
LLNL-CONF-491537

Oracle Database DBFS
Hierarchical Storage Overview

A. Rivenes

July 29, 2011

IAEA 8th Technical Meeting
San Francisco, CA, United States
June 20, 2011 through June 24, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

ORACLE DATABASE DBFS HIERARCHICAL STORAGE

OVERVIEW

Andy Rivenes, Lawrence Livermore National Laboratory, Livermore, CA 94551, U.S.A.

Abstract
The National Ignition Facility (NIF) at the

Lawrence Livermore National Laboratory creates

large numbers of images during each shot cycle for

the analysis of optics, target inspection and target

diagnostics. These images must be readily accessible

once they are created and available for the 30 year

lifetime of the facility. The Livermore Computing

Center (LC) runs a High Performance Storage

System (HPSS) that is capable of storing NIF's

estimated 1 petabyte of diagnostic images at a

fraction of what it would cost NIF to operate its own

automated tape library.

With Oracle 11g Release 2 database, it is now

possible to create an application transparent,

hierarchical storage system using the LC's HPSS.

Using the Oracle DBMS_LOB and

DBMS_DBFS_HS packages a SecureFile LOB can

now be archived to storage outside of the database

and accessed seamlessly through a DBFS "link". NIF

has chosen to use this technology to implement a

hierarchical store for its image based SecureFile

LOBs. Using a modified external store and DBFS

links, files are written to and read from a disk

"staging area" using Oracle's backup utility. Database

external procedure calls invoke OS based scripts to

manage a staging area and the transfer of the backup

files between the staging area and the Lab's HPSS.

INTRODUCTION

With Oracle Database 11g Release 2 Oracle has

enabled seamless hierarchical storage for SecureFile

LOBs. Using the DBMS_LOB and

DBMS_DBFS_HS packages a SecureFile LOB can

now be archived to storage outside of the database

and accessed seamlessly through a DBFS "link". Of

course this requires that the database “knows” where

the SecureFile LOB is and how to retrieve it.

Currently Oracle supports two types of external

storage, or "stores", directly and provides some

limited information on how to define custom stores

as well. Oracle provides external storage support for

tape using its backup utility Recovery Manager

(RMAN) and also Amazon S3

(http://aws.amazon.com/s3/?utm_source=eclipse&ut

m_medium=lp&utm_campaign=galileo).

NIF has chosen to implement a DBFS hierarchical

store for its SecureFile LOBs using a modified tape

based external store and DBFS links. Tape files are

created by RMAN but are written to disk rather than

tape. External OS based scripts then manage the disk

"staging area" and the transfer of the RMAN created

files between the staging area and the Lab's HPSS.

The Livermore Computing Center runs a High

Performance Storage System (HPSS) that is capable

of storing NIF's estimated 1 petabyte of diagnostic

images at a fraction of what it would cost NIF to

operate and maintain an automated tape library

capable of storing a petabyte of data.

NIF DATA ARCHIVE

The first version of the NIF Data Archive was

designed before the DBFS HS option was available

and it required an "application specific" API in order

to access the data archive along with supporting code

to handle SecureFile LOB archiving and retrieval. In

the 11gR2 DBFS HS implementation the concept of

"links" has been created. A DBFS link provides the

connection between the SecureFile LOB's original

location and its archived location. The database

handles the retrieval of the SecureFile LOB

transparently for the invoking transaction. This

means that only the initial archival of the target

SecureFile LOBs and the movement of archive files

between the database server and the HPSS need to be

managed. See Figure 1 for a diagram of the new

architecture.

Figure 1. NIF Data Archive

STORE ARCHIVE

When a DBFS HS store is created, several

activities occur in the background. As the store is

defined, a cache table is created in the store owner's

schema. The DBMS_DBFS_HS.CreateStore

procedure accepts a store name, a cache table name, a

tablespace name for the cache table, a cache table

size and a threshold value to initiate a push to

DBMS_LOB

DBFS
Metadata Source

Tables

RMA

N

DBMS_LOB.MOV

E_TO_DBFS_LIN

K

Disk

Staging
Area

Policy
Data

HPSS

Scheduled

Database Job

HSI get/put

NIF DBFS HS Architecture

[Type text]

external storage. Also as part of the store creation a

metadata table is created in the store owner's schema.

The metadata table is used by Oracle to track the

properties of the archived files. The cache table is

used both to buffer files before creating an archive

file and as a container to make "linked" SecureFile

LOBs available for queries. Note that as long as the

link exists the file is not returned to its original

location.

NIF has defined the DBFS HS external storage

store type as tape. This implies that RMAN will be

used to read and write files to tape. In order to make

use of HPSS, rather than maintaining a local tape

library system, some modifications to the DBFS

system have been made. The first change was to use

the "oracle.disksbt" option to the SBT_LIBRARY

parameter to create "tape files" on disk. With this

change when a store push occurs Oracle will invoke

RMAN to write tape files to a defined disk directory.

It is then a relatively trivial process to copy files

between this disk directory and the HPSS. The

second change made, after consulting with some of

the Oracle development team, was to create a

"shadow" store using an intermediary package to

intercept all DBFS calls. This allows NIF custom

code to manage the disk "staging" area and put or get

files from the HPSS based on space and access

requirements. Two examples of needing to be able to

intercept DBFS calls are: 1) when creating a new

archive file there is a need to ensure that there is

enough space in the staging directory and 2) when

retrieving a SecureFile LOB from a file that only

exists in the HPSS there is a need to ensure that there

is space in the staging directory before making an

HSI get call. In both of these examples we also need

to lock the archive file and the staging directory, so

that our file or reserved space isn't changed by

another process.

ARCHIVAL

A SecureFile LOB is "archived" with the

DBMS_LOB procedure MOVE_TO_DBFS_LINK.

Running this procedure requires that a LOB locator

and storage path be defined. The LOB locator can be

defined by simply selecting the SecureFile LOB into

a BLOB variable. However, in order to move the

SecureFile LOB to an archive store the SecureFile

LOB must also be locked. This can be accomplished

with a SELECT … FOR UPDATE statement. The

storage path has already been defined as part of the

store creation (specifically when the store is mounted

with the DBMS_DBFS_CONTENT.MOUNTSTORE

procedure) and so is already known. NIF is using a

"URN" to uniquely identify individual SecureFile

LOBs as defined by the Oracle CM SDK application

framework.

MOVE_TO_DBFS_LINK
PROCEDURE MOVE_TO_DBFS_LINK

Argument Name Type In/Out Default?

------------- ------------ ------ --------

LOB_LOC BLOB IN/OUT

STORAGE_PATH VARCHAR2 IN

FLAGS BINARY_INTEGER IN DEFAULT

LOB_LOC LOB to be archived

STORAGE_PATH The store path created with

the "MOUNTSTORE" procedure

and a unique identifier.

FLAGS Either DBFS_LINK_CACHE in

which the LOB is not removed,

or DBFS_LINK_NOCACHE in which

the LOB is removed once it

has been written to the

archive (not available to

DBMS_LOB though).

When the link is created the SecureFile LOB is

moved to the "cache" table defined for the store. A

token is created as a placeholder in the original

SecureFile LOB's location. The cache table is used to

accumulate SecureFile LOBs up to a specified

number of bytes, and then a store "push" is invoked

to add the SecureFile LOBs to a "tarball" and write

an output file using the RMAN interface. The cache

table is also used when SecureFile LOBs are

retrieved from their respective output file.

Archive Example

The following shows a simple PL/SQL procedure

that will archive a single SecureFile LOB:

SQL> SET SERVEROUTPUT ON;

DECLARE

 p_whereval NUMBER := 1776056;

 --

 v_mountpoint VARCHAR2(32):='/nif_store/';

 v_store VARCHAR2(32) := 'NIF_STORE';

 v_LOB BLOB;

 v_LOBsize NUMBER;

 l_urn cms_urn_map.urn%TYPE;

BEGIN

 SELECT urn

 INTO l_urn

 FROM cms_urn_map

 WHERE tablename = 'ODMM_NONINDEXEDSTORE'

 AND columnname = 'NONINDEXEDBLOB2'

 AND content = p_whereval;

 --

 SELECT nonindexedblob2

 INTO v_LOB

 FROM odmm_nonindexedstore

 WHERE id = p_whereval FOR UPDATE;

 --

 v_LOBsize :=

 SYS.DBMS_LOB.GETLENGTH(v_LOB);

 DBMS_OUTPUT.PUT_LINE('URN: ' || l_urn);

 DBMS_OUTPUT.PUT_LINE('LOB size: ' ||

 TO_CHAR(v_LOBsize));

 --

[Type text]

 DBMS_LOB.MOVE_TO_DBFS_LINK (

 lob_loc => v_LOB,

 storage_path => v_mountpoint || l_urn,

 flags => DBMS_LOB.DBFS_LINK_CACHE

);

 --

 COMMIT;

END;

/

SQL> 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 URN:

urn:llnl.gov:nif:archive:67339dfa-206c-4ca9-

a503-7d9b7b2caa93

LOB size: 13041713

PL/SQL procedure successfully completed.

SQL>

RETRIEVAL

Using DBFS links for archiving allows retrieval to

be completely transparent to the application when

using the DBMS_LOB package.

Retrieval Example

The following query shows that the SecureFile

LOB for this URN has been archived and is not in the

store's cache. The store cache has been named

"nif_store" and this table identifies the "content"

name, size, internal id and the store name to which it

belongs.

SQL> select urn, cache_size, contentid,

storename from nif_store_v

 2 where urn =

'urn:llnl.gov:nif:archive:19c95706-cf46-

4c8d-b9b2-600988f375cd';

URN

--

CACHE_SIZE

CONTENTID

--

STORENAME

--

urn:llnl.gov:nif:archive:19c95706-cf46-4c8d-

b9b2-600988f375cd

 0

NIF_STORE_ILMDS_96C2FB6E83821E09E0407380058E

5C84

NIF_STORE

SQL>

The cache size is zero signifying that it is not in the

database. Now we’ll attempt to read the SecureFile

LOB using the DBMS_LOB package.

SQL> SET SERVEROUTPUT ON;

DECLARE

 l_LOB BLOB;

 l_buffer RAW(4000);

 l_ctr NUMBER := 1;

 l_amount NUMBER := 100;

 l_id NUMBER := 2857207;

BEGIN

 SELECT nonindexedblob2

 INTO l_LOB

 FROM odmm_nonindexedstore

 WHERE id = l_id;

 --

 dbms_lob.read(l_LOB, l_amount, l_ctr,

 l_buffer);

 dbms_output.put_line(RAWTOHEX(l_buffer)

);

END;

/

SQL> 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

FFD8FFE000104A46494600010200000100010000FFDB

004300080606070605080707070909080A0C

140D0C0B0B0C1912130F141D1A1F1E1D1A1C1C20242E

2720222C231C1C2837292C30313434341F27

393D38323C2E333432FFDB0043010909090C0B0C

PL/SQL procedure successfully completed.

SQL>

This code reads the first 100 bytes of the SecureFile

LOB and the output shows that were able to read the

LOB without having to do anything else to retrieve it.

NIF DBFS MODIFICATIONS

Shadow Store

The shadow store is implemented as a PL/SQL

wrapper package that is defined at store creation. In

the wrapper package are generic calls to each of the

DBMS_DBFS_HS procedures and functions. For the

functions that involve accessing the archive file,

custom code is inserted to insure that there is either

space in the staging directory or that the archive file

has already been recalled from the HPSS. We've

called this custom package NIF_DBFS_HS. A

second package has been created to define the code

that manipulates the staging directory by calling

external procedures and the HSI interface to the

HPSS along with several utility packages for locking,

logging and instrumentation.

HPSS Code

The HPSS support has required the creation of

several different components. A staging directory has

been created to allow the database to write and read

archive files which are made up of one or more

SecureFile LOBs. Oracle calls these files "tarballs",

which in this context are simply RMAN tape

formatted files. OS scripts have been created to list

files and space usage in the staging directory, and to

[Type text]

provide HPSS get, put and ls commands using the

HPSS interface HSI. For the database to be able to

initiate actions at the OS level external procedure

calls have been defined. A generic Java external

procedure call has been created which allows the

nif_dbfs_utilities package to invoke the necessary OS

scripts and to get information about the results of

those scripts back into the database.

SUMMARY

Using Oracle's database hierarchical storage

feature NIF has been able to leverage the HPSS

system to archive diagnostic images and still make

them transparently available to NIF applications.

These diagnostic images are created during each NIF'

shot cycle and loaded into an Oracle database. It is

expected that over a petabyte of diagnostic images

will be created during the 30 year life of the facility

and the hierarchical storage implementation will

significantly reduce the online storage footprint for

images that are infrequently accessed. The HPSS

provides a long term storage solution that insures that

the images will be available for the 30 year life of the

facility.

REFERENCES

[1] Oracle® Database SecureFiles and Large

Objects Developer's Guide

11g Release 2 (11.2),

Part Number E10645-05

[2] Oracle® Database PL/SQL Packages and

Types Reference

11g Release 2 (11.2),

Part Number E10577-05

[3] High Performance Storage System User

Guide,

https://computing.llnl.gov/LCdocs/hpss

[4] Hierachical Storage Interface (HSI),

https://computing.llnl.gov/LCdocs/hsi/index.

jsp?show=s4.1

bledsoe2
Typewritten Text
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

