WCC’11 as well as to the
previous WCC editions.

3

http://www.mrtc.mdh.se/projects/WCC/


2. Organization of WCC’11

After WCC’08, a working group for the next Challenge was set up. Upon the original initiative by
Reinhard Wilhelm, Erhard Ploedereder offered to lead a group of students to serve as evaluators—
funded by ARTIST—on a real-world benchmark supplied by Daimler. Björn Lisper—responsible
for the Timing Analysis activity within the ARTIST DESIGN Network of Excellence on embedded
systems design—joined in and volunteered to organize the wiki. Niklas Holsti, who could also draw
on his experience in running WCC’08, and Reinhard von Hanxleden, who agreed to serve as chair,
completed the WCC’11 Steering Committee.

As in the previous edition of the Challenge, the main tools for running the Challenge were the mail-
ing list and the wiki. As a change from last time, results were not filled into the wiki, but instead
were collected in simple comma-separated value (csv) files following a predefined format (tool name,
benchmark name, target processor name, target cross-compiler name, analysis problem name, analy-
sis question name, analysis result, possible remarks). This turned out to be a very convenient way to
consolidate the results.

2.1. WCC’11 Schedule, Problems and Solutions

The goal formulated early on was to present the results of the Challenge at the WCET’11 workshop,
which put a firm boundary on the overall schedule. Planning for WCC’11 began in earnest in Septem-
ber 2010. Potential participants were gathered in a mailing list, and gave feedback on potential target
architectures in October (see Sec. 2.4). In November, the benchmarks were selected (Sec. 2.2). In De-
cember, the Wiki was launched. The official, virtual kick-off of the Challenge took place on January
28, 2011. Result reports from the participants were requested by May 27.

Once the “rules of the game” were clear and the Challenge was under way, there were only little dif-
ficulties that were escalated to the mailing list and/or the Steering Committee. As already mentioned
in the introduction, this is reflected in the lack of a dedicated “Problems and Solutions” section in this
report. There were some clarifications needed for some of the analysis problems and for the memory
access timing of the ARM7; a port (compilation and binary) to the MPC5554 target was contributed
by Simon Wegener for the debie1 benchmark; for PapaBench, analysis problems and an ARM7 binary
were provided by Hugues Cassé.

2.2. The Benchmarks

Thanks to Daimler, we could from the beginning count on an industrial-size, real-world benchmark
to be included in WCC’11, see Sec. 2.2.3. However, it was also clear rather early that this benchmark
would not be suitable for all analysis tools. To broaden the tool base, and to also be attractive to
participants of previous Challenges, we decided to reuse two benchmarks, the PapaBench already
used in WCC’06 (Sec. 2.2.2), and the debie1 benchmark introduced in WCC’08 (see Sec. 2.2.1).

2.2.1. The debie1 benchmark

The debie1 (First Standard Space Debris Monitoring Instrument, European Space Agency3) bench-
mark is based on the on-board software of the DEBIE-1 satellite instrument for measuring impacts

3http://gate.etamax.de/edid/publicaccess/debie1.php

4

http://gate.etamax.de/edid/publicaccess/debie1.php


of small space debris and micro-meteoroids. The software is written in C, originally for the 8051
processor architecture, specifically an 80C32 processor that is the core of the the Data Processing
Unit (DPU) in DEBIE-1. The software consists of six tasks (threads). The main function is interrupt-
driven: when an impact is recorded by a sensor unit, the interrupt handler starts a chain of actions that
read the electrical and mechanical sensors, classify the impact according to certain quantitative crite-
ria, and store the data in the SRAM memory. These actions have hard real-time deadlines that come
from the electrical characteristics (hold time) of the sensors. Some of the actions are done in the inter-
rupt handler, some in an ordinary task that is activated by a message from the interrupt handler. Two
other interrupts drive communication tasks: telecommand reception and telemetry transmission. A
periodic housekeeping task monitors the system by measuring voltages and temperatures and check-
ing them against normal limits, and by other checks. The DEBIE-1 software and its WCET analysis
with Bound-T were described at the DASIA’2000 conference [14]. The WCC’11 Wiki also has a
more detailed description.

The real DEBIE-1 flight software was converted into the debie1 benchmark by removing the propri-
etary real-time kernel and the low-level peripheral interface code and substituting a test harness that
simulates some of those functions. Moreover, a suite of tests was created in the form of a test driver
function. The benchmark program is single-threaded, not concurrent; the test driver simulates concur-
rency by invoking thread main functions in a specific order. The DEBIE-1 application functions, the
test harness, and the test driver are linked into the same executable. This work was done at Tidorum
Ltd by Niklas Holsti with ARTIST2 funding.

Space Systems Finland Ltd (SSF), the developer of the DEBIE-1 software, provides the software for
use as a WCET benchmark under specific Terms of Use that do not allow fully open distribution.
Therefore, the debie1 benchmark is not directly down-loadable from the WCC’11 Wiki. Copies of
the software can be requested from Tidorum4. SSF has authorized Tidorum to distribute the software
for such purposes.

2.2.2. The PapaBench Benchmark

PapaBench [31] is a WCET benchmark derived from the Paparazzi UAV controller. This controller
has been developed in the ENAC school in Toulouse and targets low-cost UAV, that is, model airplane
embedding a microprocessor. This controller has been successful to drive a lot of different models in
complex autonomous missions and has won several awards in this domain.

Basically, the UAV is made of several actuators (motor, flaps, etc) and a very light set of sensors
including a GPS (connected by a serial port) and an infrared sensor to control slope. The system
may be controlled from ground using a classical wireless link or may fly in an autonomous mode
performing a pre-programmed mission. In this case, the wireless descending link is only used to
transfer flight log or video if the payload is composed of a little camera.

In its original configuration, the computing hardware was composed of two ATMEL AVR micropro-
cessors communicating by a SPI link. The first one, fbw (fly-by-wire), was responsible for the control
of actuators and sensors and for the stabilization of the flight. It was also used to perform commands
emitted by the wireless link. The second microprocessor, autopilot, was a bit more powerful and was
concerned with the realization of the mission, that is, the choice of the flight plan. The system has
several emergency modes activated according to the whole system state. In a first mode, it tries to

4http://www.tidorum.fi/

5

http://www.tidorum.fi/


return to its “home” base. In another one, it tries to save the integrity of the model plane by ensuring
a minimal landing drive. And in a very bad case, it puts the actuators in a configuration ensuring it
will simply plane gracefully in the hope it may land without breaking anything.

To perform a flight, the first task is to program a flight plan and to generate automatically a piece of
code included in the embedded software system. Then, the full system is compiled and composed
of two binary programs: fbw and autopilot. In the next step, the programs are transferred to the
controller and the plane is launched (by hand) and the controller starts to drive the plane. If all is ok,
the flight plan ends with the model plane landing at its starting point.

2.2.3. The Daimler benchmark

The benchmark is part of a control system for trucks that deals with, among others, collision detection.
The code is compiled for the MPC 5553 architecture using the WindRiver Diab compiler. The target
processor does not have any external memory. VLE instructions are not used.

Analysis problems were available. Due in part to circumstances described in section 5.2, the ultimate
choice of WCET questions was directed at four entry points below the task level of different types:

• An interrupt handler INTERR

This was basically a simple test to get the tools to work and to familiarize the students with
them. It is a simple interrupt handler that only calls one function and does not include any
loops.

• An initialization routine INIT

This is a second simple entry point that sets some variables, does not call any functions and has
no loops.

• Two calculation routines CALC1 and CALC2

These routines execute moderately complex numeric calculations. They include some loops
and static function calls.

• A complete task of the embedded system TASK

This is a typical task of an embedded system; it is the body of an endless loop that executes
some subtasks and then suspends itself until it needs to run again.

2.3. The Analysis Problems

For each WCC benchmark, a number of analysis problems or questions are defined for the participants
to analyse and answer. There are two kinds of problems: WCET-analysis problems and flow-analysis
problems. Flow-analysis problems can be answered by tools that focus on flow-analysis (for example
SWEET) but that do not have the “low-level” analysis for computing WCET bounds (for the ARM7
processor, or for any processor). Flow-analysis problems can also show differences in the flow-
analyses of different WCET tools, and this may explain differences in the WCET bounds computed
by the tools.

6



A typical WCET-analysis problem asks for bounds on the WCET of a specific subprogram within the
benchmark program (including the execution of other subprograms called from this subprogram). For
example, problem 4a-T1 for the debie1 benchmark asks for the WCET of the Handle Telecommand
function when the variable input data satisfy some specific constraints.

A typical flow-analysis problem asks for bounds on the number of times the benchmark program
executes a certain statement, or a certain set of statements, within one execution of a root subpro-
gram. For example, problem 4a-F1 for the debie1 benchmark asks how many calls of the macro
SET DATA BYTE can be executed within one execution of the function Handle-Tele-command, un-
der the same input-data constraints as in the WCET-analysis problem 4a-T1. By further requiring
the analysis to assume that the execution time of SET DATA BYTE is arbitrarily large we make it
possible for pure WCET-analysis tools to answer this flow-analysis question, since this assumption
forces the worst-case path to include the maximum number of SET DATA BYTE calls; all alternative
paths have a smaller execution time.

2.4. The Target Processors

After polling the potential participants, we decided to suggest two common target processors for
WCC’11, a “simple” processor and a “complex” processor. However, participants were welcome to
use other processors as well.

2.4.1. The “Simple” Processor: ARM7

For the “simple” processor, we chose to select the same processor as was already used for WCC’08,
the ARM7, as e. g. on the LPC2138 board from NXP Semiconductor. As has been elaborated in
the report on WCC’08 [13], the ARM7 also offers a MAM (Memory Acceleration Module), which,
however, significantly complicates the timing analysis. We therefore suggested to de-activate the
MAM. The following is a brief description of the ARM7, based on the WCC’08 report.

The ARM7 [1] is basically a simple, deterministic processor that does not challenge the analysis of
caches and complex pipelines that are important features of some WCET tools [42]. The ARM7 is
a 32-bit pipelined RISC architecture with a single (von Neumann) address space. All basic ARM7
instructions are 32 bits long. Some ARM7 devices support the alternative THUMB instruction set,
with 16-bit instructions, but this was not used in WCC’11. The ARM7 processor has 16 general
registers of 32 bits. Register 15 is the Program Counter. Thus, when this register is used as a source
operand it has a static value, and if it is a destination operand the instruction acts as a branch. Register
14 is designated as the “link register” to hold the return address when a subprogram call occurs. There
are no specific call/return instructions; any instruction sequence that has the desired effect can be used.
This makes it harder for static analysis to detect call points and return points in ARM7 machine code.
The timing of ARM7 instructions is basically deterministic. Each instruction is documented as taking
a certain number of “incremental” execution cycles of three kinds: “sequential” and “non-sequential”
memory-access cycles and “internal” processor cycles. The actual duration of a memory-access cycle
can depend on the memory subsystem. The term “incremental” refers to the pipelining of instructions,
but the pipeline is a simple linear one, and the total execution-time of an instruction sequence is
generally the sum of the incremental times of the instructions.

The LPC2138 chip The NXP LPC2138 implements the ARM7 architecture as a microcontroller
with 512 KiB of on-chip flash memory starting at address zero and usually storing code, and 32 KiB

7



of static on-chip random-access memory (SRAM) starting at address 0x4000 0000 and usually storing
variable data. There is no off-chip memory interface, only peripheral I/O (including, however, I2C,
SPI, and SSP serial interfaces that can drive memory units).

The on-chip SRAM has a single-cycle (no-wait) access time at any clock frequency. The on-chip flash
allows single-cycle access only up to 20 MHz clock frequency. At higher clock frequencies, up to
the LPC2138 maximum of 60 MHz, the flash needs wait cycles. This can delay instruction fetching
and other flash-data access. The LPC2138 contains the aforementioned device called the Memory
Acceleration Module (MAM) that reduces this delay by a combination of caching and prefetching;
however, as already mentioned, we suggested to de-activate the MAM.

The on-chip peripherals in the LPC2138 connect to a VLSI Peripheral Bus (VPB) which connects
to the Advanced High-performance Bus (AHB) through an AHB-VPB bridge. This bus hierarchy
causes some delay when the ARM7 core accesses a peripheral register through the AHB. If the VPB
is configured to run at a lower clock frequency than the ARM7 core this delay is variable because it
depends on the phase of the VPB clock when the access occurs.

The programming tools The IF-DEV-LPC kit from iSYSTEM came with an integrated develop-
ment environment called WinIDEA and a GNU cross-compiler and linker. The distributed benchmark
binaries for WCC’11 were created with Build 118 of these tools using gcc-4.2.25. The IF-DEV-LPC
kit has an USB connection to the controlling PC and internally uses JTAG to access the LPC2138.
WinIDEA supports debugging with breakpoints, memory inspections, and so on.

2.4.2. The “Complex” Processor: MPC5553/5554

The Freescale MPC5553/MPC5554 micro-controllers implement the PowerPC Book E instruction
set. The Book E instruction set adapts the normal PowerPC ISA to the special needs of embedded
systems. The normal floating point instructions are replaced by digital signal processing instructions.

Both micro-controllers have a two-level memory hierarchy. They use a unified cache (8 KB on the
MPC5553, 32 KB on the MPC5554) to accelerate the accesses to the internal SRAM and Flash
memory. Additionally, they support the use of external memory. The memory management unit has
a 32-entry translation look-aside buffer. The load/store subsystem is fully pipelined and an 8-entry
store buffer is used to accelerate the instruction throughput.

The unified cache is 2-way set associative on the MPC5553 and 8-way set associative on the MPC5554.
The cache can be locked on a per way basis. Moreover, a way can be declared as instruction or data
cache only. As another acceleration mechanism, the micro-controllers support branch prediction. The
processors run at a clock speed of up to 132 MHz.

Various peripherals can be attached to the micro-controllers, for example by using the FlexCAN
bus. The MPC55xx micro-controllers support debugging through the IEEE-ISTO 5001-2003 NEXUS
interface and the IEEE 1149.1 JTAG controller.

5http://www.isystem.si/SWUpdates/Setup_IFDEV_9_7_118/iFDEVSetup.exe

8

http://www.isystem.si/SWUpdates/Setup_IFDEV_9_7_118/iFDEVSetup.exe


2.4.3. The TriCore 1796

The TriCore 1796 and the TriBoard TC1796 were the chosen target of the FORTAS tool (see Sec. 3.4).
The TC1796 is based on the 32-bit TriCore 1.3 load/store architecture. In the following description
we focus on the features that we consider particularly relevant for execution timing and measurement.
For details, please refer to the processor manual [23].

The TC1796 uses a Harvard architecture with separate buses to program and data memory, i.e., in-
struction fetching can be performed in parallel with data accesses. The 4GB address space is par-
titioned into 16 equally-sized segments. For the challenge, program code was stored in segment 8,
which provides cached memory accesses via the External Bus Unit (EBU). The instruction cache is
characterized by the following features:

• Two-way set-associativity

• LRU replacement strategy

• Line size of 256 bits

• Cache can be globally invalidated

• Cache can be globally bypassed

• Unaligned accesses crossing caches line supported with a penalty of 1 CPU cycle

There is no data cache, but all data written by ST (store) or LDMST (load-modify-store) instructions
is buffered. The buffer content is written to memory when the CPU and the Data Local Memory Bus
are both idle.

Execution timing is also affected by the superscalar design. The TC1796 has a top-level pipeline
consisting of an Instruction Fetch Unit, an Execution Unit and a General Purpose Register File.
Within the execution unit the pipeline splits into three parallel sub-pipelines: an Integer Pipeline,
which mainly handles data arithmetics and conditional jumps, a Load Store Pipeline, which is mainly
responsible for memory accesses, unconditional jumps, calls and context switching, and a Loop
Pipeline, which mainly handles special loop instructions providing zero-overhead loops. Conse-
quently, up to three instructions can be issued and executed in parallel. Also, a floating point unit
is attached to the CPU as a coprocessor.

Furthermore, there is a static branch predictor that implements the following rules [20]:

• Backward and short forward branches (16-bit branches with positive displacement) are pre-
dicted taken

• Non-short forward branches are predicted not taken

The overhead of the different cases is summarized in Table 2.

The TC1796 offers On-Chip Debug Support (OCDS) Level 1 and Level 2 for debugging and execution
time measurement. OCDS Level 1 includes a JTAG module, which can be used to download programs

9



Prediction Outcome Penalty (cycles)

not taken not taken 1
not taken taken 3
taken not taken 3
taken taken 2

Table 2: Branch penalties.

to the target and to inject input data. Tracing is enabled via OCDS Level 2, a vendor-specific variant
of the Nexus IEEE-ISTO 5001-2003 standard interface6. For the challenge, this interface was used to
sample time-stamped program flow information at each CPU cycle without exerting a probing effect.
Code instrumentation is not necessary.

Target Platform: TriBoard TC1796 In the following, we focus on those features that we consider
particularly relevant for execution timing and measurement. For details, please refer to the board
manual [22].

The TriBoard is equipped with 4MB of Burst Flash memory and 1 MB of asynchronous SRAM,
which are both connected to the processing core via the External Bus Unit of the processor, and these
are the only devices that are connected to the EBU. For the challenge, both program data and program
instructions were placed into the asynchronous SRAM area.

The Clock Generation Unit, which is controlled by an external crystal oscillator, produces a clock
signal fOSC at 20MHz. The CPU clock runs at 150MHz, and the system clock at 75MHz.

2.4.4. The C167

The Infineon C167 (more precisely, the C167CR) 16-Bit CMOS Single-Chip Microcontroller has
been used in the Challenge by TuBound, via the tool Calc wcet 167 (see Sec. 3.9). It is a single-
issue, in-order architecture with a jump cache. The C16x family of microcontrollers targets real-time
embedded control applications and is optimized for high instruction throughput and low response
time to external interrupts. It combines features of both RISC and CISC processors. Separate buses
connect the program memory, internal RAM, (external) peripherals and on-chip resources. The CPU
is clocked at 25/33 MHz allowing a 80/60 ns minimum instruction cycle time. For more details about
the C167 microcontroller refer to the manual [21].

The core of the CPU consists of a for 4-stage instruction pipeline, a 16-bit ALU, dedicated SFRs,
separate multiply, divide, bit-mask generator and barrel shifter units. Because of optimized hardware,
most instructions can be executed in one machine cycle. Instructions requiring more than one cycle
have been optimized. Branching, for example, requires only one additional cycle when a branch
is taken. The pipeline is extended by a ’Jump Cache’ that optimizes conditional jumps performed
repeatedly in loops: most branches taken in loops require no additional cycles.

The memory space of the C167 is a Von Neumann architecture, code memory, data memory, registers
and IO ports are organized in the same 16MB linear address space. Memory can be accessed byte-wise

6http://www.nexus5001.org/

10

http://www.nexus5001.org/


or word-wise. Particular portions can be addressed bit-wise, which is supported by special instructions
for bit-processing. A 2 KByte 16-bit wider internal RAM provides fast access to registers, user data
and system stack.

2.4.5. The JOP Architecture

JOP is a Java processor especially optimized for embedded real-time systems [37]. The primary
design target of JOP is time-predictable execution of Java bytecodes, the instruction set of the Java
virtual machine (JVM). JOP is designed to enable WCET analysis at the bytecode level. Several Java
WCET tools target JOP; WCA [38], the WCET analysis tool that is part of the JOP distribution, was
used in the WCET Challenge 2011 (see Sec. 3.10). JOP and WCA are available in open-source under
the GNU GPL license.

The JOP pipeline is as simple as the ARM7 pipeline. The main difference is that a translation of
bytecodes to a sequence of microcode instructions is performed in hardware. Microcode instructions
execute, as in standard RISC pipelines, in a single cycle. Bytecode instructions can execute in several
cycles. The timing model for bytecode instructions is automatically derived from the microcode
assembler code by WCA.

Bytecode instructions usually execute in constant time. Only for instructions that access main memory
the access time has to be modeled. In WCA modeling of a simple SRAM memory is included and
also a model of a chip-multiprocessor version of JOP with TDMA based memory arbitration [32].

JOP contains three caches: a stack cache for stack allocated local variables, a method cache for
instructions, and an object cache for heap allocated objects. The stack cache has to be large enough
to hold the whole stack of a thread. Spill and fill of the stack cache happens only on thread switch.
Therefore, a guaranteed hit in the stack cache can be assumed by WCA. The method cache stores
whole methods and is loaded on a miss on a method invocation or on a return. WCA includes a static,
scope-based persistence analysis of the method cache. The analysis of the object cache [19] is not
yet completely integrated into WCA and we assume misses on all object field accesses for the WCET
Challenge.

With the method cache JOP is slightly more complex than the ARM7 target. The reference configu-
ration of JOP uses a 4 KB method cache and a 1 KB stack cache. The main memory is 32-bit, 1 MB
of SRAM that has a read access time of 2 clock cycles and a write access time of 3 clock cycles.

3. Tools and Experience

An overview of the tools and target processors used in WCC’11 was already given in Table 1. As
indicated there, five out of ten tools do flow analysis on the source-code level. This means that
their flow-analysis results could in principle be compared in source-code terms. For example, on the
source-code level we can talk about iteration bounds for specific loops, which is not possible on the
machine-code level because of code optimizations.

On the ARM7, aiT, Bound-T, OTAWA used the gcc ARM 3.4.1 for PapaBench, and the gcc-if07 for
debie1. TuBound used the gcc-c16x for the C167. aiT and TimeWeaver used the powerpc-eabi-gcc
(Sourcery G++ Lite 2010.09-56) 4.5.1 for the MPC5554. FORTAS used the hightec-tricore-gcc-3.4.5
for the TC1796.

11



In the following, each tool is briefly described, followed by a report on the experience and results in
participating in WCC’11. The descriptions are written by the developers of the tool, edited only for
uniform formatting.

3.1. aiT (written by S. Wegener and D. Kästner)

AbsInt’s aiT7 is a timing verification tool. Static WCET analysis is used to compute a safe upper
bound of the actual WCET of a task. Its target processors range from simple architectures like the
ARM7TDMI to highly complex architectures like the PowerPC 7448.

The main input of aiT is the binary executable, from which the control-flow graph is reconstructed.
On this graph, several static analyses take place to compute the execution time of each instruction. A
global path analysis is used afterwards to compute the task’s overall WCET bound. The results of the
analysis are then visualized to the user.

aiT requires no code modification. Its analysis is performed on exactly the same executable that runs
on the shipped system. Manual annotations can be used to express known control-flow facts or values
of registers and memory cells. aiT supports tight integration with many state-of-the-art development
tools, including SCADE Suite8 and SymTA/S9. AbsInt offers qualification support for aiT in DO-
178B [35] qualification processes (up to level A).

aiT has been successfully used for timing verification in the avionics, aeronautics and automotive
industries (e. g. [39, 30]). A free trial version can be obtained from AbsInt.

3.1.1. Adapting aiT to the proposed common target architectures

aiT already supported the proposed common target architectures. Thus nothing had to be changed
to analyze the benchmarks. Nevertheless, both the control-flow reconstruction part of aiT as well as
the loop analysis part have been extended to reduce the amount of annotations that must be manually
added to perform the analyses of the benchmarks.

3.1.2. Analysis of the debie1 benchmark

Both the MPC5554 version and the ARM7 version have been analyzed.

A WCET bound could be computed for each problem. For the T2 problems concerning the maximal
interrupt blocking times, we are assuming for any function containing the interrupt enabling/disabling
macro that the entire function is executed with disabled interrupts. This had to be done because the
macros DISABLE INTERRUPT MASTER and ENABLE INTERRUPT MASTER were defined as
no-ops and thus not visible in the binary. Only little overestimation is introduced by this simplification
since most routines called the macros directly at the beginning and at the end. As an exceptional case,
the routine “RecordEvent” enables interrupts, calls “FindMinQualityRecord” and then disables the
interrupts again. Here, the WCET contribution of “FindMinQualityRecord” has been subtracted from
the WCET contribution of “RecordEvent” to get the execution time of the interrupt-disabled region.

7http://www.absint.com/ait/
8http://www.esterel-technologies.com/products/scade-suite/
9http://www.symtavision.com/symtas.html

12

http://www.absint.com/ait/
http://www.esterel-technologies.com/products/scade-suite/
http://www.symtavision.com/symtas.html


Most loop bounds were derived automatically by aiT. For those loops where this was not the case,
loop bound annotations have been added. The input constraints as defined in the WCET Tool Chal-
lenge’s wiki10 have been used to write annotations for the analyses. All input constraints except one
could be transformed to annotations. The one exception is problem 2c for ARM7. Here, the compiler
transformed an if-then-else construct into conditionally executable code. Although aiT analyzes con-
ditionally executable code, there is at the moment no possibility to annotate the state of the condition
flags.

The annotations provided to aiT can be found in the wiki of the 2011 WCET Tool Challenge. Also
all the flow questions were answered. However, the invocation counts are computed only for the
worst-case path. Due to this, the answers of problem 6d, question F1 differ between the ARM7 and
the MPC5554. On the latter, “SetSensorUnitOff” is not on the critical path and thus the invocation
count is zero (instead of eight on the ARM7).

3.1.3. Analysis of the PapaBench benchmark

Only the ARM7 code in RAM version has been analyzed. A bound11 could be computed for each
problem. One problem during the analysis was that the fly-by-wire executable contains debug infor-
mation which could not be read by aiT or GNU objdump. Fortunately, the benchmark’s creator was
able to send a file which contained the mapping between source code lines and binary code addresses.
With the help of this file, we could also answer the flow question of problem F1b. Another problem
were the loops in the software floating point library. This floating point library is not used by any of
our commercial customers and no loop bound annotations were available.

aiT was only able to derive some loop bounds, but not all. To derive the remaining bounds by
hand/brain would have required more effort than we were willing to invest. Therefore, we simply
assumed 99 iterations for the actual division loop.

From the flow questions, only those regarding feasible or unfeasible code have been answered. The
rest of the questions concerned the bounds of angle normalisation loops for which aiT did not auto-
matically find loop bounds. We simply annotated them to iterate once. Our annotations can be found
in the wiki of the 2011 WCET Tool Challenge.

3.1.4. Comments on the Daimler benchmark

Comparing the results in Table 7 (Sec. 5.3) for the aiT OTAWA-like MPC5554 configuration and
OTAWA MPC5554 for the small code snippets INTERR and INIT, we see a rather high difference
of a factor of around 2.

AbsInt found the OTAWA MPC5554 results to be surprisingly low in some cases and assumed that
OTAWA underestimates the WCET. Without access to the Daimler code, we used another executable
and used our MPC5554 evaluation board to produce a NEXUS trace for the entry point of a given
function in the processor configuration supported by OTAWA. This trace shows an execution time
of around 451 cycles, while the OTAWA tool only predicts 320 cycles. We therefore assume that
there is a difference in the CPU modeling of aiT and OTAWA and the results are not comparable.

10http://www.mrtc.mdh.se/projects/WCC/2011/doku.php?id=bench:debie1, as of May 5, 2011
11The correctness of this bound depends on the correctness of our loop bound assumptions.

13



Unfortunately, it was not possible to get actual hardware measurements from Daimler for the entry
points we used.

3.1.5. Comments on the WCET Tool Challenge

We think that the WCET Tool Challenge is very useful for the community. The tool vendors can
improve their tools because they get valuable input about the strengths and weaknesses of their tools.

3.2. Astrée (written by S. Wegener and D. Kästner)

AbsInt’s Astrée (Analyseur statique de logiciels temps-réel embarqués)12 is a verification tool to prove
the absence of runtime errors in embedded C code compliant to the C99 standard. A free trial version
of Astrée can be obtained from AbsInt.

Examples of runtime errors which are handled by Astrée include division by zero, out-of-bounds array
indexing, and erroneous pointer manipulations and dereferencing (NULL, uninitialized and dangling
pointers). Moreover, Astrée can be used to prove that user-defined assertions are not violated. As an
experimental feature, Astrée can export loop bound annotations and function pointer target annota-
tions for aiT.

Astrée is no tool for WCET analysis. However, the information it computes can be used to help the
WCET analysis. In this benchmark, Astrée has been used to derive flow information (like loop bounds
and function pointer targets) from the C source code.

As Astrée targets C code, no adaptations are required to support various target architectures. The
PapaBench benchmark has not been analyzed with Astrée.

3.2.1. Analysis of the debie1 benchmark

Astrée is not directly targeted on flow analysis. However, we were interested how well Astrée can be
used to retrieve flow information useful for WCET analysis.

An experimental feature has been added to Astrée to produce loop bound annotations and function
pointer target annotations for aiT. To count routine invocations, for each routine of interest, an own
static integer variable had been added. These variables are incremented by one for each routine
invocation. Astrée’s value analysis is then used to derive an interval for these variables. Answers
were produced for all flow problems.

The following assumptions have been used during the analysis: (1) Only the tasks of interest have been
analyzed, but no initialization routines, because the problem specification stated that any task may run
between the invocation of the particular task and its initialization tasks. Thus all possible values have
been assumed for those variables that were not initialized inside the analyzed tasks. (2) For those
variables where some input constraints were given in the problem description, the constraints have
been used to narrow down the value range of these variables.

12http://www.absint.com/astree/

14

http://www.absint.com/astree/


3.2.2. Comments on the WCET Tool Challenge

The analysis of the debie1 benchmark showed that in principle, Astrée can be used to compute the flow
information needed for WCET analysis. The participation of Astrée in this Challenge was particularly
interesting for us, since it has been used for a purpose it was not designed for. Some work has already
been invested to streamline the export of flow information. We will further investigate the use of
Astrée for means of flow analysis.

3.3. Bound-T (written by N. Holsti)

Bound-T is a WCET analysis tool that uses static analysis of machine code to compute WCET bounds
and (optionally) stack-usage bounds. Starting from the entry point of the specified root subprogram
Bound-T constructs the control-flow and call graphs by fetching and decoding binary instructions
from the executable file. Bound-T models the integer computations as transfer relations described by
Presburger arithmetic formulas and then analyses the transfer relations to identify loop induction vari-
ables and loop bounds and to resolve dynamic branches. Some infeasible paths may also be detected.
Various simpler analyses such as constant propagation and copy propagation are applied before the
powerful but costly Presburger models. Bound-T is focused on microcontrollers with predictable tim-
ing. Caches and other very dynamic hardware components are not considered. The WCET is calcu-
lated with the Implicit Path Enumeration technique, applied to each subprogram separately. Bound-T
is commercially distributed and supported by Tidorum Ltd.

3.3.1. Bound-T’s Participation in this Challenge

Of the target processors suggested for the 2011 WCET Challenge, Bound-T supports only the ARM7.
My participation was thus limited to the benchmarks available for the ARM7: debie1 and PapaBench.
Both benchmarks have been used in earlier Challenges. For the 2011 Challenge the debie1 analysis
problems were slightly changed, based on participant feedback from the 2008 Challenge, so I had to
update the Bound-T annotations correspondingly. PapaBench was used in the 2006 Challenge, but not
in 2008 when the “analysis problem” structure was introduced, so the PapaBench analysis problems
were new. However, I could reuse many low-level annotations from the 2006 Challenge.

The particular ARM7 processor suggested for the 2011 Challenge, the NXP LPC2138, has a feature
called the Memory Accelerator Module (MAM) that operates like a small cache and prefetch buffer
for the flash memory. Bound-T does not model the MAM but assumes constant memory access times,
in effect zero wait cycles for all memory accesses.

3.3.2. Problems with Benchmarks

The capabilities of Bound-T have evolved only a little since the 2008 Challenge, so all of the difficul-
ties with debie1 in the 2008 Challenge are still present, for example the inability to find and analyse
the WCET of interrupt-disabled code regions, as required by the debie1 analysis problems 5a-T2 and
others. Many of the constraints and assumptions in the debie1 analysis problems cannot be expressed
as such in the Bound-T annotation language, but must be translated into different kinds of annotations
that have the same effect on the analysis. For example, there is no way to assert that a variable does
not have a specific value, as required by the debie1 analysis problem 2a. This translation requires
study of the benchmark source code and is not always easy.

15



PapaBench created new problems, some of which were quite different from the debie1 problems. In
PapaBench, almost all loops aim to normalize floating-point variables, representing angles, to some
basic “unwrapped” range, for example 0 to 360 degrees. The loops do this by repeatedly adding or
subtracting a full circle until the basic range is reached. Bound-T does not attempt to find bounds for
loops where termination depends on floating-point conditions, so I had to find loop bounds manually.
This meant finding bounds on the value of the angle variable on entry to the normalisation loops. This
was tolerably easy for some cases, but too hard for me in other cases, for which I made a guess at the
loop bounds.

The PapaBench analysis problem A5 asks for the WCET of a part of a C function. Bound-T does not
have a general “point-to-point” analysis capability, but in this case I was lucky: the interesting part
is the tail end of the function, so I could tell Bound-T to analyse the “function” starting at the first
instruction in the interesting part, as if this instruction were the entry point of a function, and go on in
the normal way to the return instruction.

3.3.3. Conclusions for Bound-T

As Bound-T had been applied to both benchmarks in earlier Challenges, the 2011 Challenge did
not reveal any new problems or inspire new ideas for improving Bound-T. However, it was a useful
reminder about the problems with translating constraints from the conceptual, application-oriented
level to concrete, code-oriented annotations. This is a gap that should be filled, but filling it may need
new ideas for representing really high-level constraints in WCET analysis.

3.4. FORTAS (written by S. Bünte, M. Zolda, and R. Kirner)

FORTAS (the FORmal Timing Analysis Suite) derives WCET estimates of software tasks running
on embedded real-time systems. FORTAS is based on a hybrid approach that combines execution
time measurements with static program analysis techniques and follows the general principles of
measurement-based timing analysis (MTBTA) [41].

Source Code or
Machine Code

Analysis and
Decomposition

Execution Time
Measurement

Timing
Composition

WCET
Estimate

(a)

Source Code or
Machine Code

Analysis and
Decomposition

Execution Time
Measurement

Timing
Composition

Interim WCET
Estimate

Re�nement
Control

WCET
Estimate

(b)

Figure 1: Traditional MBTA work-flow (a) versus the FORTAS work-flow (b).

16



A central new architectural feature of FORTAS is feedback, as illustrated by Figure 1. The classic
MBTA approach as shown in Figure 1 (a) consists of three phases: analysis and decomposition,
execution time measurement, and timing composition [41]. In MBTA the temporal behavior of the
target system under investigation, in particular of the hardware part, is unknown prior to the first
run of the analysis. However, each measurement that we perform on the target system reveals new
information. This allows us to initially build a coarse timing model that we refine progressively, as
more information becomes available. The benefit of this approach is that we can quickly obtain a
rough estimate of the WCET. At a later time, after analysis has passed a few refinement steps, we can
check back to retrieve a more precise estimate. Unlike many other approaches, such an analysis does
not devise one ultimate WCET estimate—it rather produces an ongoing sequence of progressively
more precise estimates. In practice, the estimate converges quickly to a sufficiently stable value, such
that the analysis can be finished.

In the FORTAS approach we extend the traditional MBTA approach by an iterative timing model
refinement loop, as shown in Figure 1 (b). The refinement is subject to Refinement Control that works
towards the specific needs of the user. For example, after inspecting an interim timing model, the
user can control whether the analysis should focus on minimizing pessimism, i.e., to limit the poten-
tial WCET overestimation due to abstraction, or on minimizing optimism, i.e., to limit the potential
WCET underestimation due to insufficient coverage of temporal behavior. Refinement Control then
adjusts the dedicated input data generation techniques [4, 3] and timing composition [43] methods to
be used in subsequent refinement iterations.

3.4.1. Porting the Benchmarks

We ported PapaBench to the TC1796 (described in Sec. 2.4.3) and analyzed problems A1, A2A, F1a,
F1b, and F2.

• We removed the scheduler and analyzed each target function of the respective benchmark prob-
lem in isolation. Code that is not needed for a problem is omitted. Analyzing the whole source
code in its original version is not feasible with our input data generation technique.

• We annotated trigonometrical functions from our TC1796 math.h with assume statements of
the model checker CBMC to restrict the domain of function arguments. We did this to partly
re-incorporate context information that had been lost by removing the scheduler.

• We added start-up code that initializes the processor. The code manipulates TriCore-specific
registers to set the CPU clock to a frequency of 150MHz.

• We changed the benchmark to emulate certain accesses to memory registers by global variables.
For example, the call of the macro SpiIsSelected() was substituted by a read access to a
global variable spi is selected.

• We expanded the preprocessor macros and moved some C expressions and statements to ded-
icated source code lines, in order to get a canonical version that is interpreted consistently
among all FORTAS tools. For the same reason we made short-cut evaluation in decisions and
conditional expressions explicit, i.e., we translated such conditionals to semantically equivalent
cascades of if-statements.

• We converted loops, so that iteration bounds are easily found by CBMC.

17



• We removed static and inline declarations without changing the program semantics.
Also, we substituted typedef directives with equivalent types that do not incorporate any
typedef. The reason for this modification is that these features are not supported by our
prototype.

The transformed versions of PapaBench can be downloaded from our website13.

3.4.2. Analysis

With our prototype implementation we can analyze ANSI-C code. We use HighTec’s GCC version
3.4.5 to compile the source code for our target processor, the TriCore 1796. We then executed the
program on the target platform and captured cycle-accurately time-stamped execution traces using
a Lauterbach LA-7690 PowerTrace device that is connected to the target system via the processor’s
On-Chip Debug Support (OCDS) Level 2 debugging interface.

Internally, our tools work on a CFG representation of the software under analysis. Loop bounds and
other flow facts are currently provided by the user. In the current setting we turned optimization off
when compiling the benchmark sources. This is needed in the current implementation stage of the
prototype implementation. But this will not be needed in the future, as we have recently shown within
the research project SECCO14 that we can achieve quite high optimization while still maintaining
preservation of structural code coverage criteria.

We automatically generate suitable input data using a model-checking based method [15, 16] that
has been implemented as the FSHELL15 tool. FSHELL itself is based on the C Bounded Model
Checker (CBMC) version 3.8 [5]. The input to FSHELL is a test suite specification, expressed in the
FShell Query Language (FQL) [17].

3.4.3. Challenges and Lessons Learned

We encountered several limitations of our analysis tool, most of which are due to the nature of our
prototypical implementation: we had to change the benchmarks manually (see above) in order to
make them work with FORTAS, which took far more time than we expected. However, those issues
can be resolved given sufficient engineering resources to resolve those prototypical deficiencies.

However, some limitations are specific to our analysis approach: the reason why we cannot analyze
problems A2b and A3-A6 is due to limitations of our input data generation techniques. Our version
of CBMC utilizes an SMT solver that cannot find models for the respective problems efficiently. We
suspect the combination of floating point variables and multiplication operations to be the source of
the problem. This seems to point at a need for complementary generation methods for input data.

3.4.4. Comments on the WCET Tool Challenge

First, our research benefits from the extended pool of benchmarks. Second, some of the encountered
limitations will drive us both in terms of tool engineering and in addressing the problem of input data
generation in our future research.

13http://www.fortastic.net/benchmarks_wcc_2011.zip
14http://pan.vmars.tuwien.ac.at/secco/
15http://code.forsyte.de/fshell

18

http://www.fortastic.net/benchmarks_wcc_2011.zip
http://pan.vmars.tuwien.ac.at/secco/
http://code.forsyte.de/fshell


Unfortunately, our prototype implementation is not compliant to any of the target processors that are
officially supported by the Challenge. Also, we did not have the resources available to add another
target system to our tool. Retargeting an MBTA tool to a new target platform requires considerably
less effort than in the case of a static WCET analysis tool, but still needs some effort to set up the tool
chain. Results from a comparison to other analysis techniques would probably emphasize and reveal
both strengths and limitations of our analysis approach that we are currently not aware of.

3.5. METAMOC (written by M. C. Olesen)

METAMOC [6] analyses WCET problems by converting the CFG of a program into a timed automata
model, which is combined with models of the execution platform (pipeline, caches). The combined
model is then model checked using the UPPAAL model checker, asking for the maximal value the cy-
cle counter can attain, which is then the WCET estimate. No automated flow analysis is implemented,
so all flow facts and loop bounds have to be manually annotated, either in the C source code, or by
modifying the resulting model. Non-determinism is used to explore all branches, and can therefore
also be used in the annotations, if there are uncertainties. Of course, the less precise the annotations
the more possibilities the model checker has to explore, and too little precision results in the model
checker running out of memory.

3.5.1. Experience

The WCET Challenge was the first time we applied our tool to a real-world benchmark. As such,
we were not able to solve many of the problems, but our tool gained many improvements, and it is
much clearer what directions to work in to improve the tool. The main problem we encountered in
applying METAMOC was getting annotations of a good enough quality. Particularly the floating point
routines compiled in by GCC are of crucial importance: they are called very frequently so therefore
the annotations need to be of high quality (to limit the possible paths through the function), but on the
other hand the routines are highly optimized so therefore hard to analyse.

3.5.2. Comments on the WCET Tool Challenge

As discussed with the steering committee, it might make sense to have two phases to the Challenge:
determining loop bounds by all the tools capable of doing so, whereafter these results are shared, so
that in the second phase (the WCET analysis phase) all tools use the same loop bounds. This would
split the Challenge much more into the two subproblems, which is an advantage for tools focusing on
one of the two subproblems.

3.6. OTAWA (written by A. Bonenfant, H. Cassé, M. de Michiel, and C. Rochange)

OTAWA [2] is a library dedicated to the development of WCET analyzers. It includes a range of
facilities such as:

• loaders

– to load the binary code to be analyzed. Several ISAs are supported: PowerPC, ARM,
TriCore, Sparc, HCS12. New binary loaders can be generated with the help of our GLISS
tool [36].

19



– to load a description of the flow facts (loop bounds, targets of indirect branches, imposed
branch directions). To handle complex flow facts, the description can be supplemented
with a set of hand-written constraints to be added to the ILP formulation used to compute
the WCET (IPET [27]).

– to load a description of the target hardware (processor, memory hierarchy, memory map,
etc.). Only generic architectures can be described that way: specific targets need the user
to write specific analyses where needed.

• annotation facilities (called properties) that make it possible to annotate any object (instruction,
basic block, etc.) with any kind of value. They are used to store the results of the successive
analyses.

• code processors that use already-computed annotations and produce new ones. Built-in code
processors include a CFG builder, a CFG virtualizer, loop dominance analyzers, support for
abstract interpretation, hardware analyzers (pipeline, caches, branch predictor) and a WCET
computer based on the IPET method (with the help of the lp solve tool).

The library comes with a set of built-in tools that check for absolutely-required flow facts, dump the
CFG in various formats (e. g. dot), compute a WCET following an input script that describes the
specific analyses to be applied, etc. These tools are also available in an Eclipse plugin.

OTAWA is open-source software available under the LGPL licence16.

3.6.1. Problems and solutions

Both the recommended targets, namely the PowerPC MPC5554 and the ARM LPC2138 have been
modeled in OTAWA. However, we discovered that the PowerPC version of the debie1 benchmark
includes VLE instructions which are not supported by OTAWA so far. Then we decided to focus on
the ARM target.

The problems we have encountered are all related to flow facts. Some are inherent to the code of the
benchmarks, others come from the questions we had to answer.

General difficulties. To compute loop bounds automatically, we use the oRange [29] companion
tool developed in our group. It works on the source code. Unfortunately, oRange was not able to
determine all the bounds:

• for some of the problems, the source code of some functions was missing (e. g. debie1 5a,
PapaBench F1a);

• the increment of some of the loops (e. g. in debie1 6b) could not be computed.

In such cases, we determined the bounds by hand, with success for most of them. This is a fastidious
and error-prone work. For functions (e. g. memcpy) from the glibc, we considered the source codes
found on the GNU web site.

16www.otawa.fr

20

www.otawa.fr


For some functions, we have found several possible sets of loop bounds (e. g. the bounds for loop1
and loop2 are either x and y, or x′ and y′ respectively). This cannot be directly specified to OTAWA.
In such cases, we have added appropriate constraints on the sum of iterations of both loops.

Difficulties related to the Challenge questions. Several questions required considering specific
switch cases. Our simple flow facts description language does not support this kind of annotations.
Then we added hand-written constraints to the integer linear program used to compute the WCET.
Said like this, it seems fastidious but in practice it is quite easy thanks to an efficient CFG displayer
that shows various information like basic block numbers, branch directions, related source code lines,
etc.

Problem 3b for debie1 raised the difficulty mentioned above since it implied that one of two identical
loops ends after one iteration instead of processing to the end value. We had to hand-write additional
constraints.

3.7. SWEET (written by J. Gustafsson and N. M. Islam)

SWEET (Swedish WCET Analysis Tool) is a WCET analysis research tool from MDH. It has a
standard modular tool architecture, similar to other WCET analysis tools, consisting of (1) a flow
analysis, where bounds on the number of times different program parts can be executed are derived,
(2) a low-level analysis, where bounds on the time it might take to execute basic blocks are derived,
and (3) a WCET estimate calculation, where the costliest program execution path is found using
information from the first two phases.

SWEET analyzes the intermediate format ALF [11]. ALF has been designed to represent code on
source-, intermediate- and binary level through relatively direct translations. Given a code format,
SWEET can perform a WCET analysis for it if there is a translator into ALF. Currently, two translators
exist: a translator from C to ALF from TU Vienna, and an experimental translator from PowerPC
binaries. The first translator enables SWEET to perform source-level WCET analysis. This translator
has been used in the WCET Challenge.

The current focus of SWEET is on automatic program flow analysis, where constraints on the program
flow are detected. SWEET’s program flow analysis is called abstract execution [12]. This is a form
of symbolic execution, which is based on abstract interpretation. It can be seen as a very context-
sensitive value analysis. Abstract execution executes the program in the abstract domain, with abstract
values for the program variables, and abstract versions of the operators in the language. In the current
implementation of SWEET the abstract domain is the domain of intervals. SWEET’s program flow
analysis is input-sensitive, meaning that it can take restrictions on program input values into account.

SWEET derives program flow constraints on so-called execution counters. These are virtual variables
that are associated with program points. They are initialized to zero, and then incremented by one each
time the program point is traversed in the execution. The abstract execution will derive program flow
constraints in the form of arithmetic constraints on the values of the execution counters: for instance, if
the analysis encloses the possible values of the execution counter for a loop header within an interval,
then the end-points of the interval provides lower and upper bounds for the number of iterations of
that loop. SWEET’s abstract execution can also find considerably more complex constraints than
simple loop bounds, for instance lower and upper (nested) loop bounds, infeasible nodes and edges,
upper node and edge execution bounds, infeasible pairs of nodes, and longer infeasible paths [12].

21



However, the PapaBench program flow problems mostly consider simple loop bounds only.

SWEET can handle ANSI-C programs including pointers, and unstructured code. It has a large set
of options for fine-tuning the analysis. It has an annotation language, where the user can provide
additional information that the automatic analysis for some reason fails to derive.

Since SWEET does not support the target processors in the WCET Challenge 2011, we have only per-
formed source-level program flow analysis. We have restricted the analysis to the PapaBench code;
debie1 was excluded due to lack of time, and the Daimler code was excluded since we anticipated
problems for the students performing the analysis on the Daimler code to use our tool. In particular,
the C to ALF translator is hard to install due to its many dependencies to different software pack-
ages. We also know by experience that production source code for embedded systems can pose many
problems for source-level analysis tools, since such code often stretches the C standard [28].

3.7.1. The flow analysis problems

We were able to obtain answers to all six PapaBench flow analysis problems. In particular, SWEET
managed to find bounds also for the floating-point controlled loops in problems A1, and A2a. Due
to the input-sensitivity of SWEET’s flow analysis, we were able to derive bounds for these that are
conditional on certain input values. These bounds are more precise than bounds that have to be valid
for all possible input value combinations. The conditions, in the form of input ranges for certain input
variables, were found by a search running SWEET with different input ranges for these variables.
Interestingly, for problem A2a our analysis also found a possible division by zero if the input variable
estimator_hspeed_mod is zero. If this variable indeed can assume this value, then there is a
potential bug in PapaBench.

For some problems we had to tweak the code, or take some other measures, to make the analysis go
through. For problem A3, we had to remove the “inline” keyword at three places since our C to ALF
translator did not accept this use of the keyword. The code for problem F1b contains an infinite loop:
we had to patch the code to make this loop terminate to perform the analysis.

At some places in the PapaBench code, absolute addresses are referenced. Such references are prob-
lematic when analyzing unlinked source code, since potentially any program variable can be allocated
to that address when the code is linked. Thus a safe analysis must assume that the absolute address can
be aliased with any program variable, and this is indeed what SWEET assumes by default. However,
this will typically lead to a very imprecise, more or less useless analysis. To remedy this, we equipped
SWEET with a mode where it assumes that all absolute addresses are distinct from all unallocated
program variables. This is often a reasonable assumption, since absolute addresses typically are used
to access I/O ports and similar which are distinct from data memory. In addition, the analysis assumes
that absolute addresses always hold the abstract TOP value (no information about its possible value),
since the value of input ports and similar can be altered from outside the program. In all but very
unusual situations, an analysis resting on these assumptions should be safe.

3.7.2. Conclusions, and lessons learned

SWEET was able to solve all six program flow analysis problems posed for PapaBench automatically.
Notably, these problems include loops that are controlled by floating-point variables. We had to
tweak the source code at some places to make all analyses go through: however, these tweaks were

22



necessitated by current limitations in translator and analysis tool that are not of fundamental nature,
and fixing them should be a mere matter of engineering.

We got much valuable feedback during the process of analyzing PapaBench, which enabled us to
improve our tool chain. The introduction of a mode to handle references to absolute addresses has
already been mentioned. In addition a number of bugs were revealed in both the C to ALF translator,
and SWEET.

Acknowledgments We are grateful for the support given by Andreas Ermedahl, Linus Källberg,
and Björn Lisper.

3.8. TimeWeaver (written by S. Wegener and D. Kästner)

AbsInt’s TimeWeaver is a measurement-based timing estimation tool. It can be used for any processor
with NEXUS-like tracing facilities17, i.e. with hardware support for non-invasive tracing mechanisms.
TimeWeaver’s main focus is not timing verification but exploring the worst-case timing behavior
on actual hardware and identifying hot-spots for program optimizations. A free trial version of the
TimeWeaver prototype can be obtained from AbsInt.

The main design goal for TimeWeaver was simplicity. After specifying the set of input traces and
the analysis starting point, TimeWeaver is able to compute a WCET estimate in a fully automatic
way. All the needed information is taken from the measurements. At the current point of time, no
additional knowledge can be added by annotations. If for example a loop has at most five iterations
in the traces, but the assumption is that the particular loop has a bound of ten iterations, the analysis
is only able to use the bound of five. Unfortunately, this hampers the comparability of TimeWeaver
with other WCET tools, but on the other hand, it eases the use of TimeWeaver.

To compute a WCET estimate, an ILP is constructed from the traces which represents the dynamic
control-flow graph as observed by the measurements. Loop bounds and time stamps are also extracted
from the traces.

3.8.1. Adapting TimeWeaver to the proposed common target architectures

As TimeWeaver works on NEXUS traces, only the MPC5554 was considered as target. For this
processor, a prototype already existed. This prototype has been extended to handle incomplete traces.
Moreover, the handling of routines with multiple exits has been improved.

3.8.2. Analysis of the debie1 benchmark

The debie1 benchmark was the only one which was analyzed with TimeWeaver because it was the
only one available for the MPC5554. Since TimeWeaver is a measurement-based tool, the quality of
the results depends heavily on the quality of the input traces. Unfortunately, the measurement solution
used to get the traces showed some unforeseen problems (see next section). No comparable results
were therefore computed by TimeWeaver.

17http://www.nexus5001.org/

23

http://www.nexus5001.org/


3.8.3. Trace generation problems

The first problem was the lack of automation support of the rather old tracing equipment available at
AbsInt. Producing several thousand traces for each task invocation manually one by one would have
been a huge effort and was not considered as a practical option. Instead, we tried to trace the harness
part as a whole.

This approach uncovered two other problems. First, the distinction between the various subquestions
was not possible with the large traces because the NEXUS traces contain only instruction addresses
and timestamps. Thus, only estimates for the entire tasks could be computed, without taking the
input constraints into account. Second, the trace buffer of the used measurement equipment is of only
limited size. Thus sometimes the traces ended prematurely and no full path coverage was achieved.

3.8.4. Comments on the WCET Tool Challenge

For the next incarnations of the Challenge, we believe that having a standard set of measurements
would be a tremendous advantage. Then, all measurement-based tools could use the same input, thus
enabling more room for comparison. Moreover, having traces of the worst-case paths would also ease
the comparison between the actual WCET and the computed estimates. Last but not least, this would
prevent the participants from suffering from the same problems we had.

Overall, we think that the Challenge is a good source of inspiration, as we have found some things
that could be improved in our prototype. We hope that next time we can produce all the needed traces
without problems, thus allowing more room for comparison with other tools.

3.9. TuBound (written by Adrian Prantl and Jakob Zwirchmayr)

TuBound is a research prototype WCET analysis and program development tool-chain [33] from Vi-
enna University of Technology, built on top of libraries, frameworks and tools for program analysis
and transformation. Flow information is acquired and annotated (either supplied by the user or in-
ferred by an analyzer or a software model checker) at source code level. TuBound’s loop bound anal-
ysis component was recently extended by SMT reasoning to rewrite multi-path loops into single-path
ones. Additionally, certain classes of single-path loops are translated into a set of recurrence relations
over program variables, which are then solved by a pattern-based recurrence solving algorithm. The
extension is denoted r-TuBound and described in more detail in [26, 25].

The gathered flow information is conjointly transformed within the development tool chain. The
transformed annotations are further used by the WCET analyzer to calculate the WCET.

TuBound combines a C/C++ source-to-source transformer (the ROSE compiler framework), static
analysis libraries (SATIrE, TERMITE), used to implement a forward-directed data flow interval anal-
ysis, a points-to analysis and a loop bound analysis, a WCET-aware C compiler (based on GNU C
compiler 2.7.2.1 ported to the Infineon C167 architecture with added WCET analysis functionality),
and a static WCET analysis tool. The WCET analysis tool currently integrated into the TuBound
tool-chain is Calc wcet 167, a static WCET analysis tool that supports the Infineon C167 as target
processor. Further details about TuBound can be found in [34, 33].

24



3.9.1. TuBound—Target Architecture

Although TuBound is conceived from ground up to be modular and to support multiple WCET
analysis back ends, TuBound currently only supports the Infineon C167 architecture, described in
Sec. 2.4.4). Because the development team of TuBound is in transition there has not been advance-
ment in interfacing other WCET back-ends and therefore supporting additional target architectures.
Implementation and evaluation of the r-TuBound extension and the WCET Challenge showed that
the focus of development needs to include support for different architectures, such that results can be
compared to the results of other tools.

3.9.2. TuBound Problems with Benchmarks

General In some cases it was not possible to annotate the input constraints because there is no
support for them in TuBound. For example, TuBound supports neither path annotations specifying
“the first run” (or in general the xth run), nor constraints that specify that “function f is executed
once before g.” Additionally, the interval analysis does not support arbitrary user supplied value
annotations. Some of the input constraints can nevertheless be annotated manually. For the cases
where the input constraints could not be annotated fully, we report the worst-case result. Therefore,
for example, when the WCET of “the first run” of a function is asked for, we calculate the WCET
of the function and use it as result. If there are constrained inputs that we cannot model, we again
compute the (general) WCET of this function and report it as an over-approximation of the WCET of
the run in question.

Another difficulty stems from the supplied assembler code: we cannot perform WCET calculation for
the assembler code, because we do not support the target architecture. Therefore we could not, for
example, find out the WCET of interrupt routine __vector_10.

Another feature TuBound is still missing is floating point support: interval analysis does not consider
float values; those are used, for example, in parts of the PapaBench inputs.

Tool Challenge We expected that our r-TuBound extension would improve the quality of our
results, as it allows us to find bounds for loops that were previously unbounded by TuBound. Nev-
ertheless the expectations were not met, partly because TuBound’s loop analysis already performed
well enough on the loops found in the debie1 benchmarks and partly because the benchmarks from
the PapaBench suite were not as loop-centric as we expected. The upper loop bound problems in
PapaBench all involved floats, which we do not handle, yet, even though basically the loops could be
bound by our loop analyzers if there was value information available.

We gained valuable experience from the benchmarking part of the Challenge that took place at Daim-
ler. Even though we do not support the target architecture of this application, we hoped to infer at
least flow information from these sources. The outside evaluation of the tool on industry benchmarks
at Daimler showed, though, that we need to work on a shippable, binary version of TuBound (we
have some licensing restrictions on our version of PAG and EDG, both used in TuBound), because
the compilation and editing effort for a running version of TuBound is quite high (e. g. the ROSE
compiler infrastructure, the SATIrE framework and the TERMITE library). Additionally, there are
portability issues in TuBound that need to be addressed (e. g. hard-coded paths). Therefore some
effort should go into creating a central configuration file to ease the configuration of TuBound. This
might not be necessary for a research prototype that is always evaluated inside the institute, but it is

25



javacJava source Java 
bytecode

Optimizer

Java 
bytecode

WCA

JOPizer

Java binary

JOPWCET
HTML report

Figure 2: Tools and compilation, optimization, analysis, and build flow for JOP.

necessary for outside evaluation of our tool where sources are not available.

Acknowledgments Thanks to Raimund Kirner for assistance with the Calc wcet 167 tool, and to
Jens Knoop and Dietmar Schreiner for the discussion of and support for legal issues.

3.10. WCA (written by B. Huber, W. Puffitsch and M. Schoeberl)

The WCA tool from Vienna University of Technology and DTU is a static WCET analysis tool for
processors executing Java bytecode, currently only supporting JOP [38]. The input to the analysis
tool are Java class files, along with information on the processor configuration. The latter consists of
hardware parameters, such as cache sizes and memory access timings, and of the microcode assembler
code for each bytecode.

Figure 2 gives an overview of the tools and the build and analysis flow. Java source, with optional
loop bound annotations, is compiled with a standard Java compiler to Java bytecode. The optional
optimizer uses bytecode as input and produces bytecode. It is planned to integrate the optimization
process with WCA to perform WCET based optimizations. The bytecode is the input for the WCA
tool that produces reports in HTML. WCA also reads the Java source to extract annotations. The byte-
code is also the input for the tool JOPizer to generate a linked executable, which can be downloaded
to JOP. Details of generating the processor JOP and automatically deriving the timing information are
omitted from the figure.

For the high-level path analysis, bytecode has several advantages compared to machine code. Most
type information is still present in bytecode, even automated decompilation is feasible. In particular,
it is easy to automatically obtain control flow graphs from bytecode. The possible targets for indirect
branches (switch) are specified in the class file. Instead of indirect function calls, bytecode solely
relies on dynamic method dispatch.

Determining the methods possibly executed due to a virtual invocation amounts to determining the
dynamic type of the receiving object. To this end, WCA includes a data flow analysis (DFA) to
determine precise dynamic types of objects, which is also used to prune the call graph. Additionally,

26



the DFA computes bounds on the range of values. This information is used for a simple loop bound
analysis, which makes it unnecessary to manually analyze and annotate many loops, and to obtain the
size of arrays for analyzing allocation rates. Manual loop bounds may be provided at the source code
level. The annotation language supports bounds relative to outer loops and symbolic expressions.
In particular, it is possible to refer to Java constants in loop bound expressions, which reduces the
maintenance burden considerably.

The pipeline analysis for JOP is relatively straightforward. One distinguishing feature of WCA is that
it derives a symbolic formula for the worst-case execution time of bytecode instructions automatically.
To this end, the microcode sequence executed for a bytecode is inspected. The analysis composes a
formula which takes explicitly hidden memory latencies and method cache accesses into account.

WCA also includes a static analysis for JOP’s method cache. It implements a scope-based persistence
analysis for the N -block method cache with FIFO replacement. This analysis inspects program frag-
ments, and tries to prove that, within one fragment, at most N cache blocks are accessed. If this is
indeed the case, method cache costs only need to be accounted for once for a method accessed within
the fragment. This is encoded in the IPET formulation, using a standard technique adding cache miss
and cache hit variables.

Although WCA is a command line tool, it produces annotated, colored listings of Java code, which
can be used to inspect the worst-case path. As we maintain relatively precise bytecode to source
code line mappings, this can be done on the Java source code, which is definitely more pleasant than
inspecting low level code.

The combination of WCA and JOP is a little bit different from the other tools participating in the
Challenge as we support Java instead of C. Therefore, we had to port the benchmarks to Java. Fur-
thermore, the different languages and the different execution platform make is problematic to compare
WCA with the other tools.

3.10.1. Porting the Benchmarks to Java

While we could reuse the Java port of Papabench from Michal Malohlava [24], the debie1 benchmark
was ported by ourselves. Unfortunately, the port of Papabench is incomplete. As we did not want
to deviate too far from the publicly available version of the benchmark, we fixed only a few minor
issues, but left the general implementation of the benchmark unchanged. One notable change in the
implementation was the use of scoped memory to enable dynamic memory allocation while avoiding
garbage collection. Due to the incompleteness of the benchmark, we were only able to answer a
few questions posed by the Challenge. In order to provide a more complete picture, we include the
analyzed and observed WCETs of the benchmark’s tasks in Table 4.

debie1 was ported as far as necessary to properly execute the test cases provided in the harness.
However, some functionality was omitted as it would not have been possible to test the respective
code properly.

During porting, we encountered a few advantages and disadvantages of Java. In C, structs are laid out
flat in memory and can be accessed byte for byte through a pointer. In Java, accessing an object byte
for byte requires manual mapping of byte indices to fields, which is considerably more expensive. A
related issue are accesses to multidimensional arrays. While in C it is possible to use a unidimensional

27



index to access elements in such an array, this is not possible in Java. For accesses to a multidimen-
sional array in Java, it is necessary to compute the correct index for each dimension, which requires
a division and remainder operations. If strength reduction is not possible, this introduces severe over-
heads.

Enumerations in C are extremely light-weight, but are full-blown objects in Java. On a few occasions,
we preferred integer constants over enumerations to avoid the respective overheads.

Java has a clear concept for modularization. While it is still possible to write poorly modularized
code, the object orientation of Java serves as gentle reminder to programmers. Also, being able to
control the visibility of fields encourages clean interfaces. Some of the arguments above are against
Java in real-time systems due to the considerable overhead inherited by an object-oriented language.
However, it should be noted that Java with its strong typing and runtime checks is a safer language than
C and therefore, in the opinion of the authors, an interesting choice for safety-critical applications.

3.10.2. Problems and Insights

debie1 The main problem in the analysis of debie1 (in particular Problem 1 and Problem 3) is
that methods tend to be very long. We usually assume that in safety-critical code, methods are kept
short, as recommended by safety-critical programming guidelines (e. g., [18]). In our “literal” port of
the debie1 benchmark to Java, there are many very long methods along with very large switch state-
ments. First, the method cache of JOP can be rather inefficient for very long methods. Secondly, our
cache analysis uses rather coarse-grained scopes (methods only) for persistence analysis, and there-
fore delivers poor results for Problem 1 and Problem 3. From the analysis point of view, considering
subgraphs as persistency scopes would considerably improve the analysis. Another attractive option
is to automatically refactor large methods into smaller ones. A related problem is the use of switch
statements to implement what usually would be realized using dynamic dispatch in Java. This leads to
very large methods, which severely impact the method cache performance, even in the average case.
Again, refactoring to more idiomatic code (Command Pattern [7]) would resolve this problem.

We replaced all the preprocessor-based configuration in the original debie1 code by methods of a Java
interface, which abstracts the actual hardware. In order to eliminate the resulting efficiency penalty,
it is necessary to have an optimizer to remove this indirection once the configuration of the hardware
platform is fixed. An optimizer for Java bytecode is currently under development, which includes
method inlining. As this optimizer is still under development, the execution time for the interrupt
handling routines currently is very high.

On the positive side, we used the chance to improve our annotation language, which now supports
arbitrary expressions involving Java constants. For example, the annotation for the checksum calcu-
lation is

// @WCA loop <= union(CHECK_SIZE, 1 + CODE_MEMORY_END
// - MAX_CHECKSUM_COUNT * CHECK_SIZE)

where CHECK SIZE, etc. are Java constants defined in the code.

The results for debie1 are given in Table 3. To show the effectiveness of the method cache analysis
we also show analysis results with the assumption of all misses in the method cache and all hits in the

28



Problem all-miss all-hit WCET Measured

(1) 19111 12719 17717 6977
(2a-2c) 9960 7385 9104 6601
(3a-3c) 158549 120561 132353 67666
(4a-4d) 32150 24419 26863 24652
(5a-5b) 1661× 103 1371× 103 1382× 103 1289× 103

Table 3: Analysis results for jDebie problems (in clock cycles).

Task all-miss all-hit WCET Measured

AltitudeControl 33078 27978 29054 23667
ClimbControl 139987 120938 126515 105926
RadioControl 69216 60198 64266 2444
Stabilization 168261 150349 156974 131910
LinkFBWSend 21 (empty) 0
Reporting 21 (empty) 0
Navigation cyclic CFG 3057905

CheckMega128Values 9710 8618 9710 9417
SendDataToAutopilot 11692 10104 11574 393
TestPPM 4633 3341 4629 610
CheckFailsafe cyclic CFG 515

Table 4: Analysis results for jPapabench tasks (in clock cycles).

method cache (in the second and third columns). The WCET analysis result must lie between these
extremes.

For Problem 6, we did not find meaningful flow constraints, and thus failed to determine a reasonable
WCET bound. We did not work on the flow analysis subproblems, lacking support for artificial flow
constraints, and only analyzed the worst-case path for each problem. Although we prefer to minimize
the use of manual annotations, after working on the debie1 problem set we believe an interactive tool
to explore different paths would be a valuable addition to WCA.

Papabench Papabench was relatively straightforward to analyze, even though our value analysis
could not cope with the multi-threaded code. In fact, only two (symbolic) loop bounds had to be an-
notated in the application code. However, the use of floating-point operations proved problematic. On
the one hand several loops with non-obvious bounds had to be annotated in the software implemen-
tations of these operations, on the other hand the resulting execution times were less than satisfying,
both in analysis and measurements. Although we were able to correctly bound the execution times for
the floating-point operations, we do not think that such code is suitable for embedded applications.
Figure 4 shows the analysis results and execution time measurements.

3.10.3. Remarks on the WCET Challenge

We learned a lot, and got many new ideas for improving the WCET tool (especially with respect to
interactive exploration of worst-case paths). Though porting and analyzing the benchmarks was a lot

29



Benchmark debie1 PapaBench Daimler
Type of question Flow WCET Flow WCET WCET
Number of questions 15 22 6 11 4

aiT 15 22 3 11 4
Astrée 15
Bound-T 14 18 6 11
FORTAS 5
METAMOC
OTAWA 8 15 5 11 4
SWEET 6
TimeWeaver 6
TuBound 15 18 1 10
WCA 13 11

Table 5: Number of posed and answered analysis problems in WCC’11.

of work, we think the participation was a success: We managed to analyze two large benchmarks, and
at least for Papabench, the results were quite satisfying.

4. Results

The full set of results is too large to be presented here; please refer to the Wiki. Table 5 shows the
number of analysis problems for each WCC’11 benchmark, the number of flow-analysis and WCET-
analysis questions to be answered, and the number of questions answered by each participating tool.
If a tool answers the same question for several target processors, it still counts as only one answer.

For the three tools that analyzed the simple processor target (ARM7), Table 6 lists the specific re-
sults. As can be seen, most deviations are less than 50%. However, there are notable exceptions that
probably deserve further investigation.

5. The Daimler Experiment (written by E. Ploedereder, F. Krause, S. Gepperth,
and W. Fellger)

WCC’11 as described so far had the producers of applicable tools bring their intimate knowledge to
bear in processing previously available benchmarks. In the Daimler experiment, students of the Uni-
versity of Stuttgart applied the tools to proprietary industrial software (see Sec. 2.2.3). The students
had no prior knowledge of either the tools or the analyzed software. They were remotely supported by
the tool providers and had access to Daimler employees knowledgeable about the analyzed system.

5.1. The Tools

The target architecture MPC5553 is supported by few of the tools participating in the WCC’11. The
experiment was conducted with AbsInt’s aiT and with OTAWA, as these tools are the only ones
that support the target architecture. It should be noted that OTAWA only supports the MPC 5554
architecture, which might be a reason for the somewhat surprising divergence in the results obtained
by the two tools. As a third tool, TuBound had registered for the experiment but we did not succeed

30



Benchmark Estimated clock cycles
Question aiT Bound-T OTAWA

debie1
1 342 333 332
2a 100 93 139
2b 144 143 139
2c 144 104 139
3a 2664 3580 4101
3b 11079 22206 23829
3c 11664 22762 27 117
4a 2352 2343 522460
4b 613 214 210
4c 196 187 195
4d 199 190 730
5a T1 4154 5223 5329
5a T2 172 42
5b T1 38798 39825 55883
5b T2 180 42
6a T1 22203 22765
6a T2 98
6b 23100 23741
6c 40143 42285
6d 24184 24254
6e T1 1101107 372148
6e T2 158

PapaBench
A1 1716 1660 1358
A2a 27785 31699 32735
A2b 31482 37181 38112
A3 T1 3404 3849 1119
A3 T2 8938 10484 9863
A4 4182 5986 5953
A5 5435 5131 4782
A6 12051 17378 17422
F1a 4207 7914 7824
F1b 45 43 40
F2 102 100 102

Table 6: Results for WCET analysis questions for the ARM7. The estimated clock cycles refer to the
results reported by aiT, Bound-T, and OTAWA.

31



in its on-site installation.

5.2. Experiences with the Two Tools

The analyzed software contains fault branches trapping in infinite loops. Obviously, this cannot be
accommodated in a WCET calculation. The fault branches needed to be filtered out to obtain mean-
ingful results.

With aiT the respective branches and function calls leading to infinite loops could be excluded from
the WCET calculation. With OTAWA, unfortunately no approach could be identified to achieve such
exclusion. Encountering such an infinite loop sometimes led OTAWA itself into an infinite loop, re-
quiring a forced termination. The entry point TASK was a case in point. In order to obtain meaningful
comparisons, the analysis problems were reduced to those with entry points that do not reach any
infinite loop. Hence, for the entry point TASK no results are reported.

Apart from this, OTAWA frequently terminated with a segmentation fault when analyzing the Daimler
code. It also terminated the Eclipse IDE if the plugin was used. Despite best efforts from both
Daimler and OTAWA supporters, these problems could not be resolved in time. A suspected cause
might be related to what OTAWA calls “unresolved controls,” potential branch instructions in the code
that cannot be automatically resolved. They occurred very frequently in the Daimler code, and we
suspect that they might have taken a “wrong” choice from the available substitutes. Surprisingly, the
analysis of unrelated entry points kept crashing after such a failure was encountered until OTAWA’s
configuration file was cleaned by hand. These failures further reduced the entry points for which
comparable results could be obtained from the two tools.

Absint’s aiT was pretty straightforward to use and did not cause any major problems that could not
be dealt with quickly; in particular, it could deal with almost all conditional branches without further
interaction. we checked the resulting call graphs for overestimation of loop bounds - which were
mostly automatically computed - but they were all reasonable.

OTAWA itself does not compute loop boundaries, so they needed to be set statically for every loop.
It should be noted that there is an external tool called “oRange” for this job which we did not get to
experiment with because of the general stability issues.

5.3. Results

The comparative results consist of three data sets, two for aiT and one for OTAWA. These data sets
are:

• aiT configured for the real hardware. This configuration yields proper WCET results for the
hardware the code is compiled for.

• aiT configured for comparison to OTAWA results. The hardware configuration is changed to
assume the same parameters OTAWA uses in its MPC 5554 configuration.

• OTAWA with MPC5554 configuration. These are the results that are comparable with the sec-
ond data set of the aiT measurements. As OTAWA does not support the exact hardware con-
figuration the code is written for, this configuration is as close as the experiment could get to
reality.

32



OTAWA offers predefined configuration “scripts” with very few options, while aiT presents an almost
overwhelming range of settings. For aiT, we made use of the option to initialize the CPU settings
from actual CPU status registers for the real hardware configuration.

Entry point aiT OTAWA
Compiled hardware OTAWA-like

configuration configuration

INTERR 524 204 113
INIT 1055 494 218
CALC1 2124 830 722
CALC2 16507 6218 7991

Table 7: WCET computation results for the Daimler code experiment.

The loop boundaries used for OTAWA are slightly overestimated compared to aiT, as each loop count
can only be set globally, not per call to the containing function. The context sensitivity of loop bound
estimation in aiT is particularly noticeable in CALC2, the only entry point for which the OTAWA
result is higher than the corresponding aiT result.

5.4. Conclusion on the Daimler experiment

In order to arrive at comparable numbers, we reran aiT with a CPU configuration approximating the
configuration used by OTAWA to get anywhere near comparable results. While these were in fact
significantly closer, OTAWA still tended to give lower numbers than aiT.

In searching for causes of the remaining divergence, we traced the estimates down to the individual
basic blocks. Even at this level, the estimates by OTAWA remained consistently lower, which makes
it very likely that there are hidden differences in the CPU modeling of the two tools that account for
the spread in numbers. The OTAWA support concurred in this being a likely cause.

Unfortunately, no actual hardware or faithful emulator was available to the experiment in order to
measure actual performance and compare it to the predictions in order to determine how close the
predictions came to reality and whether any numbers were underestimations for the actual hardware.
AbsInt had hardware available and undertook a test of this hypothesis. AbsInt reports on the results
in Sec. 3.1.4. This report supported our impression that it is very important to ensure a precise match
of the detailed hardware description to the actual hardware in arriving at meaningful WCET answers
that reflect reality or that allow a comparision of numbers obtained by different tools.

6. Conclusions

One of the goals formulated in the conclusions of the last Challenge, WCC’08 [13], was “to motivate
the 2006 participants to rejoin the Challenge, without losing the new 2008 participants.” We have
adopted this goal, and wanted to provide a setting that would be attractive to as many participants as
possible, irrespective of whether or not they had participated in earlier Challenges. Thus, we aimed for
a sense of continuity of the Challenge, to allow previous participants to re-use some of their previous
investments, and for a sense of openness, to allow new participants to join the Challenge even if they

33



could not comply with the suggested targets (ARM7 or MPC) or programming language (C). We also
followed the suggestion of the WCC’08 report to include PapaBench, already used in WCC’06 but
not in WCC’08, again in WCC’11. We are thus happy to have had ten participating tools, up from
five in 2006 and six in 2008. The ten 2011 participants include three 2006 participants (aiT, Bound-T,
and SWEET), three 2008 participants (Bound-T again, OTAWA, and TuBound) and five first-time
participants (Astrée, FORTAS, METAMOC, TimeWeaver, and WCA).

One price of the openness is reduced comparability of results. Ultimately, WCET analysis is about
numbers, which should supply a natural metric to compare the tools. However, the presence of numer-
ical results may also give a false sense of objectivity, and may tempt to compare apples with oranges.
All participants provided numerical results, but these involved a range of target architectures, tool
chains, and manual annotation effort. For future editions of the benchmark, it would be nice if more
convergence could be reached here, at least for a “simple” processor/benchmark setting.

Furthermore, while we are convinced that all participants do their best to produce safe results (ie., to
not underestimate the WCET), the absence of validated “true” WCETs also leaves the possibility of
results that are (unintentionally) too good to be true. It is not clear how to circumvent this problem
in practice. Then again, this is an issue that affects not only the WCC, but the whole WCET analysis
discipline. Furthermore, the WCC might help the tool designers to uncover potential points for im-
provements in their tools (not only with respect to tightness, but also with respect to safety), which is
just the point of the Challenge. Ideally, future editions of the Challenge would not only include safe
estimates that strive for tightness and bound the true WCET from above (where lower is better), but
would also include maximal established measurements that bound the true WCET from below (where
higher is better). This still would not prove the safety of the WCET estimates, but could serve as a
minimal consistency check.

One of the assets of WCC’11, the availability of an industrial code, also posed one of the organiza-
tional challenges. It turned out non-trivial to align the non-disclosure requirements and architectural
constraints of the code with the capabilities of the participating tools. It would be nice if a future
Challenge would have more participants for an industrial-size benchmark and the “complex proces-
sor” category.

The report on the last Challenge concluded [13]: “The WCC’08 organizers suggest that the Challenge
should be defined as a continuous process, allowing the addition of benchmarks, participants, and
analysis results at any time, punctuated by an annual deadline. At the annual deadline, a snapshot
of the results is taken and becomes the result of the Challenge for that year.” So far, this goal has
turned out a bit too ambitious, but we hope with this Challenge to have made another step towards
maturity of the Challenge and, more importantly, the involved tools. We certainly hope that there
will be another WCC’1X Challenge, and hope that it will find a good balance between continuing
established practice and adding new elements.

Acknowledgments From the Steering Committee, we wish to conclude by thanking all partici-
pants who actively contributed to the success of the Challenge from its very beginning, when they
helped to define the setting, to the end, when they delivered their reports on time. We also thank the
organizers of the previous Challenges, upon whose work we could build. Finally, we thank the chair
of the WCET’11 Workshop, Chris Healy, for accommodating us concerning size and delivery date of
this report.

34

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.



References

[1] Advanced RISC Machines, ARM7DMI Data Sheet. Document Number ARM DDI 0029E, Issue
E, Aug. 1995.

[2] BALLABRIGA, C., CASSÉ, H., ROCHANGE, C., AND SAINRAT, P. OTAWA: An Open
Toolbox for Adaptive WCET Analysis. In Software Technologies for Embedded and Ubiquitous
Systems, S. Min, R. Pettit, P. Puschner, and T. Ungerer, Eds., vol. 6399 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2011, pp. 35–46.

[3] BÜNTE, S., ZOLDA, M., AND KIRNER, R. Let’s get less optimistic in measurement-
based timing analysis. In Proc. 6th International Symposium on Industrial Embedded Systems
(SIES’11) (June 2011). To appear.

[4] BÜNTE, S., ZOLDA, M., TAUTSCHNIG, M., AND KIRNER, R. Improving the confi-
dence in measurement-based timing analysis. In Proc. 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing (ISORC’11) (Mar. 2011).

[5] CLARKE, E., KROENING, D., AND LERDA, F. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004) (2004),
K. Jensen and A. Podelski, Eds., vol. 2988 of Lecture Notes in Computer Science, Springer,
pp. 168–176.

[6] DALSGAARD, A. E., OLESEN, M. C., TOFT, M., HANSEN, R. R., AND LARSEN, K. G.
METAMOC: Modular Execution Time Analysis using Model Checking. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010) (Dagstuhl, Germany, 2010),
B. Lisper, Ed., vol. 15 of OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, pp. 113–123. The printed version of the WCET’10 proceedings are
published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.

[7] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional, 1994.

[8] GUSTAFSSON, J. The worst case execution time tool challenge 2006. In Proceedings of the
Second International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (Washington, DC, USA, 2006), IEEE Computer Society, pp. 233–240.

[9] GUSTAFSSON, J. WCET Challenge 2006. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-206/2007-1-SE, Mälardalen University, Jan. 2007.

[10] GUSTAFSSON, J., BETTS, A., ERMEDAHL, A., AND LISPER, B. The Mälardalen WCET
benchmarks — past, present and future. In Proc. 10th International Workshop on Worst-Case
Execution Time Analysis (WCET’2010) (Brussels, Belgium, July 2010), B. Lisper, Ed., OCG,
pp. 137–147.

[11] GUSTAFSSON, J., ERMEDAHL, A., LISPER, B., SANDBERG, C., AND KÄLLBERG, L.
ALF – a language for WCET flow analysis. In Proc. 9th International Workshop on Worst-
Case Execution Time Analysis (WCET’2009) (Dublin, Ireland, June 2009), N. Holsti, Ed., OCG,
pp. 1–11.

35



[12] GUSTAFSSON, J., ERMEDAHL, A., SANDBERG, C., AND LISPER, B. Automatic deriva-
tion of loop bounds and infeasible paths for WCET analysis using abstract execution. In Proc.
27th IEEE Real-Time Systems Symposium (RTSS’06) (Dec. 2006).

[13] HOLSTI, N., GUSTAFSSON, J., BERNAT, G., BALLABRIGA, C., BONENFANT, A., BOUR-
GADE, R., CASSÉ, H., CORDES, D., KADLEC, A., KIRNER, R., KNOOP, J., LOKU-
CIEJEWSKI, P., MERRIAM, N., DE MICHIEL, M., PRANTL, A., RIEDER, B., ROCHANGE,
C., SAINRAT, P., AND SCHORDAN, M. WCET Tool Challenge 2008: Report. In 8th
Intl. Workshop on Worst-Case Execution Time (WCET) Analysis (Dagstuhl, Germany, 2008),
R. Kirner, Ed., Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany. also published
in print by Austrian Computer Society (OCG) under ISBN 978-3-85403-237-3.

[14] HOLSTI, N., LåNGBACKA, T., AND SAARINEN, S. Using a Worst-Case Execution Time
Tool for Real-Time Verification of the Debie Software. In Data Systems in Aerospace (DASIA
2000) (Sept. 2000), B. Schürmann, Ed., vol. 457 of ESA Special Publication.

[15] HOLZER, A., SCHALLHART, C., TAUTSCHNIG, M., AND VEITH, H. Fshell: Systematic
test case generation for dynamic analysis and measurement. In Proceedings of the 20th Interna-
tional Conference on Computer Aided Verification (CAV 2008) (Princeton, NJ, USA, July 2008),
vol. 5123 of Lecture Notes in Computer Science, Springer, pp. 209–213.

[16] HOLZER, A., SCHALLHART, C., TAUTSCHNIG, M., AND VEITH, H. Query-driven pro-
gram testing. In Proceedings of the Tenth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2009) (Savannah, GA, USA, Jan. 2009), N. D.
Jones and M. Müller-Olm, Eds., vol. 5403 of Lecture Notes in Computer Science, Springer,
pp. 151–166.

[17] HOLZER, A., SCHALLHART, C., TAUTSCHNIG, M., AND VEITH, H. How did you specify
your test suite? In Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2010) (Sept. 2010).

[18] HOLZMANN, G. The power of 10: rules for developing safety-critical code. Computer 39, 6
(June 2006), 95–99.

[19] HUBER, B., PUFFITSCH, W., AND SCHOEBERL, M. Worst-case execution time analysis
driven object cache design. Concurrency and Computation: Practice and Experience (2011).

[20] INFINEON. TriCore Compiler Writer’s Guide. http://www.infineon.com, 2003.

[21] INFINEON. C167CR/SR Data Sheet, 2005. http://infineon.com.

[22] INFINEON. TriBoard TC1796 Hardware Manual. http://www.infineon.com, 2005.

[23] INFINEON. TC1796 User’s Manual V2.0. http://www.infineon.com, 2007.

[24] KALIBERA, T., PARIZEK, P., MALOHLAVA, M., AND SCHOEBERL, M. Exhaustive test-
ing of safety critical Java. In Proceedings of the 8th International Workshop on Java Technolo-
gies for Real-time and Embedded Systems (JTRES 2010) (New York, NY, USA, 2010), ACM,
pp. 164–174.

36

http://www.infineon.com
http://infineon.com
http://www.infineon.com
http://www.infineon.com


[25] KNOOP, J., KOVACS, L., AND ZWIRCHMAYR, J. An Evaluation of WCET Analysis using
Symbolic Loop Bounds. In Proceedings of the 11th International Workshop on Worst-Case
Execution Time Analysis (WCET 2011) (Porto, Portugal, July 5, 2011). To appear.

[26] KNOOP, J., KOVACS, L., AND ZWIRCHMAYR, J. Symbolic Loop Bound Computation for
WCET Analysis. In Proceedings of the 8th International Andrei Ershov Memorial Conference—
Perspectives of System Informatics (PSI 2011) (Akademgorodok/Novosibirsk, Russia, June 27–
July 1, 2011). To appear.

[27] LI, Y.-T. S., AND MALIK, S. Performance analysis of embedded software using implicit path
enumeration. SIGPLAN Notices 30 (Nov. 1995), 88–98.

[28] LISPER, B., ERMEDAHL, A., SCHREINER, D., KNOOP, J., AND GLIWA, P. Practical ex-
periences of applying source-level WCET flow analysis on industrial code. In Proc. 4th In-
ternational Symposium on Leveraging Applications of Formal Methods (ISOLA’10), Part II
(Heraclion, Crete, Oct. 2010), T. Margaria and B. Steffen, Eds., vol. 6416 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 449–463.

[29] MICHIEL, M. D., BONENFANT, A., CASSÉ, H., AND SAINRAT, P. Static loop bound analy-
sis of c programs based on flow analysis and abstract interpretation. In RTCSA (2008), pp. 161–
166.

[30] NASA ENGINEERING AND SAFETY CENTER. Technical Support to the National High-
way Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corporation (TMC)
Unintended Acceleration (UA) Investigation. Tech. rep., Technical Assessment Report, Dec.
2011.

[31] NEMER, F., CASSÉ, H., SAINRAT, P., BAHSOUN, J.-P., AND MICHIEL, M. D. Pa-
pabench: a free real-time benchmark. In 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis (Dagstuhl, Germany, 2006), F. Mueller, Ed., Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[32] PITTER, C., AND SCHOEBERL, M. A real-time Java chip-multiprocessor. ACM Trans. Em-
bed. Comput. Syst. 10, 1 (2010), 9:1–34.

[33] PRANTL, A., KNOOP, J., SCHORDAN, M., AND TRISKA, M. Constraint solving for high-
level WCET analysis. In Proceedings of the 18th Workshop on Logic-based Methods in Pro-
gramming Environments (WLPE 2008) (Udine, Italy, Dec. 12, 2008), pp. 77–89.

[34] PRANTL, A., SCHORDAN, M., AND KNOOP, J. TuBound - A Conceptually New Tool for
Worst-Case Execution Time Analysis. In Post-Workshop Proceedings of the 8th International
Workshop on Worst-Case Execution Time Analysis (WCET 2008) (Prague, Czech Republic, July
1, 2008), vol. 237, Austrian Computer Society, pp. 141–148. Also: Schloß Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 2008, ISBN 978-3-939897-10-1, 8 pages.

[35] RADIO TECHNICAL COMMISSION FOR AERONAUTICS. RTCA/DO-178B, Software
Considerations in Airborne Systems and Equipment Certification, 1992.

[36] RATSIAMBAHOTRA, T., CASSÉ, H., AND SAINRAT, P. A versatile generator of instruction
set simulators and disassemblers. In Proceedings of the 12th international conference on Sym-
posium on Performance Evaluation of Computer & Telecommunication Systems (Piscataway,
NJ, USA, 2009), SPECTS’09, IEEE Press, pp. 65–72.

37



[37] SCHOEBERL, M. A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture 54/1–2 (2008), 265–286.

[38] SCHOEBERL, M., PUFFITSCH, W., PEDERSEN, R. U., AND HUBER, B. Worst-case ex-
ecution time analysis for a Java processor. Software: Practice and Experience 40/6 (2010),
507–542.

[39] SOUYRIS, J., PAVEC, E. L., HIMBERT, G., JÉGU, V., BORIOS, G., AND HECKMANN, R.
Computing the Worst Case Execution Time of an Avionics Program by Abstract Interpretation.
In Proceedings of the 5th International Workshop on Worst-case Execution Time (WCET ’05),
Mallorca, Spain (2005), pp. 21–24.

[40] TAN, L. The worst-case execution time tool challenge 2006. Int. J. Softw. Tools Technol. Transf.
11 (Feb. 2009), 133–152.

[41] WENZEL, I., KIRNER, R., RIEDER, B., AND PUSCHNER, P. P. Measurement-based timing
analysis. In ISoLA (2008), pp. 430–444.

[42] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHAL-
LEY, D., BERNAT, G., FERDINAND, C., HECKMANN, R., MUELLER, F., PUAUT, I.,
PUSCHNER, P., STASCHULAT, J., AND STENSTRÖM, P. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on Embedded Comput-
ing Systems (TECS) 7, 3 (2008).

[43] ZOLDA, M., BÜNTE, S., AND KIRNER, R. Context-sensitivity in IPET for measurement-
based timing analysis. In 4th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA’10) (Oct. 2010).

38




