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1 Introduction

The frequency domain finite element method using H(curl)-conforming finite ele-
ments is a robust technique for full-wave analysis of antennas. As computers become
more powerful, it is becoming feasible to not only predict antenna performance, but
also to compute sensitivity of antenna performance with respect to multiple param-
eters. This sensitivity information can then be used for optimization of the design
or specification of manufacturing tolerances. In this paper we review the Adjoint
Method for sensitivity calculation, and apply it to the problem of optimizing a
Ultrawideband antenna.

2 Adjoint Method

The goal of sensitivity analysis is to determine how the answer to a problem changes
when the inputs change slightly. Mathematically, we are given a set of parameters
p = {p1, p2, . . . , pN} that describe a problem (e.g., a ODE or integral equation)
leading to a solution u. Also given is a response functional R(p,u) that depends on
the solution and may also explicitly depend on the parameters. Sensitivity analysis
consists of choosing a baseline set of parameters p0 and calculating
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Note that dR/dp1 refers to the total derivative, while ∂R/∂p1 is reserved for the
derivative with respect to the explicit p1 dependence. In other words, using the
chain rule,
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In the following, for simplicity, we consider the sensitivity with respect to one of
the variables. Also, adopting matrix terminology, we assume that u comes from a
linear system Au = b and the response has the form R = c · u.

With the previous assumptions, the sensitivity equation has the form [2]

dR

dp
= c′ · u + c ·A−1(b′ −A′u), (3)

where a prime denotes partial differentiation with respect to the parameter p. The
forward sensitivity method consists of finding A−1(b′ − A′u) for each parameter,



Figure 1: Ultrawideband antenna example. The aperture is approximately 3.2 inches
wide and 2.2 inches tall. The two blocks below the tongue represent 100 Ω resistors.

requiring N additional matrix solutions. If the number of parameters is large, this
procedure can be expensive. Instead, introduce the adjoint variable ψ, defined by

AHψ = c. (4)

Then the second term in (3) becomes

c ·A−1(b′ −A′u) = ψ · (b′ −A′u). (5)

This is the adjoint method, and requires only one additional matrix solve, to find
ψ, plus N matrix-vector multiplications.

To implement the adjoint method we built upon an existing code framework called
EMSolve. In simple terms, the matrix equation Ax = b is the H(curl)-conforming
finite element discretization of
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0
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σ

ωε0

)
E = −jωµ0Jimp (6)

The basis functions, quadrature rules, matrix assembly, and matrix solution has
been described previously [3]. In our implementation the partial derivatives A′ are
computed exactly using automatic differentiation [1]. The responses R = c·u are line
integrals of E along an arbitrary path. This encompasses, for example, voltage on
a transmission line and (with minor modifications) S parameters. By reformulating
the problem in terms of the magnetic field, the current on a conductor can be
calculated in a likewise manner.

3 Ultra-wideband Antenna Analysis

The antenna in Fig. 1 has been analyzed. This is a horn antenna with a desired
frequency operation from 2 GHz to 5 GHz. The parameters are the conductivity
in the two resistive blocks, as well as the permittivity, to explore the effects of



Figure 2: The top plot is the antenna return loss, S11. The bottom plot is the
radiated power for 10mW input.

Figure 3: Sensitivity of radiated power w.r.t resistance (lower curve) and capacitance
(upper curve).



capacitive loading. The antenna is fed by a 1 V wave on a 50 Ω coaxial line. In
addition to a line integral response, in the form of the voltage on the transmission
line, this problem introduces another type of response, the ohmic loss which is a
quadratic form EHME, where M is a finite element mass matrix involving the
electrical conductivity. For sensitivity purposes, we require an analog of (3) for this
new type of response. Assuming that M is Hermitian, the result is
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where AHψ = 1
2Mu defines the adjoint solution in this case. With the voltage on

the transmission line, V , and the power in each resistor, P1 and P2, several other
quantities were derived via post processing:

Γ = V − 1

Prad =
1− |Γ|2

2Z0
− P1 − P2,

where Z0 = 50 Ω is the characteristic impedance of the feed line, Γ is the reflection
coefficient, and Prad is the radiated power.

Figure 2 shows the radiated power over 2–5 GHz. Interestingly, the return loss was
quite small over the entire band, hence the resistors dissipate most of the power at
low frequencies. The sensitivities of radiated power with respect to the resistance
and dielectric constant of the resistor blocks are shown in Fig. 3. The sensitivity
with respect to resistance is negative at low frequencies and closer to zero at higher
frequencies, therefore the low frequency gain can be improved by decreasing the
resistance. The sensitivity with respect to dielectric constant is positive, therefore
radiated power can also be improved by adding capacitors in parallel to the resistors.
This illustrates how adjoint sensitivity analysis can be used to optimize the value
of lumped elements in a broadband antenna, at a computational cost of only one
additional linear solve.
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