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1 Introduction
How do we see? What is the mechanism?

Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-
based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which,
for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers
or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this
example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the
blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises
from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive
index (“yellow” for the case of the dog, and “blue” for the ball). This is also known as an impedance mis-match.
The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which
propagates until it is measured by the two receivers known as “eyes”. The eyes focus the measured scattered field to
form images which are processed by the “wetware” of the brain for detection, identification, and localization. When
time series representations of the measured scattered field are available, the image forming focusing process can be
mathematically modeled by delayed, scaled, and summed migration.

This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm.
This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-
based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used
interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the
direction of arrival of a signal [1, 2], and seismic migration [3, 4, 5] in which wide band time series are shifted but not
to form images per se.

Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The
model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object
scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section
serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method
is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in
Section 8. Finally, proof-of-principle experiments are present in Section 9.

1



2 A Variable Bestiary

α The range correction applied to compensate for the geometric amplitude attenuation. This
is usually the “1/r2”, range squared, correction (in three dimensions) but may depend upon
the electronics of the measurement system.

αmfn The attenuation from the n-th source to a focal point, and from the focal point to the m-th
receiver: |Rrcv

m − rf | × |rf −Rsrc
n |.

∆t The time series sample interval.
λ0 Wavelength at the peak pulse temporal frequency, λ0 = c0/f0.
ψinc(r, r′, t) The incident field evaluated at r due to a source at r′.
ψscat(r, r′, t) The scattered field evaluated at r due to a source at r′.
ψtot(r, r′, t) The total field evaluated at r due to a source at r′. The total field is the sum of the incident

and scattered fields.
τj The complex scattering amplitude of the j-th point scatterer.
ω Radial frequency, ω = 2πf .
c0 The background propagation velocity.
c(r) A velocity distribution.
en(t) The excitement voltage which drives the n-th source transducer.
f0 Peak pulse temporal frequency, f0 = c0/λ0.
G0(r, t) , G0(r, t; r′, t′) The background Green function. Generally the zero subscript is used to indicate the free-

space Green function. The un-primed variables represent the observer space-time location;
the primed variables indicate the source space-time location. The latter are frequently
omitted but implicitly assumed.

G1(r, t) , G1(r, t; r′, t′) The background Green function in a two layer medium. The un-primed variables repre-
sent the observer space-time location; the primed variables indicate the source space-time
location. The latter are frequently omitted but implicitly assumed.

k0 Wavenumber at peak temporal frequency, k0 = 2π/λ0 = 2πf0/c0.
n(r) A refractive index distribution.
n(t) A noise time series.
Nf The number of focal points, however this is also used to indicate the number of time fre-

quency domain sample points. Be alert, the context will indicate what it represents.
Nj The number of point scatterers.
Nrcv The number of receivers.
Nsrc The number of sources.
Nt The number of time sample points.
Nxvr The number of transceivers.
O(r) The scattering object distribution function. Generally this is the unknown object to be

determined by the measurement system.
Ob(r) The scattering background distribution function. Generally this is known and considered

to be clutter.
ômig The migrated reconstruction of an object or object and background.
p(t) The incident pulse.
p(r, t) The incident pulse distribution. Generally, the point source assumption p(r, t) = p(t)δ(r−

r′) is made.
p(r,Rsrc

n , t) The incident pulse distribution from a source located at Rsrc
n . Generally, the point source

assumption p(r,Rsrc
n , t) = p(Rsrc

n , t)δ(r− r′) is made.
Continued ...
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A Variable Bestiary Continued
rf The location of a focal point. In Cartesian coordinates, rf = (xf , yf , zf ).
Rrcv
m The location of the m-th receiver. A collection of receivers is identified by {Rrcv

m }
Nrcv

m=1.
A single receiver is indicated by omitting the subscript, Rrcv. In Cartesian coordinates,
Rrcv
m = (xm, ym, zm).

Rsrc
n The location of the n-th source. A collection of sources is identified by {Rsrc

n }
Nsrc

n=1 . A
single source is indicated by omitting the subscript, Rsrc. In Cartesian coordinates, Rsrc

n =
(xn, yn, zn).

Rxvr
n The location of the n-th transducer. Generally used in multimonostatic systems when

Rsrc
n ≡ Rrcv

n . A collection of transceivers is indicated by {Rxvr
n }

Nxvr

n=1 . A single transceiver
is indicated by omitting the subscript, Rxvr. In Cartesian coordinates, Rxvr

n = (xn, yn, zn).
Srcv
m The m-th receiver’s heading unit vector.

Ssrc
n The n-th source’s heading unit vector.

Sxvr
n The n-th transceiver’s heading unit vector.
t0 The time series origin.
tmfn The time delay from the n-th source to a focal point, and from the focal point to the m-th

receiver: (|Rrcv
m − rf |+ |rf −Rsrc

n |) /c0.
tpeak Time at which the incident pulse achieves its peak magnitude value.
T rcv
m (r, t) The response characteristics of the m-th receiving transducer.
T src
n (r, t) The response characteristics of the n-th source transducer.

Xj The location of the j-th point scatterer. A collection of point scatterers is indicated by
{Xj}Nj

j=1. When only one scatterer is present, the subscript is dropped and its location is
indicated by X.
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3 Migration in a Nutshell
The anatomy of a wave-based measurement system is presented in Figure 1. An excitement voltage, en(t) drives the
n-th source transducer with system response T src

n (r, t). Identical driving voltages may be applied to all the source
transducers but the possibility of distinct sources is allowed, hence the n subscript. The transducer converts the
excitement voltage to the incident pulse via

p(r,Rsrc
n , t) =

∫ T

0

dt′ T src
n (r, t− t′) en(t′) = T src

n (r, ·) ∗ en(·), (1)

where ∗ indicates temporal convolution. When there is minimal (or no) information on the spatial-temporal transducer
characteristics, it is common and convenient to set T src

n (r, t) ≡ δ(r−Rsrc
n )δ(t− t′) and express the incident field as

p(r,Rsrc
n , t) = en(t) δ(r−Rsrc

n ). (2)

Assuming identical excitement voltages are applied to all the sources, the incident pulse expression is

p(r,Rsrc
n , t) = p(t) δ(r−Rsrc

n ). (3)

The source transducer emits the incident field. It is shown in Section 4 the incident field is related to the incident pulse
via

ψinc(r,Rsrc
n , t) =

∫ T

0

dt′ G0(r−Rsrc
n , t− t′) p(t′) = G0(r−Rsrc

n , ·) ∗ p(·) (4)

whereG0(r, t) is the background Green function which describes how the incident field propagates in the environment.
Generally, the zero subscript indicates the free space Green function. A different subscript will be used with a known
but inhomogeneous background. For example the Green function for a two layer medium is indicated by G1(r, t) .
The field interacts with the scattering object, O(r), presumed to be unknown (and to be determined), and possibly a
known background,Ob(r). The result of the interaction is the scattered field, ψscat(r,Rsrc

n , t) which propagates to and
is measured by the m-th receiving transducer with system response T rcv

m (r, t). The scattered field originating from
the known background is referred to as clutter. The measured voltage recorded by the transducer is vscatm,n(t). This is
the multistatic data matrix. The flow diagram models a fully multistatic system but can represent a multimonostatic
system when m ≡ n. In this case the measured data are known as the multimonostatic data matrix. The various
measurement systems are defined in Appendix B. The flow diagram can model both reflection and transmission mode.
In the latter case, the background object, Ob(r), is replaced by Ob(r) + 1 and scattered field, ψscat(r,Rsrc

n , t), by the
total field,

ψtot(r,Rsrc
n , t) ≡ ψinc(r,Rsrc

n , t) + ψscat(r,Rsrc
n , t), (5)

to account for the incident field.
For example, an expression for the scattered field resulting from a collection of point scatterers with locations

{Xj}Jj=1 is derived in Section 6.2:

ψscat
B (r,Rxvr

n , t) = − 1

(4π)
2
c20

J∑
j=1

τj
|r−Xj | |Xj −Rxvr

n |
p′′
(
t− |r−Xj |+ |Xj −Rxvr

n |
c0

)
(6)

where the double prime on p(·) indicates the second derivative with respect to its argument, τj is the scattering ampli-
tude, and, for precision, a B subscript indicates the field was derived under the Born approximation [6] which neglects
multiple, inter-scatterer scattering. For a single point scatter, J ≡ 1, the expression reduces to an exact formulation,

ψscat(r,Rxvr
n , t) = − 1

(4π)
2
c20

τ

|r−X| |X−Rxvr
n |

p′′
(
t− |r−X|+ |X−Rxvr

n |
c0

)
. (7)
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When the scattered field is evaluated at a transceiver, the expression becomes

ψscat(Rxvr
n ,Rxvr

n , t) = − 1

(4π)
2
c20

τ

|X−Rxvr
n |

2 p
′′
(
t− 2 |X−Rxvr

n |
c0

)
. (8)

Convolving the scattered field with the transducer characteristic function results in the received voltage signal,

sn(t) =

∫ T

0

dt′ T xvr
n (r, t− t′) ψscat(Rxvr

n ,Rxvr
n , t′) = T xvr

n (r, ·) ∗ ψscat(Rxvr
n ,Rxvr

n , ·). (9)

The multi(mono)static data matrix is the received voltage signal with additive system noise,

vscatn (t) = sn(t) + n(t). (10)

For this example, the transducer characteristic function is taken to be one, and the noise time series is ignored. The
result is

vscatn (t) ≡ ψscat(Rxvr
n ,Rxvr

n , t). (11)

As a simple simulated scattering example, consider the incident pulse time series, p(t), presented in Figure 2: four
cycles of a 20 kHz Gaussian windowed sinusoid:

p(t) = sin(ω0t) exp

(
−1

2

(
ω0t

Ncyc

)2
)
, (12)

where ω0 = 2π × 20 × 103, and Ncyc = 4. In all the examples, the spatial coordinates are scaled to the wavelength
of the peak, 20 kHz, frequency, λ0 = 1.715 centimeters with a wave propagation velocity of c0 = 343 meters/second
(the speed of sound in air). Figure 3 shows the geometry of the simulated examples. The transceiver array is located
along the y ≡ 0 axis with coordinates, {Rxvr

n }
Nxvr

n=1 where Nxvr is the number of transceivers. Point scatterer locations
are indicated by {Xj}Nj

j=1 where Nj is the number of scatterers. When there is only one scatterer, the j subscript is
omitted. The scatterer(s) are located at a range of 10λ0 from the array and their locations are indicated by circles of
diameter λ0.

Figures 4 through 6 present a sequence of “snapshots” of the incident and scattered field propagation for a single
scatterer located at X. As derived in Eqn. (29) of Section 4, the the incident field propagation is described by

ψinc(r,Rsrc
n , t) =

1

4π |r−Rsrc
n |

p

(
t− |r−Rsrc

n |
c0

)
. (13)

The time steps are expressed in terms of the number of wavelengths the incident field has propagated:

tk =
λ0
c0

k, (14)

where k = 1, 2, 3, · · ·. By time step k ≡ 15 (Figure 5), the incident field has interacted with the point scatterer and
the scattered field has been created. By time step 27 (Figure 6), the scattered field has reached the transducer located
at Rxvr

n+1. The vertical line descending from its location indicates the received measured field time series, vscatn+1(t) and
the leading edge of the pulse has manifested itself. The scattered pulse arrives after a delay of 2 |X−Rxvr

n | /c0. The
time shift (delay) in the scattered field of Eqn. (8) and its corresponding measured voltage of Eqn. (11) depends upon
the distance between the transceiver and the point scatterer,

|X−Rxvr
n | ≡

√
(xs − xn)

2
+ (ys − yn)

2
+ (zs − zn)

2
, (15)

where X = (xs, ys, zs) and Rxvr
n = (xn, yn, zn). As the transceiver progresses from one location to the next acquiring

data, two important concepts arise from the spatial dependence of the time shift:
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• The moveout [3, 4, 5], known colloquially as the “hyperbolic smile”, arises when Eqn. (15) is interpreted as a
function of transceiver location, Rxvr

n with fixed scatterer location, X,

{|X−Rxvr
n |}

Nxvr

n=1 . (16)

The locus of points described by Eqn. (16) trace the “smile”.

• The ambiguity curve, results from interpreting Eqn. (15) as a constant-valued function of scatterer location, X,
with fixed transceiver location, Rxvr

n ,

|r−Rxvr
n | = |X−Rxvr

n |︸ ︷︷ ︸
constant

. (17)

Scatterers located on this curve will all yield identical measured fields when seen at a receiver co-located with
the source. The ambiguity arises from the delay in the return is a function only of the difference between the
transceiver and scatterer and not the scattering angle. Single scatterers located at identical ranges yield identical
scattered fields at the transceiver.

These concepts are demonstrated in Figure 7. The location ambiguity is resolved by combining the measured fields
from multiple spatially diverse (separated) transceivers. One method of combining the measured fields is migration.
Superposing the range ambiguity curve for each transceiver, the location of the returned shifted and scaled pule is
traced back to the actual scatterer location. Migration focuses or maps the smiles to scattering points.

Migration, in a nutshell, consists of undoing the forward scattering and propagation effects on the collection of
measured voltages, {vscatn (t)}Nxvr

n=1 , to obtain the scatter location and amplitude. These effects are

• A time shift of the pulse (technically, the second derivative of the pulse) given by
2 |X−Rxvr

n |
c0

,

• And a range scaling of
1

|X−Rxvr
n |

2 .

Assuming the scatterer location is unknown (certainly, if its location were known, there would be no need to
employ the measurement system of Figure 1 other than as an exercise), a guess at its location is made, a migration
performed, and the result analyzed to infer the (non-)existence of any scatter at the guessed location. The guessed
location is referred to as the focal point and it is indicated mathematically by rf .

Most generally, a collection of focal points, {rf,n}Nf

n=1, is selected over the volume being interrogated. Migrations
are performed to each focal point and an “image” of the volume created. High values or “hot spots” in the image
indicate the location and scattering amplitude of a scatterer. Mathematically, the combined migrations are described
as

ômig(rf) =
1

Nxvr

Nxvr∑
n=1

|rf −Rxvr
n |

2
vscatn

(
tpeak +

2 |rf −Rxvr
n |

c0

)
, (18)

where ômig(rf) is an estimate of the scattering object achieved through migration. Substituting Eqn. (8),

ômig(rf) = − τ

(4π)
2
c20 Nxvr

Nxvr∑
n=1

|rf −Rxvr
n |

2

|X−Rxvr
n |

2 p
′′
(
tpeak −

2 |X−Rxvr
n |

c0
+

2 |rf −Rxvr
n |

c0

)
, (19)

it is observed when a focal point coincides with the scatterer location, rf ≡ X, the value of the migration reduces to
the coherent sum of the pulse derivative evaluated at the pulse peak time:

ômig(X) = − τ

(4π)
2
c20
p′′ (tpeak) . (20)

For rf 6= X, two cases must be considered,

6
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Figure 1: Anatomy of a wave-based measurement system. An excitement voltage, en(t) drives the n-th source
transducer with system response T src

n (r, t) producing the incident pulse, p(r,Rsrc
n , t). The emitted incident field,

ψinc(r,Rsrc
n , t), propagates into the environment as indicated by the Green function G0(r, t). The field interacts with

the scattering object, O(r), presumed to be unknown, and possibly a known background, Ob(r). The result of the in-
teraction is the scattered field, ψscat(r,Rsrc

n , t) which propagates to and is measured by the m-th receiving transducer
with system response T rcv

m (r, t). The measured voltage recorded from the transducer is vscatm,n(t). This is the multistatic
data matrix. The flow diagram models a fully multistatic system but can represent a multimonostatic system when
m ≡ n. It can model both reflection and transmission mode. In the latter case, we replace Ob(r) by Ob(r) + 1 and
ψscat(r,Rsrc

n , t) by ψtot(r,Rsrc
n , t) to account for the incident field.

1. When the shifts exceed the pulse length1,

p��
�
tpeak −

2 |X−Rxvr
n |

c0
+

2 |rf −Rxvr
n |

c0

�
= 0,

and the sum of Eqn. (19) is zero.

2. When the shifts are less than the pulse length, the sum of Eqn. (19) will result in patterns of coherent interference,
that is regions of constructive and destructive interference depending upon the shift.

Examples of delay, scale, and sum migration are demonstrated in Figures 8 and 9 for two focal points:

• The first focal point coincides with the scatterer location, rf ≡ X;

• The second focal point does not coincide with the scatterer location, rf �= X.

The top plot of Figure 8 presents the multimonostatic data matrix of Figure 7 overlaid on the migrated image for
reference. The two bottom plots demonstrate the concept of migration in terms of focusing of the measured time
series. For each of the focal points, the range scaling of |rf −Rxvr

n |
−2 is applied to the time series. Each time series

is rotated about the transducer location along its ambiguity curve until the trace intersects the focal point where the
series are summed. The scaled and rotated time series constructively interfere at rf ≡ X, whereas there is minimal
contribution when rf �= X resulting from the non-uniform scaling and phase of the returns along the ambiguity curve.

Figure 9 presents the delay, scale, and summation steps for each of the focal points. The top plots show the time
series after they have been shifted by |rf −Rxvr

n | /c0. When rf ≡ X, the phases of the time series align whereas they
do not when rf �= X. In fact, in some cases the scattered pulse shifts out of the time series. The bottom plots present
the delayed time series scaled by |rf −Rxvr

n |
−2. The time series for rf ≡ X are uniformly scaled.

Finally, the time series are summed over all transceivers as in Eqn. (18). The resulting sums are plotted in Figure 10.
The value of the migration is the time series evaluated at the range of the focal point. These are indicated in the plot.

1For the pulse of Eqn. (12), this is approximately 2Ncyc

ω0
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Figure 2: The examples used in the tutorial use a background velocity of 343 m/s and a 20 kHz Gaussian windowed
sinusoid incident pulse, p(t). All coordinates used in the figures are scaled to the pulse wavelength, λ0, of 1.715 cm.
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Figure 3: The geometry used in the simulated examples. The spatial dimensions are scaled to the pulse wavelength,
λ0, of 1.715 cm. The transceiver array is located along the y ≡ 0 axis. The scatterer location(s) are indicated by
circles of diameter λ0.

3.1 A Brief, Graphical Description of Resolution Limit
Resolution limit (at times identified as the “classical” resolution limit) of an aperture or array is defined as the minimum
distinguishable distance between two point scatterers. Mathematically it is derived as [6]:

∆h = 1.22
r λ0
A

, (21)

where

∆h is the spatial separation between the two point scatterers,
r is the range (distance) from the array to the plane of the scatterers,
λ0 is the wavelength,
A is the aperture or array size.

A caveat: this is a single frequency definition whereas the problem studied here is wide band (see the incident pulse
spectrum of Figure 2). The wavelength chosen to estimate the resolution limit is that of the peak, 20 kHz, frequency
(1.715 cm wavelength), however a more appropriate wavelength is that corresponding to the highest usable frequency
within the band width of the pulse spectrum.

Consider the measurement system of Figure 11. Two point scatterers are placed at r = 10λ0 from the array,
separated by ∆h = λ0. The following configurations are studied graphically in Figure 12:

1. (a) A single transceiver. With no other information, the migrator can only “smear” the single return over the
ambiguity curve.

2. (b) A two element array with aperture sizeA = 12.20λ0. According to Eqn. (21), the scatterers are just resolved.

3. The cases presented in sub-figures (c) through (g) maintain the resolution limit aperture of A = 12.20λ0 while
increasing the transceiver population. They demonstrate increasing the number of elements increases the signal-
to-noise ratio and reduces artifact clutter.
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Figure 4: A sequence of “snapshots” of the incident and scattered field propagation. The “time steps” are in terms of
wavelength: tk = kλ0/c0 where k = 1, 2, 3, 4, 5.

10



Time Step 13.00

x (λ
0
)

ra
n

g
e

 (
λ

0
)

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16 Time Step 14.00

x (λ
0
)

ra
n

g
e

 (
λ

0
)

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16

(a) Time step 13. (b) Time step 14.

Time Step 15.00

x (λ
0
)

ra
n

g
e

 (
λ

0
)

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16 Time Step 16.00

x (λ
0
)

ra
n

g
e

 (
λ

0
)

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16

(c) Time step 15. (d) Time step 16.

Time Step 17.00

x (λ
0
)

ra
n

g
e

 (
λ

0
)

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16

(e) Time step 17.

Figure 5: A sequence of “snapshots” of the incident and scattered field propagation. The “time steps” are in terms of
wavelength: tk = kλ0/c0 where k = 13, 14, 15, 16, 17.
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Figure 6: A sequence of “snapshots” of the incident and scattered field propagation. The “time steps” are in terms of
wavelength: tk = kλ0/c0 where k = 26, 27, 28, 29, 30, 31, 32, 33.
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Original Multimonostatic Data Matrix, vscatn (t), Superposed on the Migration Image
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Figure 8: Focusing demonstration: the multimonostatic data matrix time series are scaled and rotated along their
respective ambiguity curves to the focal point. A coherent sum is achieved when the focal point coincides with the
scatterer location.
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Figure 11: Geometry used in resolution descriptions.

The conclusion is aperture size contributes to resolution and increasing the number of elements reduces migration
artifacts which obscure resolution.

Figure 14 compares multimonostatic with fully multistatic configurations. The additional perspective offered by
the multistatic configuration achieves resolution with fewer elements while decreasing migration artifacts.
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Figure 12: A graphical resolution study. Increasing the aperture, increases the resolution. Increasing the number of
elements within the aperture, reduces the clutter; alternatively, it increases the signal-to-noise ratio.
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Figure 13: Comparison of multimonostatic with fully multistatic configurations.
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4 Incident Field Propagation
Solving the forward scattering problem requires solving for the background or incident field. The incident field is
defined as that propagating environment in the absence of a scattering object. The forward propagation model is[

∇2 − 1

c20
∂2t

]
ψinc(r,Rsrc

n , t) = −p(r,Rsrc
n , t), (22)

where p(r,Rsrc
n , t) is the source distribution centered at Rsrc

n , and ψinc(r,Rsrc
n , t) is the incident field in the volume,

V . In anticipation of eventually considering a collection of Nsrc sources located at {Rsrc
n }

Nsrc

n=1 , the source location is
indexed by n.

The (background) Green function satisfies[
∇2 − 1

c20
∂2t

]
G0(r, t; r′, t′) = −δ(r− r′, t− t′), (23)

where the zero subscript is used to identify the homogeneous, free-space, background. The general solution to
Eqn. (22) is [7]

ψinc(r,Rsrc
n , t) =

∫ T

0

dt′
∫
V

dr′ G0(r, t; r′, t′)p(r′,Rsrc
n , t) +∫ T

0

dt′
∫
S

dΩ′
[
G0(r, t; r′, t′) ∂n′ψ

inc(r′,Rsrc
n , t′)

∣∣
r′=S

−

∂n′G0(r, t; r′, t′) ψinc(r′,Rsrc
n , t′)

∣∣
r′=S

]
+∫

V

dr′
1

c20
G0(r, t; r′, t′)ψinc(r′,Rsrc

n , 0) +

∂t

∫
V

dr′
1

c20
G0(r, t; r′, 0)ψinc(r′,Rsrc

n , 0), (24)

where

T : is the maximum time during which the field is to be evaluated. This chosen to be infinity.
V : is the volume. This is chosen to be infinity.
S : is the surface of the volume.

The following assumptions are made:

1) ψinc(r,Rsrc
n , 0) = 0 (no initial fields),

2) ψinc(r,Rsrc
n , t)

∣∣
r=S

= 0 (no external fields on boundary),
3) ∂nψ

inc(r, t)
∣∣
r=S

= 0 (no external fields on boundary),
4) p(r,Rsrc

n , t) = p(t) δ(r−Rsrc
n ) (point sources located at Rsrc

n ).

(25)

These assumptions reduce Eqn. (24) to

ψinc(r,Rsrc
n , t) =

∫ T

0

dt′ G0(r, t;Rsrc
n , t′) p(t′), (26)

where the incident field expression has been expanded to indicate it is a result of the transmitter located at Rsrc
n . In the

absence of scatterers, the background Green function is given by [7]

G0(r, t; r′, t′) =
δ(t− t′ − |r− r′| /c0)

4π |r− r′|
. (27)
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Which yields, when evaluated at the source position,

G0(r, t;Rsrc
n , t′) =

δ(t− t′ − |r−Rsrc
n | /c0)

4π |r−Rsrc
n |

. (28)

Combining Eqns. 26 and 28, results in

ψinc(r,Rsrc
n , t) = lim

T→∞

∫ T

0

dt′
δ(t− t′ − |r−Rsrc

n | /c0)

4π |r−Rsrc
n |

p(t′),

=
1

4π |r−Rsrc
n |

p

(
t− |r−Rsrc

n |
c0

)
, (29)

which is a time-shifted (delayed) and scaled version of the original source. Observe the delay depends only upon the
difference between the source and observer (eventually the receiver) location.

The incident field measured at the receiver located at Rrcv
m is then given by

ψinc(Rrcv
m ,Rsrc

n , t) =
1

4π |Rrcv
m −Rsrc

n |
p

(
t− |R

rcv
m −Rsrc

n |
c0

)
. (30)

5 Scattered Field Propagation
Forward propagation in the presence of scattering object(s) is analyzed in the temporal Fourier domain using the
transforms as defined in Appendix A. Consider the wave equation[

∇2 − n2(r)

c20
∂2t

]
ψtot(r,Rsrc

n , t) = −p(r,Rsrc
n , t), (31)

in which an inhomogeneous background is modeled a spatially dependent refractive index,

n(r) ≡ c0
c(r)

. (32)

Fourier transform Eqn. (31) to achieve[
∇2 + k20n

2(r)
]
ψtot(r,Rsrc

n , ω) = −p(r,Rsrc
n , ω), (33)

where the background wavenumber is defined as

k0 ≡ ω

c0
.

When solving the forward problem, it is frequently convenient to cast Eqn. (33) into an integral equation. Add
k0ψ

tot(r,Rsrc
n , ω) to both sides of Eqn. 33, and move the inhomogeneous term to the right hand side:[

∇2 + k20(ω)
]
ψtot(r,Rsrc

n , ω) = −p(r)−
[
k20n

2(r)− k20
]
ψtot(r,Rsrc

n , ω). (34)

Define the object function as

o(r) ≡ n2(r)− 1, (35)

and express Eqn. 34 as[
∇2 + k20(ω)

]
ψtot(r,Rsrc

n , ω) = −p(r,Rsrc
n , ω)− k20o(r)ψtot(r,Rsrc

n , ω). (36)
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The first term on the right-hand side of Eqn. (36), p(r,Rsrc
n , ω), is the primary source. The second, source-like, term

on the right-hand side, k20o(r)ψtot(r,Rsrc
n , ω), is known as the secondary source. Green’s theorem is used to cast the

differential equation of Eqn. 36 into an integral equation [8],

ψtot(r,Rsrc
n , ω) =

∫
dr′ G0(r, ω; r′, t′) p(r′,Rsrc

n , ω)︸ ︷︷ ︸
The incident field: ψinc(r,Rsrc

n ,ω)

+

k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψtot(r′,Rsrc

n , ω)︸ ︷︷ ︸
The scattered field: ψscat(r,Rsrc

n ,ω)

. (37)

where the background Green function satisfies[
∇2 + k20(ω)

]
G0(r, ω; r′, 0) = −δ(r− r′), (38)

where

G0(r, ω; r′, 0) =
eik0|r−r

′|

4π |r− r′|
. (39)

The primary, incident, or background field, defined as the solution to Eqn. (22), is

ψinc(r,Rsrc
n , ω) ≡

∫
dr′ G0(r, ω; r′, t′) p(r′,Rsrc

n , ω), (40)

so that Eqn. 37 reads

ψtot(r,Rsrc
n , ω) = ψinc(r,Rsrc

n , ω) +

k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψtot(r′,Rsrc

n , ω). (41)

The scattered field is then defined as the difference between the total and incident fields,

ψscat(r,Rsrc
n , ω) ≡ ψtot(r,Rsrc

n , ω)− ψinc(r,Rsrc
n , ω)

= k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψtot(r′,Rsrc

n , ω). (42)

Observe that with the primary field satisfying,[
∇2 + k20(ω)

]
ψinc(r,Rsrc

n , ω) = −p(r,Rsrc
n , ω), (43)

the scattered field obeys [
∇2 + k20

]
ψscat(r,Rsrc

n , ω) = −k20o(r)ψtot(r,Rsrc
n , ω), (44)

or alternatively, [
∇2 + k20n

2(r)
]
ψscat(r,Rsrc

n , ω) = −k20o(r)ψinc(r,Rsrc
n , ω), (45)

where Eqn. (35) has been used.
The integral equation of Eqn. (42) is non-linear in that the scattered field appears in both sides of the equation. The

differential equation of Eqn. (45) offers the problem of having spatially dependent scattering operator. Exact analytic
solutions for the scattered field exist only for a limited set of scattering objects. Numerical solutions are readily
available but not appropriate for an arbitrary object tomographic inversion algorithm. Thus, we wish to simplify our
forward model. In the following section the model is simplified under the Born approximation.
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6 Born Approximation
One potential method of simplifying Eqn. (45) prior to solving is to use a perturbation approach. Express the refractive
index and scattered field as [9]

n2(r) = n20(r)︸ ︷︷ ︸
≡1

+ εn1(r) + ε2n2(r) + · · ·︸ ︷︷ ︸
≡ δn(r)

,

ψscat(r,Rsrc
n , ω) = ψscat

0 (r,Rsrc
n , ω) + εψscat

1 (r,Rsrc
n , ω) + ε2ψscat

2 (r,Rsrc
n , ω) + · · · ,

(46)

respectively, substitute them into Eqn. (45), and equate like powers of ε. Doing so yields the follow set of equations:[
∇2 + k20

]
ψscat
0 (r,Rsrc

n , ω) = −k20o(r)ψinc(r,Rsrc
n , ω), (47)[

∇2 + k20
]
ψscat
1 (r,Rsrc

n , ω) = −k20n1(r)ψscat
0 (r,Rsrc

n , ω), (48)[
∇2 + k20

]
ψscat
2 (r,Rsrc

n , ω) = −k20
[
n2(r)ψscat

0 (r,Rsrc
n , ω)− n1(r)ψscat

1 (r,Rsrc
n , ω)

]
, (49)

...[
∇2 + k20

]
ψscat
l (r,Rsrc

n , ω) = −k20
l−1∑
m=0

nl−m(r)ψscat
m (r,Rsrc

n , ω). (50)

The scattering operator in the left hand side of Eqns. 47 through 50 is spatially independent. The Green function for
the operator is that of Eqn. (38). It is used to cast Eqn. (47) into an integral equation to obtain the Born approximation
to the scattered field,

ψscat
B (r,Rsrc

n , ω) ≡ ψscat
0 (r,Rsrc

n , ω) = k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψinc(r′,Rsrc

n , ω). (51)

Comparing this to Eqn. (42), it is seen the Born approximation effectively replaces the total field with the incident
field, assuming a weak scattering approximation.

6.1 Scattered Field Resulting from a Point Source
The field resulting from a point source is given by Eqn. (29). Its temporal Fourier transform is

ψinc(r,Rsrc
n , ω) =

eik0|r−R
src
n |

4π |r−Rsrc
n |

P (ω). (52)

The Fourier transform of the background Green function of Eqn. (27) is

G0(r, ω; r′, t′) =
eik0|r−r

′| eiωt′

4π |r− r′|
. (53)

Substituting Eqns. 52 and 53 into Eqn. (51), achieves

ψscat
B (r,Rsrc

n , ω) = P (ω)
k20 e

iωt′

(4π)
2

∫
dr′

eik0(|r−r
′|+|r′−Rsrc

n |)

|r− r′| |r′ −Rsrc
n |

o(r′). (54)

6.2 Scattered Field from a Collection of Point Scatterers
Consider a collection of point scatterers located at {Xj}Jj=1 with refractive indices {nj}Jj=1. The refractive index of
Eqn. (31) is expressed as

n2(r) = 1 +

J∑
j=1

(
n2j − 1

)
δ(r−Xj). (55)
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Resulting in an object function (see Eqn. (35)) of

o(r) =

J∑
j=1

(
n2j − 1

)
δ(r−Xj). (56)

Defining the point scattering amplitude as

τj ≡ n2j − 1, (57)

we arrive at the object distribution function,

o(r) =

J∑
j=1

τj δ(r−Xj). (58)

Substituting thee object distribution function into Eqn. (54) and integrating yields

ψscat
B (r,Rsrc

n , ω) = P (ω)
k20 e

ik0t
′

(4π)
2

J∑
j=1

τj
eik0(|r−Xj |+|Xj−Rsrc

n |)

|r−Xj | |Xj −Rsrc
n |

. (59)

Inverse Fourier transforming in time, we have

ψscat
B (r,Rsrc

n , t) =
1

(4π)
2
c20
F−1

ω
2 P (ω) eiωt

′︸ ︷︷ ︸
Ip(ω)

J∑
j=1

τj
eik0(|r−Xj |+|Xj−Rsrc

n |)

|r−Xj | |Xj −Rsrc
n |︸ ︷︷ ︸

Ij(ω)

 . (60)

Eqn. (60) is the product in Fourier space of two functions identified as Ip(ω) and Ij(ω). This represents a convolution
in the time-domain. Consider the inverse Fourier transform of the first expression,

I1(t− t′) = F−1 {Ip(ω)}

=
1

2π

∫ ∞
−∞

dω ω2P (ω) e−iω(t−t
′)

= − 1

2π

d2

dt2

∫ ∞
−∞

dω P (ω) e−iω(t−t
′)

= − 1

2π

d2

dt2
p(t− t′). (61)

The second expression is

Ij(t) = F−1 {Ij(ω)}

=
1

2π |r−Xj | |Xj −Rsrc
n |

∫ ∞
−∞

dω eiω(|r−Xj |+|Xj−Rsrc
n |)/c0 e−iωt,

=
1

|r−Xj | |Xj −Rsrc
n |

δ

(
t− |r−Xj |+ |Xj −Rsrc

n |
c0

)
. (62)

The convolution is

ψscat
B (r,Rsrc

n , t) =
1

8π c20

J∑
j=1

τj

∫ ∞
−∞

dt′ Ip(t− t′) Ij(t′),

= − 1

(4π)
2
c20

J∑
j=1

τj
|r−Xj | |Xj −Rsrc

n |

[
d2

dt2
p(t− t′)

]
t′=
|r−Xj |+|Xj−Rsrc

n |
c0

= − 1

(4π)
2
c20

J∑
j=1

τj
|r−Xj | |Xj −Rsrc

n |
p′′
(
t− |r−Xj |+ |Xj −Rsrc

n |
c0

)
(63)
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where the double prime on p(·) indicates the second derivative with respect to its argument.

7 Full Scattering via Foldy-Lax
Foldy-Lax scattering [10, 11, 12] is a full wave scattering theory for point scatterers. It is exact within the constraint
the scatterers are not “too close” (See Section 7.1). The derivation is as follows.

Return to the scattered field of Eqn. (42),

ψscat(r,Rsrc
n , ω) = k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψtot(r′,Rsrc

n , ω), (64)

and substitute the object distribution function of Eqn. (58),

o(r) =

J∑
j=1

τj δ(r−Xj).

This yields

ψscat(r,Rsrc
n , ω) = k20

J∑
j=1

τj G0(r, ω;Xj , t
′) ψtot(Xj ,R

src
n , ω). (65)

To evaluate the scattered field of Eqn. (65), an expression is required for the total field evaluated at the scatters,
ψtot(Xj ,R

src
n , ω). Returning to Eqn. (41) and replacing the integral representation of the scattered field by Eqn. (65)

achieves,

ψtot(Xj ,R
src
n , ω) = ψinc(Xj ,R

src
n , ω) + k20

J∑
j′ 6=j

τj′ G0(Xj , ω;Xj′ , t
′) ψtot(Xj′ ,R

src
n , ω), (66)

where the self-scattering term has been removed because the Green function diverges when Xj ≡ Xj′ . This is ansatz
motivated by the divergence. This represents a set of J equations with J unknown total fields, ψtot(Xj′ ,R

src
n , ω).

The terms containing the unknowns are moved to the left hand side,

ψtot(Xj ,R
src
n , ω)− k20

J∑
j′ 6=j

τj′ G0(Xj , ω;Xj′ , t
′) ψtot(Xj′ ,R

src
n , ω) = ψinc(Xj ,R

src
n , ω), (67)

and express the result as a matrix equation,[
I− k20T

]
ψtot
n (ω) = ψinc

n (ω), (68)

with the following definitions,

T ≡


0 τ2G(X1, ω;X2, t

′) · · · τJG(X1, ω;XJ , t
′)

τ1G(X2, ω;X1, t
′) 0 · · · τJG(X2, ω;XJ , t

′)
...

...
...

...
τ1G(XJ , ω;X1, t

′) τ2G(XJ , ω;X2, t
′) · · · 0

 , (69)

ψtot
n (ω) ≡


ψtot(X1,R

src
n , ω)

ψtot(X2,R
src
n , ω)

...
ψtot(XJ ,R

src
n , ω)

 , (70)

ψinc
n (ω) ≡


ψinc(X1,R

src
n , ω)

ψinc(X2,R
src
n , ω)

...
ψinc(XJ ,R

src
n , ω)

 . (71)
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The solution is

ψtot
n (ω) =

[
I − k20T

]−1
ψinc
n (ω), (72)

=
[
I + k20T + k40 (T)

2
+ k60 (T)

3
+ · · ·

]
ψincn (ω), (73)

which is back-substituted into Eqn. (65) to obtain the scattered field spectrum.
For the total field of Eqn. (72) to be physical, the series expansion of I − k20T in Eqn. (73) must converge. Thus,

we require [13]:

k20 ‖T‖2 < 1, (74)

for stability.

7.1 Stability Analysis of Foldy-Lax
The stability of the Foldy-Lax model depends upon the convergence of the series in Eqn. (73). Convergence is ensured
by constraining the magnitude of the scatterers. Eqn. (74) is imposed as a constraint:

k20 ‖T‖2 < 1. (75)

It is shown in [13],

‖T‖2 ≤ Nsrc max
jj′
|τj′ G0(Xj , ω;Xj′ , t

′)| . (76)

Extracting the maximum scattering strength, τmax ≡ maxj′ |τj′ |, and observing the magnitude of the free space Green
function of Eqn. (53) obeys:

|G0(Xj , ω;Xj′ , t
′)| ≤ 1

4π |Xj −Xj′ |
≤ 1

4π Rmin
, (77)

where

Rmin ≡ min
jj′,j 6=j′

|Xj −Xj′ | , (78)

Eqn. (75) is expressed as

‖T‖2 <
Nsrc maxj′ |τj′ |

4π k20 Rmin
(79)

which is required to be less than one,

Nsrc maxj′ |τj′ |
4π k20 Rmin

< 1. (80)

Thus, the constraint on the maximum scattering strength is

max
j′
|τj′ | <

4π k20 Rmin

Nsrc
, (81)

that is, the scatterers may not be “too close” together.
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8 Delay, Scale, & Sum Beamforming: Migration
Five expressions involving the scattered field have been derived:

1. An integral expression for the scattered field from Eqn. (42),

ψscat(r,Rsrc
n , ω) = k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψtot(r′,Rsrc

n , ω), (82)

which can be difficult to solve as the total field contains the scattered field.

2. The differential equation equivalent to either Eqn. (42) or Eqn. (82) in Eqn. (44),[
∇2 + k20

]
ψscat(r,Rsrc

n , ω) = −k20 o(r) ψtot(r,Rsrc
n , ω). (83)

3. The Born approximation of Eqn. (51),

ψscat
B (r,Rsrc

n , ω) = k20

∫
dr′ G0(r, ω; r′, t′) o(r′) ψinc(r′,Rsrc

n , ω). (84)

4. The Born approximation for point scatterers of Eqn. (63),

ψscat
B (r,Rsrc

n , t) = − 1

(4πc0)
2

J∑
j=1

τj
|r−Xj | |Xj −Rsrc

n |
p′′
(
t− |r−Xj |+ |Xj −Rsrc

n |
c0

)
. (85)

5. And the Foldy-Lax full-wave point scatterer scattering solution of Eqns. 65 and 72,

ψscat(r,Rsrc
n , ω) = k20

J∑
j=1

τj G0(r, ω;Xj , t
′) ψtot(Xj ,R

src
n , ω), (86)

ψtot
n (ω) =

[
I − k20T

]−1
ψinc
n (ω). (87)

To demonstrate the concept of delay and sum beamforming, consider the scattered field approximation of Item (4)
in Eqn. (85), when measured at a collection of receivers located at {Rrcv

m }
Nrcv

m=1:

ψscat
B (Rrcv

m ,Rsrc
n , t) = − 1

(4πc0)
2

J∑
j=1

τj
αmjn

p′′ (t− tmjn) , (88)

where the delay and range scaling have been expressed most generally as tmn and αmn, respectively. Note, this
represents a fully multistatic system in that the transducers are explicitly spatially diverse. In a homogeneous medium
the time delay and range scale are

tmjn ≡ |Rrcv
m −Xj |+ |Xj −Rsrc

n |
c0

, (89)

and the scale

αmjn ≡ |Rrcv
m −Xj | |Xj −Rsrc

n | , (90)

respectively. When migrating through inhomogeneous media, the expressions for delay and scale may be more com-
plicated and, in fact, may lack a closed form.

Eqn. (88) represents a set of measurements identified as the multistatic data matrix (MSDM). Rigorously, the
MSDM is derived from the measured field via

vscatmn (t) = T rcv
n (r, t) ∗ ψscat(Rrcv

m ,Rsrc
n , t) + n(t), (91)
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as shown in Figure 1, however for the present, the receiver transfer function is taken to be T xvr
n (r, t) ≡ 1 and any noise

ignored, n(t) ≡ 0. With these assumptions, the MSDM is identical to the scattered field observed at the receiver:

vscatmn (t) ≡ ψscat(Rrcv
m ,Rsrc

n , t). (92)

Note, in multimonostatic systems, m ≡ n, and the MSDM is a multimonostatic data matrix (MMDM) expressed as
vscatn (t).

Migration assumes or “guesses at” a scatterer location know as a focal point, rf = (xf , yf , zf), and reverses the
delay and scaling of the forward scattering and propagation. The delay and range scale to the focal point are

tmfn ≡ |Rrcv
m − rf |+ |rf −Rsrc

n |
c0

, (93)

and

αmfn ≡ |Rrcv
m − rf | |rf −Rsrc

n | , (94)

respectively. The shifted and scaled returns are summed with the assumption returns from a scatterer will sum coher-
ently whereas returns from non-scattering center volumes will sum destructively. Finally, the sum is evaluated at the
time of the pulse peak, tpeak, as identified in Figure 2. Mathematically, this is expressed as

ômig(rf) =
1

Nsrc Nrcv

Nsrc∑
n=1

Nrcv∑
m=1

αmfn v
scat
mn (tpeak + tmfn) , (95)

where ômig(rf) is an estimate of the scattering object achieved through migration. Substituting Eqn. (88), results in

ômig(rf) = − 1

(4πc0)
2
Nsrc Nrcv

Nsrc∑
n=1

Nrcv∑
m=1

J∑
j=1

τj
αmfn

αmjn
p′′ (tpeak − tmjn + tmfn) . (96)

Three cases must be considered,

1. When the time shift, (tmjn − tmfn), exceeds the pulse length, the contribution due to the pulse derivative is
zero, p′′ (tpeak − tmjn + tmfn) ≡ 0;

2. When the focal point coincides with the j-th scatterer, rf ≡ Xj , Eqn. (96) reduces to

ômig(Xj) = − 1

(4πc0)
2
Nsrc Nrcv

×

Nsrc∑
n=1

Nrcv∑
m=1

τjp′′(tpeak) +

J∑
j′ 6=j

τj′
αmfn

αmj′n
p′′ (tpeak − tmj′n + tmfn)

 ,
= − 1

(4πc0)
2 ×τjp′′(tpeak) +

1

NsrcNrcv

Nsrc∑
n=1

Nrcv∑
m=1

J∑
j′ 6=j

τj′
αmfn

αmj′n
p′′ (tpeak − tmj′n + tmfn)

 . (97)

For scatterers with a separation greater than a pulse length, the triple sum is incoherent and negligible.

3. For shifts less than a pulse length, the migration yields coherent interference patterns.
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Figure 15: An example of a cosine beam pattern, rf ·Srxvr
n

|rf | as a function of a collection of planar focal points for an
antenna heading of Srxvr

n .

8.1 Imposition of a Beam Pattern
The derivation of the previous section assumes the sources and receivers are isotropic: they have a uniform beam
pattern. This is not practically accurate. As a correction, an empirically based cosine beam pattern is imposed on the
measured time series. Let {Ssrc

n }
Nsrc

n=1 and {Srcv
m }

Nrcv

m=1 be the source and receiver heading unit vectors, respectively.
The cosine beam pattern at each focal point is

bmfn =

(
rf · Srcv

m

|rf |

) (
rf · Ssrc

n

|rf |

)
(98)

which is imposed on Eqn. (95) as

ômig(rf) =
1

Nsrc Nrcv

Nsrc∑
n=1

Nrcv∑
m=1

αmfn bmfn v
scat
mn (tpeak + tmfn) . (99)

8.2 Migration in a Planar Layer Medium
The migration equation of Eqn. (95) requires the time delay, tmfn, and range scale, αmfn, from the source to the focal
point, and the focal point to the receiver. The method of computing or estimating the delay and scale are independent
of the migration. Regardless of the background Green function, if they can be achieved, a migration can be performed.

Migration in a two medium space, planar layer or otherwise, is challenged by the issue of refraction at the interface.
Ray traces must be performed from the transceivers to the focal points in order to estimate accurate delays and range
scales. Figure 16 presents the case of a ray trace in a volume enclosing a two planar layer medium with refractive
indices n1 and n2. A ray is “shot” from the source located at Rsrc

n . It intercepts the surface at the point p and refracts
in a manner to intercept the focal point rf . The process is repeated for the “scattered” ray from the focal point to the
receiver located at Rrcv

m . Snell’s Law [6, 8, 14] governs refraction at interfaces:

n1 sin θ1 = n2 sin θ2, (100)

where n1 and n2 are the refractive indices of the top and bottom layers, respectively, and θ1 and θ2 are the incident and
transmitted ray normal angles as shown in Figure 17. The details of solving Eqn. (100) at a focal point are presented
in Appendix C.
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Figure 16: Two planar ray trace scenario. A ray is “shot” from the source located at Rsrc
n . It intercepts the surface

at the point p and refracts in a manner to intercept the focal point rf . The process is repeated for the “scattered” ray
from the focal point to the receiver located at Rrcv

m through the surface intercept point q.
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9 Examples
Four examples are presented which demonstrate delay, scale, and sum migration of measured wave data:

• Section 9.1 presents data collected on a wire-under-tension phantom in which the wires were arranged in a
logarithmic spiral. Twenty-nine wires were 14

1000 inch (0.036 mm) steel, one was 7
1000 inch (0.018 mm) nylon,

and one was missing (a steel wire snapped while being pulled taut). These diameters are at least an order
of magnitude less than the pulse spectral peak wavelength. The experiment provides an example of remotely
identifying a target (the nylon wire) in clutter (the steel wires). The measurement system was an annular array
in which the transmitting and receiving transducers rotated independently along a 15 cm diameter annulus. The
transmitter successively occupied 360 discrete locations with a one degree increment. Due to the mechanical
obstruction of the transmitter, the receiver measured scattered field data at 320 locations with a one degree
increment. This models imaging in clutter as well as the “As Built” versus “As Designed” problem with a
multibistatic with variable offset system.

• Section 9.2 presents data collected on an aluminum block glued onto a copper block in which a hole was drilled.
This provides an example of locating a defect in a two planar layer medium. Migrating in this environment
requires accounting for the field refraction at the interface. A migration is performed using Snell’s Law at
the interface. This example serves as a model of imaging objects buried in a planar layered medium with a
multistatic system.

• Adopting the philosophy that “a wave behaves as a wave”, independent of the material physics, Section 9.3
presents an aluminum pole resolution phantom buried in dry, loamy sand. A wide band, ground penetrating,
radar is used in a multimonostatic operating mode to image the subsurface environment. The mathematics of
the forward scattering and migration remain the same as in the acoustic case only the physical properties of the
refractive index change.

• Section 9.4 presents data on an aluminum block with two drilled holes representing “buried” objects. The
linear ultrasonic transmitting and receiving arrays are placed, orthogonally, on adjacent sides of the block. This
multistatic system models offset vertical seismic profiling.

9.1 Wire Phantom
A wire phantom consisting of thirty 14

1000 inch (0.036 mm) steel wires and one 7
1000 inch (0.018 mm) nylon wire

pulled taut between two guide plates was designed and built to serve as a two-and-half dimensional scattering object.
The wires were threaded through holes drilled into the guide plates which were pulled apart, placing the wires under
tension. The distribution of the holes defined the cross-sectional wire pattern which followed a logarithmic spiral
described by

r(θn) = a [cos(θn), sin(θn)] ebθn , (101)

where
v0 ≡ 1500 meters/second is the assumed background water velocity,
f0 ≡ 1.6 MHz is the approximate peak insonifying frequency,
λ0 ≡ v0/f0 = 0.94 mm is the insonifying wavelength,
a ≡ λ0 is the initial radius and,
b ≡ 10π/180 is the spiral growth rate,
θn ≡ {n∆θ}N−1n=0 are the angular locations of the wires,

∆θ ≡ 30π/180 is the angular increment,
N ≡ 31 is the number of wires.

The incident pulse consisted of two cycles of a sinusoid with a center frequency of 1.6 MHz. The wavelength was
approximately 0.94 mm. Thus the wires may be considered “thin” and near perfect point scatterers. A photograph of a
guile plate is shown in Figure 18 and two views of the assembled phantom in Figure 19. The phantom was placed in an
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Figure 18: Photograph of the wire phantom guide plate and a schematic of the wire phantom within the annular array.

annular acoustic array submerged in a water bath. The radially inward-looking array had a radius of 150 mm. A source
and receiving transducer, rotating in a common plane, were used to collect and synthesize a fully multistatic data set
although the system, itself, was multibistatic with variable offset. The source rotated about the center at one degree
increments launching the incident field into the (water) medium. The receiver would rotate at one degree increments
measuring the total field. The mechanical movement of the receiver was limited to ±20 degrees about each source
transducer position: the transducers’ support arms limited the rotational excursion of the receiver. Thus, there is a 40
degree received total field “gap” at each source location. Thus the multibistatic nature of the system: not all receiver
locations measured fields from all source locations.
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Figure 19: Two views of the assembled wire phantom.

Figure 20: Two views of the wire phantom in the water bath and annular acoustic array.
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Figure 21: Graphic of the annular array and the ±20 degree gap.
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Figure 22: Graphic of the annular array with the wire phantom.

9.2 Aluminum/Copper Planar Multilayer
The aluminum/copper planar multilayer of Figure 25 presents the case of data collection in a planar multilayer with
the goal of migration in a non-homogeneous background. This models the cases of a defect in an “interior” layer with
no “exterior” access or a buried object whose location is unknown and to be determined. Imaging must be performed
through the outer layer. A 32 element fully multistatic 5 MHz pulse system was used to probe the structure with the
goal of locating the hole or “defect” in the copper layer.

Figure 26 shows a multimonostatic measured response extracted from the full multistatic measurement. The
reflections from the Al/Cu interface and the bottom of the Cu layer are prominent. Less so are the multipath reflection
between the transducer and the Al/Cu interface and the hyberbolic “smile” from the hole in the Cu layer.

9.3 Ground Penetrating Radar
A wide-band ground penetrating radar with a peak pulse frequency of approximately 2.2 GHz collected data multi-
monostatically ten cm above a dry loamy sandbox. There were 260 horizontal transducer “pitch/catch” measurement
locations. The aluminum pole resolution phantom of Figure 28 was buried approximately six cm below the surface.
Figure 29 presents the measured backscattered time series. The refractive index of the sand was empirically estimated
to be approximately 2.8. Thus, the peak pulse wavelength in the sand was approximately 3×108/2.2×109/2.8 ≈ 5cm.

9.4 Aluminum Block as a Model for Offset Vertical Seismic Profiling
Vertical seismic profiling (VSP) is a geophysical measurement technique in which a receiver chain is inserted into
a borehole to receive fields resulting from a surface source. In offset vertical seismic profiling (OVSP), the surface
source(s) is(are) offset from the borehole. A graphical depiction of OVSP is shown in Figure 30.

An aluminum block with two drilled holes was used in an OVSP proof-of-principle experiment. A multistatic
5 MHz pulse system was used to measure the holes “buried” within the block. The source array consisted of 64
elements and the receiving array, placed orthogonally to the source array on an adjacent edge, had 30. The experiment
and migrated reconstruction are presented in Figure 31.
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A Standard Fourier Transforms

A.1 Forward in Time

ψ(r, ω) =

∫ ∞
−∞

dt ψ(r, t) eiωt (102)

A.2 Inverse in Time

ψ(r, t) =
1

2π

∫ ∞
−∞

dω ψ(r, ω) e−iωt (103)

A.3 Forward in Space

ψ(k, ω) =

∫ ∞
−∞

dr ψ(r, ω) e−ik·r (104)

A.4 Inverse in Space

ψ(r, ω) =
1

(2π)3

∫ ∞
−∞

dk ψ(k, ω) eik·r (105)

A.5 Planar Fourier Transform Pair

ψ(k⊥, z, ω) =

∫ ∞
−∞

dr⊥ ψ(r⊥, z, ω) e−ik⊥·r⊥ , (106)

ψ(r⊥, z, ω) =
1

(2π)(n−1)

∫ ∞
−∞

dk⊥ ψ(k⊥, z, ω) eik⊥·r⊥ , (107)

where n is the dimensionality of the problem, either 2 or 3.

A.6 Closure in Time

ψ(r, t) =
1

2π

∫ ∞
−∞

dω

∫ ∞
−∞

dτ ψ(r, τ) eiωτ e−iωt,

=
1

2π

∫ ∞
−∞

dτ ψ(r, τ)

∫ ∞
−∞

dω e−iω(t−τ)︸ ︷︷ ︸
2πδ(t−τ)

(108)

A.7 Convolution

f(t) =

∫ ∞
−∞

dω G(ω)H(ω) e−iωt

=

∫ ∞
−∞

dω

[∫ ∞
−∞

dt1 g(t1) eiωt1
] [∫ ∞

−∞
dt2 h(t2) eiωt2

]
e−iωt

=

∫ ∞
−∞

dt1 g(t1)

∫ ∞
−∞

dt2 h(t2)

∫ ∞
−∞

dω e−iω(t−t1−t2)
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= 2π

∫ ∞
−∞

dt1 g(t1)

∫ ∞
−∞

dt2 h(t2) δ (t− t1 − t2)

= 2π

∫ ∞
−∞

dt1 g(t1) h(t− t1) (109)
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B Measurement System Operating Modes
There are many measurement system operating modes or data collection methods. The common ones are

Monostatic : A transceiver remains fixed in space, Rxvr ≡ constant. An incident field is emitted and any backscat-
tered fields are measured. This is known as “pulse/echo” operation. The data are represented by vscat(t).

Multimonostatic : A monostatic transceiver performs pulse/echo measurements at successive spatial locations indi-
cated by {Rxvr

n }
Nxvr

n=1 .

Bistatic : A source at a fixed location, Rsrc ≡ constant, emits an incident field. A spatially separated receiver at a
fixed location, Rrcv ≡ constant 6= Rsrc, measures any scattered fields. The incident field may also be measured.
This is known as “pitch/catch” operation. The data are represented by vscat(t).

Multistatic : Successively, multiple spatially separated sources, located at {Rsrc
n }

Nsrc

n=1 , emit incident fields. Scattered
fields are measured simultaneously at multiple spatially separated receivers, located at {Rrcv

m }
Nrcv

m=1. Sources and
receivers may share common spatial locations. The data are represented by vscatmn (t).

Multibistatic : A bistatic pair with a fixed offset perform pitch/catch operations at successive spatial locations,
{Rsrc

n , Rrcv
n }

Nxvr

n=1 where |Rrcv
n −Rsrc

n | ≡ constant. The data are represented by vscatn (t).

Variable Offset Multibistatic : A multibistatic pair perform pitch/catch operations with one transceiver fixed while
the other operates at successive spatial locations. The locations are described by one of

• Rsrc ≡ constant with multiple receiver positions, {Rrcv
m }

Nrcv

m=1, or

• Rrcv ≡ constant with multiple source positions, {Rsrc
n }

Nsrc

n=1 .

The data are represented by vscatmn (t) where m can be a function of n or vice-versa.
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C Three Dimensional Planar Layer Ray Trace
Given a source (ray start) point, Rsrc

n = (xn, yn, zn), and a focal point, rf = (xf , yf , zf), determine the surface
intercept point, p = (xp, yp, zp), constraining the rays by Snell’s Law. The solution is a three step process:

1. Rotate and translate the xy-coordinate system so that the source and focal points share a common y-plane. That
is, align the points along a common plane perpendicular to the surface. Use the source point as the new origin;

2. Solve Snell’s Law for the surface intercept point;

3. Reverse the translation and rotation.

The planar rotation angle, φ, is given by

φ = tan−1
(
yf − yn
xf − xn

)
. (110)

The rotation matrix and translation vector are

U =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 =


xf−xn

|rf⊥−Rsrc
n⊥|

yf−yn
|rf⊥−Rsrc

n⊥|
0

− yf−yn
|rf⊥−Rsrc

n⊥|
xf−xn

|rf⊥−Rsrc
n⊥|

0

0 0 1

 , (111)

T =

 xn
yn
zn

 , (112)

respectively, and |rf⊥ −Rsrc
n⊥| ≡

√
(xf − xn)

2
+ (yf − yn)

2. In the new coordinate system, Rsrc′

n ≡ (0, 0, 0). The
focal point is

r′f = U
(
rTf − T

)
=


xf−xn

|rf⊥−Rsrc
n⊥|

yf−yn
|rf⊥−Rsrc

n⊥|
0

− yf−yn
|rf⊥−Rsrc

n⊥|
xf−xn

|rf⊥−Rsrc
n⊥|

0

0 0 1


 xf − xn
yf − yn
zf − zn

 (113)

=


(xf−xn)

2+(yf−yn)2

|rf⊥−Rsrc
n⊥|

0
zf − zn

 , (114)

where the primes indicate the source and focal points are represented in the rotated coordinate system. The source and
the focal point are now in the y′ ≡ 0 plane. In the new (reduced) coordinate system, the source, focal, and intercept
points are expressed as,

Rsrc′

n = [x′n, 0, z′n]
T
, (115)

r′f = [x′f , 0, z′f ]
T
, (116)

p′ =
[
x′p, 0, z′p

]T
. (117)

To reduce clutter, the primes will be dropped but the reader is reminded the following derivation is performed in the
translated and rotated coordinate system. Referring to Figure 17, the following geometric relationships are derived,

sin θ1 =
xp − xn√

(xp − xn)
2

+ (zp − zn)
2
, (118)

sin θ2 =
xf − xp√

(xf − xp)2 + (zf − zp)2
. (119)
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Substitute these identities into Eqn. (100),

n1
xp − xn√

(xp − xn)
2

+ (zp − zn)
2

= n2
xf − xp√

(xf − xp)
2

+ (zf − zp)
2
, (120)

and cast the expression into the form of a function of the unknown xp to be minimized,

f(xp) =
1

2

[
n21 (xp − xn)

2
(

(xf − xp)
2

+ (zf − zp)
2
)
− n22 (xf − xp)

2
(

(xp − xn)
2

+ (zp − zn)
2
)]2

, (121)

which may be solved numerically. For reference, its first derivative is

d

dxp
f(xp) = 2

√
2f(xp)

[
n21xp

(
2x2p − 3xpxf + x2f + (zp − zf)2

)
− n22 (xp − xf)

(
2x2p − xpxf + z2p

)]
. (122)

Given the solution, p′ =
(
x′p, z

′
p

)
, in the rotated and translated frame, the intercept point in the original coordinate

system is

p = U−1p′ + T, (123)

=


xf−xn

|rf⊥−Rsrc
n⊥|

− yf−yn
|rf⊥−Rsrc

n⊥|
0

yf−yn
|rf⊥−Rsrc

n⊥|
xf−xn

|rf⊥−Rsrc
n⊥|

0

0 0 1


 x′p

0
z′p

+

 xn
yn
zn

 , (124)

=


xf−xn

|rf⊥−Rsrc
n⊥|

x′p + xn
yf−yn
|rf⊥−Rsrc

n⊥|
x′p + yn

z′p + zn

 (125)

The process is repeated for the rays from r to Rrcv
m through q. From this the range scales and delays are calculated as

αp,n = |p−Rsrc
n | , (126)

αf,p = |rf − p| , (127)
αq,f = |q− rf | , (128)
αm,q = |Rrcv

m − q| . (129)

The total range scaling and delay are,

αmfn = (αp,n + αm,q)× (αf,p + αq,f) , (130)

τmfn =
(αp,n + αm,q)

c0/n1
+

(αf,p + αq,f)

c0/n2
, (131)

respectively.

C.1 Addressing Numerical Concerns
Care must be taken when implementing Eqns. 114 and 125 when the transceiver and focal points exist in the same
x− y plane, that is when

Rsrc
n⊥ ≡ rf⊥. (132)

To avoid division by zero, it is best to express the equations as

r′f =

 (xf − xn) cosφ+ (yf − yn) sinφ
0

zf − zn

 , (133)

p =

 x′p cosφ+ xn
x′p sinφ+ yn
z′p + zn

 (134)
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Figure 32: Horizontal and vertical slice views of the ray trace of Figure 16. (a) The horizontal plane showing the
translated and rotated coordinate system in which the ray trace is solved. (b) The vertical slice along the rotated x′

axis.
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D Hilbert Transform
From MATLAB’s perspective the Hilbert transform of a function s(t) is defined as the inverse Fourier transform of
the real Fourier components of the transform of s(t). Mathematically, it is

S(ω) = F {s(t)} =

∫
dt s(t) eiω1, (135)

H[s(t)] = F−1 {2Θ(ω)S(ω)} , (136)

where Θ(ω) is the Heavyside or unit step function,

Θ(x) =

 0 x < 0,
1
2 x = 0,
1 x > 0

. (137)

The Fourier transform of the unit step function is

F {Θ(t)} = πδ(ω)− i

ω
. (138)

By reciprocity, we have

F−1 {Θ(ω)} = πδ(t)− i

t
. (139)

Thus, we have

H[s(t)] = 2πs(t)− 2i

t
∗ s(t). (140)

Rigorously, the Hilbert transform of a signal is the convolution term,

H{s(t)} =
1

π
P

∫ ∞
−∞

dτ
s(τ)

t− τ
. (141)
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E Problem Solving Methodology
A successful method of problem solving is to:

1. Perform a literature search;

2. Develop the theory and a forward analytical model;

3. Develop a forward numerical model or simulation (preferably using existing verified and validated codes);

4. Develop the inversion algorithm or solution and test it against the data of (3);

5. Work with the experimentalist(s) and/or data collection technician(s) to develop controlled experiments, if pos-
sible. Test the inversion algorithm of (4) against these data, and feed back to (2);

6. Proceed onto the actual problem in the real environment (with noise, measurement system limitations, etc.).
Process these data with the inversion algorithm of (4) and feed back to (2);

7. Develop and test metrics.
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F MATLAB Codes
The delay, scale, and sum beamforming codes are divided into three categories

1. Those which compute the delay, τmfn, scale, αmfn, and beam pattern, bmfn, parameters;

2. Those which apply the parameters and perform the migration;

3. That which performs the ray trace.
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F.1 Migration Parameter Codes
F.1.1 BFParameters

Compute the parameters for a beamformer

[delay scale] = BFParameters(Rf, Rxvr, dt, c0)
[delay scale] = BFParameters(Rf, Rsrc, Rrcv, dt, c0)

The first form returns the parameters for a multimonostatic delay, scale, and sum migration. The second form returns
the parameters for a multistatic migration.

Inputs :
Rf : An (Nf × 2) or (Nf × 3) array of focal points in meters.

Rxvr : An (Nxvr × 2) or (Nxvr × 3) array of transceiver locations in meters.
Rsrc : An (Nsrc × 2) or (Nsrc × 3) array of source locations in meters.
Rrcv : An (Nrcv × 2) or (Nrcv × 3) array of receiver locations in meters.
dt : The time sample interval in seconds.
c0 : The background velocity in meters/second.

Outputs :
delay : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of integer time index shifts.
scale : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of range scales.
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F.1.2 BFParametersBP

Compute the parameters for a beamformer which imposes a beam pattern

[delay scale bpattern] = BFParametersBP(Rf, Rxvr, Sxvr, dt, c0)
[delay scale bpattern] = BFParametersBP(Rf, Rsrc, Ssrc, ...

Rrcv, Srcv, dt, c0)

The first form returns the parameters for a multimonostatic delay, scale, and sum migration. The second form returns
the parameters for a multistatic migration.

Inputs :
Rf : An (Nf × 2) or (Nf × 3) array of focal points in meters.

Rxvr : An (Nxvr × 2) or (Nxvr × 3) array of transceiver locations in meters.
Sxvr : An (Nxvr × 2) or (Nxvr × 3) array of transceiver heading (look direction) unit vectors.
Rsrc : An (Nsrc × 2) or (Nsrc × 3) array of source locations in meters.
Ssrc : An (Nsrc × 2) or (Nxvr × 3) array of source heading (look direction) unit vectors.
Rrcv : An (Nrcv × 2) or (Nrcv × 3) array of receiver locations in meters.
Srcv : An (Nrcv × 2) or (Nrcv × 3) array of receiver heading (look direction) unit vectors.

dt : The time sample interval in seconds.
c0 : The background velocity in meters/second.

Outputs :
delay : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of integer time index shifts.
scale : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of range scales.

bpattern : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of beam pattern weights.
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F.1.3 BFParametersBP2L

Compute the parameters for a two planar layer beamformer which imposes a beam pattern

[delay scale bpattern] = BFParametersBP2L(n1, n2, Rf, Rxvr, Sxvr, ...
dt, c0)

[delay scale bpattern] = BFParametersBP2L(n1, n2, Rf, Rsrc, Ssrc, ...
Rrcv, Srcv, dt, c0)

The first form returns the parameters for a multimonostatic delay, scale, and sum migration. The second form returns
the parameters for a multistatic migration.

Inputs :
n1 : Top layer refractive index.
n2 : Bottom layer refractive index.
Rf : An (Nf × 2) or (Nf × 3) array of focal points in meters.

Rxvr : An (Nxvr × 2) or (Nxvr × 3) array of transceiver locations in meters.
Sxvr : An (Nxvr × 2) or (Nxvr × 3) array of transceiver heading (look direction) unit vectors.
Rsrc : An (Nsrc × 2) or (Nsrc × 3) array of source locations in meters.
Ssrc : An (Nsrc × 2) or (Nxvr × 3) array of source heading (look direction) unit vectors.
Rrcv : An (Nrcv × 2) or (Nrcv × 3) array of receiver locations in meters.
Srcv : An (Nrcv × 2) or (Nrcv × 3) array of receiver heading (look direction) unit vectors.

dt : The time sample interval in seconds.
c0 : The background velocity in meters/second.

Outputs :
delay : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of integer time index shifts.
scale : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of range scales.

bpattern : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of beam pattern weights.
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F.2 Migration Computation Codes
F.2.1 BFCompute

Apply the parameters for a beamformer

p = BFCompute(delay, data, ntx)
p = BFCompute(delay, data, ntx, scale)
p = BFCompute(delay, data, ntx, scale, bpattern)
p = BFCompute(delay, data, ntx, [], bpattern)

Inputs :
delay : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of integer time index shifts.
data : An (Nt × Nxvr) multimonostatic or (Nt × Nrcv × Nsrc) multistatic data matrix.
ntx : An array of additional integer shifts to apply to the delays. This should be used cau-

tiously. In most cases, it should be set to zero.
scale : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of range scales. If null, [], no range

scaling will be applied.
bpattern : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of beam pattern weights to be imposed.

Outputs :
p : An (Nf × 1) array of migrated values corresponding to each focal point.

Measurement systems can impose scale factors which modify the physics-based range scale and beam pattern
weights, αmfn and bmfn. Corrections may be applied to these weights in the migration computation code via

BFCompute(delay, data, 0, scale.ˆRangeScaleWeight, bpattern.ˆBeamPatternWeight)

where, for example, RangeScaleWeight is set to 0.25, and BeamPatternWeight is 6.

F.2.2 BFCompute a

Apply the parameters for a beamformer where the source and receiver time series within the multistatic data matrix
are reversed.

p = BFCompute a(delay, data, ntx)
p = BFCompute a(delay, data, ntx, scale)
p = BFCompute a(delay, data, ntx, scale, bpattern)
p = BFCompute a(delay, data, ntx, [], bpattern)

Inputs :
delay : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of integer time index shifts.
data : An (Nt × Nxvr) multimonostatic or (Nt × Nsrc × Nrcv) multistatic data matrix.
ntx : An array of additional integer shifts to apply to the delays. This should be used cau-

tiously. In most cases, it should be set to zero.
scale : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of range scales. If null, [], no range

scaling will be applied.
bpattern : An (Nf × Nxvr) or (Nf × Nrcv × Nsrc) array of beam pattern weights to be imposed.

Outputs :
p : An (Nf × 1) array of migrated values corresponding to each focal point.

Measurement systems can impose scale factors which modify the physics-based range scale and beam pattern
weights, αmfn and bmfn. Corrections may be applied to these weights in the migration computation code via

BFCompute_{a}(delay, data, 0, scale.ˆRangeScaleWeight, bpattern.ˆBeamPatternWeight)

where, for example, RangeScaleWeight is set to 0.25, and BeamPatternWeight is 6.
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F.3 Ray Trace Code
F.3.1 rtpath2pointapprox2L

Compute the surface intercept given the refractive indices, transceiver location, and focal point location.

p = rtpath2pointapprox2L( Rxvr , z0 , n1 , n2 , rf )

Inputs :
Rxvr : A (1 × 2) or (1 × 3) element transceiver location in meters.
z0 : Vertical surface location in meters.
n1 : Top layer refractive index.
n2 : Bottom layer refractive index.
rf : A (1 × 2) or (1 × 3) element focal point location in meters.

Outputs :
p : The x-direction surface intercept of the ray.
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