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Abstract—Finite elements methods have long made use of
model order reduction (MOR), particularly in the context of
fast freqeucny sweeps. In this paper, we discuss a black-box
MOR technique, applicable to a many solution methods and not
restricted only to spectral responses. We also discuss automated
methods for generating a reduced order model that meets
a given error tolerance. Numerical examples demonstrate the
effectiveness and wide applicability of the method.

I. INTRODUCTION

With the advent of improved computing hardware and
numerous fast solution techniques, the field of computational
electromagnetics are progressed rapidly in terms of the size
and complexity of problems that can be solved. Numerous
applications, however, require the solution of a problem for
many different configurations, including optimization, param-
eter exploration, and uncertainly quantification, where the
parameters that may be changed include frequency, material
properties, geometric dimensions, etc. In such cases, thousands
of solutions may be needed, so solve times of even a few
minutes can be burdensome. Model order reduction (MOR)
may alleviate this difficulty by creating a small model that
can be evaluated quickly.

Many MOR techniques have been applied to electromag-
netic problems over the past few decades, particularly in the
context of fast frequency sweeps. Recent works have extended
these methods to allow more than one parameter and to allow
the parameters to represent material and geometric properties
[1]. There are still limitations with these methods, however.
First, they almost always assume that the finite element method
is used to solve the problem, so that the system matrix is
a known function of the parameters. Second, although some
authors have presented adaptive methods (e.g., [2]), the order
of the model is often determined before the MOR process
begins, with little insight about what order is actually needed
to reach the desired accuracy. Finally, it not clear how to
efficiently extend most methods to the multiparameter case.

This paper address the above shortcomings be developing a
method that uses a block-box approach to the solution method,
is adaptive, and is easily extensible to many parameters.
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II. MODEL ORDER REDUCTION PRELIMINARIES

In this section we give a background explanation of the
MOR method. To begin, we assume the particularly EM solver
being used can be cast as an N X [N matrix equation

)

where s is a vector of parameter values. To make develop-
ment as general as we can, we assume that, given s, the
only operations that can be performed are solving for x(s),
multiplying A(s) with an arbitrary vector, and evaluating b(s).
We note, in particular, that this assumption would make our
framework applicable to algorithms such as the fast multipole
method. Now, instead of solving this problem for every desired
values of s, we choose a reduced-dimension set of basis and
testing functions, represented by the N x m matrices V' and
W, respectively. This allows the reduced-order model to be
formed,

A(s) = WH A(s)Vx = b(s) = WHDb(s). 2)
In this work, we use a Galerkin-type approach and choose
W = V. As a result of these projections, we now must solve
a linear system with the m X m matrix A. If m < N, then
this system can be solved much more rapidly than the original
system. Once the model solution X is found, the true solution
can be approximated as x =~ VX.

III. REDUCED ORDER MATRIX EVALUATION

We first turn our attention to the problem of evaluating
A(s). In general, it is not possible to write A(s) as a simple
function of the parameters. And, for the sake of generality, we
have expressly disclaimed such knowledge. Finally, it would
not be efficient to simply calculate V7 AV exactly for any
s, because the process of calculating A and doing a matrix-
vector multiplication may be expensive. Even a few seconds
would be too long, since we desire the reduced-order model
to be evaluated very rapidly.

What can be done is to evaluate V' AV exactly for certain
values of s and then interpolate the individual matrix entries.
For although the solution currents or fields may be badly
behaved, becoming singular at PEC corners, for example, the



system matrix A is typically bounded and continuous. Thus,
we have the first ingredient of the method,
A(s) =D fils)A;, 3)
i=1
with the condition that
As)) = A(s)) )

at the parameter values {sg,s1,...,s)s}. Traditionally the f;
have been monomials of the parameters, but we relax this
to allow any set of functions that has suitable interpolatory
properties.

A. Radial Basis Function Interpolation

Our choice of interpolating functions is motivated by two
goals: easily handling large-dimensional s and the ability to
build up the interpolation one sample at a time. Radial basis
functions (RBFs) are well-suited for this task. They consist of
any function of the form

O(|ls —cl), (5)

where @ is a scalar function and c is a constant vector with
the same dimension as s [3]. One immediately notes that
because the function depends only on the distance between
s and c, there is no difficulty with high dimensions. Also, a
new RBF can be generated simply by choosing a new value
of ¢c. Common choices for ®(r) include

V12 + a? (6a)
emar’ (6b)
r? log r. (6¢)

Equation (6c) is part of a family of RBFs, having the form
2P logr, 7

where p is a positive integer. When these RBFs are supple-
mented with polynomials of the parameters up to order p, the
resulting interpolation function becomes

M K
A(s) =Y Bio(lls —sill) + > Cipi(s). ©)
=1 i=1

Here, ® is given by (7) and {p1,...,pk} is a basis for poly-
nomials of s up to degree p. If the function being interpolated
is sufficiently smooth, it can be shown that this approximation
converges as the distance between the sample points goes to
zero [4].

The interpolation coefficients are determined as follows.
First, the matrices

Rin = ®(|[sm — sal) )
p1(s1) PK(s1)

P = : (10)
pi(snr) Pk (sum)

~

are computed. Then the system
(B)ij

(;; f))) @] [(AO)M]

is solved. In the right-hand side and solution vectors, the
notation (X);; means a vector containing the (i, j) entries of
the X matrix. These coefficients must be recalculated every
time a sample point is added, since the R, P, and A matrices
will all change

Y

IV. SAMPLING

The choice for the projection matrix V' in the definition

A=vHAV (12)
is now straightforward. Since the coefficients of (8) have been
chosen so as to satisfy the interpolation property (4), it is
natural that we also be able to recover the exact solution x at
the samples points. This in turn requires

colspace V' = span{x(sp),x(s1),...,%(sk)}- (13)

For numerical stability, it is desirable for V' to be unitary. This
can be achieved by appending each new solution vector to V'
and performing modified Gram-Schmidt orthogonalization.

In choosing the sample points, we are motivated by the
desire to find the point where the error is maximized. One
possibility is to choose a large number of points, either
randomly or on a grid, and select the one with largest estimated
error. This approach has been applied in [5] but is suboptimal,
since it will likely give a point near, but not at, a maximum.
Thus, we follow the lead of [6] and apply an optimization
algorithm to the error estimator, in order to find a point where
it is maximized. That is, given an error estimator EFE(s), we
aim to solve the problem

argmax FEFE(s).

Smin <S<Smax

(14)

Notably, the search is not restricted to a finite set of points,
but rather ranges across the entire, continuous parameter space.
We use a Newton-like method, the interior trust region method

(71, [8].

A. Optimized Sampling

In order to find the maximum error, the interior trust region
method [7] is used. This process begins by considering a
quadratic function closely related to the second-order Taylor
series approximation of the error estimator,

Y(p)=g'p+ %pT(H +C)p

1
~ EE(so + p) — EE(so) + §pTCp,

15)
(16)

where g and H are the gradient and Hessian, and s( is the
current approximation of the maximum. The C' matrix depends
on the parameter space boundary and biases the process
against crossing nearby boundaries. This approximation is



used to find two search directions. One, the Newton direction,
is the solution to
arg min ¢ (p). (17
[ Dpll<A
The area ||Dp|| < A is called the trust region. The other
direction is D~2g. In both cases, D is a scaling matrix that
again biases the directions towards remaining feasible. Next,
a line search is performed along both directions to determine
which one increases ¢ the most, while remaining inside the
parameter space and the trust region. This is the candidate step
As.

Finally, v (As) is compared to the actual change in the error
estimator using the candidate step. If the two are sufficiently
close, then we know that v is a good approximation and accept
the candidate step. Otherwise, it is rejected and A is decreased.
That is, the next candidate step is restricted to a region closer
to the Taylor series expansion point, where 1) will be more
accurate. This process continues until | D~2g|| < €ypt.

V. ERROR ESTIMATOR

Lastly, the error estimator is considered. It is here that
numerous variations are possible. We suggest an estimator
based on the difference between the MOR solution and a
polynomial interpolation of the solution, i.e.,

_ AT V() - S, xigi(s)l|
[A=1(s)VFb(s)]

Because the number of sample points M increases one at
a time, the polynomial basis {¢;} will rarely be complete.
Therefore , the method of [9] is used to generate a basis re-
gardless of the dimension of s of the number of sample points.
Although most of the terms in (18) are known analytically, b is
not. Therefore, the error estimator’s derivatives, needed for the
previously-described optimization algorithm, cannot be exactly
calculated. Although one could make the entire expression a
known function by replacing b with an interpolation, we have
found finite differences to be sufficient.

The reasoning behind this estimator is that each initially
provide its own, different approximation to the result. As more
samples are added, each will converge, so that the difference
between them gives an estimate of how far each is from the
true solution.

EE(s) (18)

VI. EXAMPLES

The following results use the unoptimized sampling strategy
described in [5], i.e., the next sample point is taken from a
finite list of points distributed throughout the parameter space.
Results from the optimized method are in progress and will
be discussed at the conference.

A. Patch Antenna

Our first example is a patch antenna analysed using the
FEM-based MOR method of [1]. The antenna is sandwiched
between two dielectric layers, 18 mm wide by 18 mm long,
as shown in Fig. 1(a). The parameters are the frequency (f =
3-8 GHz) and the dielectric constants of the top (¢, = 1-7)

Frequency (GHz)

s & 7 8
Frequency (GHz)

(c) (@

Fig. 1. S11 of patch antenna with €,2 = 3. (a) antenna geometry; (b)
adaptive MOR, 7 = 0.1; (c) adaptive MOR, 7 = 0.01; (c) method in [1].
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Fig. 2. Convergence of adaptive MOR.

and bottom (e,2 = 1-7) layers. The problem has 84,718 DOFs
and takes 33 s to solve using a parallel FEM solver and 16
CPUs.

Figure 1(b)—(d) shows the result of our adaptive MOR with
two different tolerances, compared to the MOR solution in [1].
It can be seen that the first, crude model indeed captures the
major features of the response. Further, tightening the adaptive
MOR tolerance brings out additional detail in the solution.
This convergence is confirmed in Fig. 2, which shows the
S11 error for the two models. With only a few exceptions,
the 7 = 1072 model is significantly more accurate than the



TABLE I
COMPUTATIONAL RESULTS FOR PATCH ANTENNA AND CIRCUIT BOARD EXAMPLES.

Patch Antenna Circuit Board

Tolerance  Tolerance Farle & Tolerance

7=0.1 7 =0.01 | Dyczij-Edlinger 7=0.1
Model Dimension 22 39 165 10
Model Creation Time (hh:mm) 1:01 2:48 1:17 0:27
Model Evaluation Time (ms) 60.1 114 13.7 2.1

(a)

(b)

Fig. 3. Movable circuit board inside metallic enclosure. (a) CB in upper-left
corner; (b) CB in lower-right corner.

7 = 10~! model. Both models show considerable error around
the resonance, and this is likely due to the fact that only certain
discrete locations are available for sampling.

Computational statistics are shown in Table 1. They show
that by sacrificing some of the extreme accuracy of traditional
MOR methods, it is possible to gain a significant reduction in
the model dimension (i.e., the number of full-wave solutions).
And although the computation times compare less favorably,
this can be viewed as an acceptable trade-off for the increased
automation and generality.

B. Circuit in Metallic Box

Our second example consists of a circuit board inside a
metallic box with an aperture, as shown in Fig. 3(a). The
enclosure is 15 cmx15 cmx7 cm, and the board is free to
move in the forward, back, left, and right directions. A plane
wave is incident on the box from above, and we are interested
in the induced current on the circuit board as a function of
its location inside the box. Despite its relative simplicity, this
is a challenging problem for MOR methods. The EFIE is
well-suited for this situation because the box and CB, being
disconnected, can be moved arbitrarily without changing the
number of unknowns. Recent MoM methods, however, only
consider frequency as a parameter [10].

Our method easily handles this problem, as Fig. 3 shows.
At 2 GHz, the surface discretization has 4,122 unknowns. We
wish to emphasize at this point our earlier assumption that
only matrix solves, matrix-vector multiplications, and right-
hand-side evaluations are used. The original EFIE program
was modified only to do these operations and is in no way
specialized for this particular problem. Instead, a few small
Python scripts and helper programs are needed to move the
CB mesh coordinates as needed. Thus, not only is the method

adaptable to a wide array of problems, it is also significantly
easier to integrate with existing EM codes.

VII. CONCLUSION

An adaptive MOR algorithm has been described that uses
radial basis functions to interpolate the reduced order matrix,
making the method applicable to a large range of EM solvers.
Numerical examples show that the method is competative
with other MOR approaches and is applicable to a variety
of problems.
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