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Abstract. We investigate rarefaction waves in nonlinear periodic systems with a ‘softening’ power-law 
relationship between force and displacement to understand the dynamic behavior of this class of 
materials.  A closed form expression describing the shape of the strongly nonlinear rarefaction wave is 
exact for n = 1/2 and agrees well with the shape and width of the pulses resulting from discrete 
simulations.  A chain of particles under impact was shown to propagate a rarefaction pulse as the 
leading pulse in initially compressive impulsive loading in the absence of dissipation.  Compression 
pulses generated by impact quickly disintegrated into a leading rarefaction solitary wave followed by an 
oscillatory train.  Such behavior is favorable for metamaterials design of shock absorption layers as well 
as tunable information transmission lines for scrambling of acoustic information.  
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INTRODUCTION

It is well known that certain materials exhibit an 
elastic or viscoelastic softening behavior under load.  
Discrete periodic materials with a “normal” power-
law relationship between force and displacement,
F  n for n > 1 (elastic strain hardening), have 
been shown to support compression solitary waves 
in periodic granular assemblies [1-11].  When a 
dynamic force is significantly larger than the initial 
force applied to grains, these materials are 
considered strongly nonlinear and recent 
investigations have considered their use as 
information carriers and waveguides [3,4,8].  The 
long wave approximation of the equations of motion 
for a discrete chain supports a stationary wave 
solutions traveling in one-dimensional chains or 
ordered two and three-dimensional arrays of 
particles in the absence of dissipation [1,2].  It was 
proven in [2] that stationary solitary and shock 
waves should form in discrete materials with a 
general force-displacement relation that stiffens with 
displacement.  Conversely, a discrete chain with an 
interaction law exhibiting general softening 

behavior (first considered in [12]) supports 
rarefaction solitary shock-like waves [2].  In the 
case of discrete softening materials without tensile 
strength, the propagation of fracture waves follow 
directly behind rarefaction pulses.

We investigate the behavior of stationary 
rarefaction/release waves in discrete periodic 
materials composed of point masses and an 
elastically softening interaction law.  An exact 
solution of the long wave approximation with n = 
1/2 is presented for stationary rarefaction solitary 
waves and is compared to numerical simulations.  
Stationary rarefaction waves have also been 
investigated in magnetized Hall plasmas and are 
thought to explain observed anomalous behavior 
due to a changing electric field [13].  

A softening behavior (decreasing of elastic 
modulus with strain) is observed under certain 
conditions of loading in a wide range of materials 
from polymer foams [14] and rubber [15] to actin 
networks in biological tissues [16].  In general, the 
response of materials with a “softening” behavior 
share several common responses under compressive 
loading: a viscoelastic softening behavior 
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characteristic of configuration changes in polymer 
chains [15] or the collapse of cell-wall structures in 
polymer foams [14] followed by a stiffening 
behavior attributed to the bulk resistance to further 
deformation.  Here, we consider a non dissipative 
interact ion law between part ic les  in  a  one-
dimensional lattice.  In experiments this may be 
realized for foams where the softening behavior is 
due to reversible elastic collapse of cell walls.  
Particle motion may be described by a function of 
relative particle displacements (ui-ui+1) , where ui is 
the displacement.  The system of discrete equations 
for a chain of identical particles with a power law 
potential is

,1,1,,1,1   iiiiiiiii AAu              (1)

where A is an effective stiffness constant and   
 i1,i  ui1  ui n for 0 < n < 1.  Initial displacements 
caused by an external force may also be included in 
displacement ui.  The conditions for propagating 
stationary rarefaction waves in generalized discrete 
“softening” materials (and with a specific power-
law interaction) are presented in [2].

The long−wave approximation for Eq. (1) is 
introduced in a way similar to the case of elastic 
hardening materials (e.g. particle contact interaction 
with a Hertzian potential) by assuming that the 
particle diameter, a, is significantly less than the 
propagating wavelength L.   T h e  r e s u l t  f r o m  
applying the long wave approximation to Eq. (1) is,
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A derivation of Eq. (2) can be found in [2].  The 
long wave sound speed c0 in the chain of particles is 
found  through  the  l inearization of Eq. (2), 
c0  cn n0

(n1)/ 2 .  Stationary solitary rarefaction 
waves may propagate in a discrete chain of particles 
if the chain is initially subject to a constant 
compression force, f0, creating an initial strain ξ0. 
The reduction of Eq. (2) assumes a stationary wave 
propagating with speed V,

    y  y  y  n 3  / n1   y  n 1  / n1 C2  0,      (3)

for arbitrary values of n.  In Eq. (3), y is a reduced 
form of the strain (ξ = -ux ), y  cn /V (n1)/(n1)

(n1)/ 2 , 
where cn

2 = Aan+1 is a parameter with units of speed 
and η is the normalized coordinate traveling with the 
speed of the solitary wave V,   x /a 6(n 1) /n .

Eq. (3) can be rewritten for a nonlinear 
oscillator moving in an effective “potential field”, 
d 2y /d2  dW /dy, where W(y) is defined as

W y  1
2

y 2 
n 1

4
y 4 / n1  C3y 2 / n1  .       (4)

An analogy can be made that a “particle” in the 
“potential field” W(y) moves from its initial position 
(y1, corresponding to ξ0) to the position in the wave 
corresponding to ymin (related to ξmin) and back to y1.  
In general, y1 corresponding to the case when a 
minimum strain is equal zero may be expressed only 
a s  a  f u n c t i o n  o f  t h e  p o w e r-law exponent 
y1  2n /n 1 (1n)/ 2(1n )  [2,3].

For an anomalous softening interaction between 
particles, 0 < n < 1, rarefaction solitary waves exist 
when C3 = 2C2/(n+1) is bound by [2, 12],
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The value of C3 defines system behavior between 
weakly and strongly nonlinear regimes by the lower 
and upper bound of C3, respectively.  The width of 
the wave increases in the weakly nonlinear case 
compared to the strongly nonlinear case.

T h e  e x a c t  s o l u t i o n  f o r  t h e  l o n g  w a v e  
approximation can be found for the case where the 
minimum strain is equal to zero and C3 is given by 
the maximum value in Eq. (5).  In the system of 
reference moving with the wave and centered at the 
minimum value of strain, an exact solution can be 
obtained for n = 1/2 and C3 = -1/6 by solving Eq. 
(3),

y  2/3 3 / 2 tanh3 2/6 .                 (6)

The corresponding equation for the strain is,

  0 tanh4 x /a .                        (7) 

The exact solution Eq. (7) predicts a symmetric 
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pulse that starts from the initial strain value ξ0, 
decreases to zero and then returns.  The 
characteristic pulse length is equal to 7a (for a cut-
off of ξ/ξ0=0.98) and does not depend on the 
amplitude of the solitary wave similar to the case for 
compressive solitary waves in a “sonic vacuum” 
where n > 1 [2].  

Fig. 1 shows that the width of the solitary 
rarefaction wave increases with 0 < n < 1.  A closed 
form expression for solitary may be constructed for 
rarefaction waves for general powers of n.  The 
amplitude is equal to y1 and the width of the wave 
increase for values of n in the interval 0 < n < 1,
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The two remaining comparisons in Fig. 1 are made 
between Eq. (8) and the numerical solution of Eq. 
(3) for n = 1/5 and 4/5.  The amplitudes of each 
pulse from Eq. (8) are the same, but the widths of 
the pulses are slightly underestimated.  However, 
Eq. (8) is a simple closed form approximation of the 
general form for the long wave approximation.

Figure 1.  (color online) Equation (6) is compared 
with the numerical solution of Eq. (3) for three 
different values of n.  The amplitudes of the solitary 
rarefaction waves are exact, but the widths of the 
pulses increase for 0 < n < 1.

It is interesting to find the relationships between 
the phase speed V and the strain ξ.  The phase speed 
can be found using the properties of the potential 
function; W(y=ymin) = W(y=y1) and W /y yy1

 0.  

The speed of the rarefaction wave is [2], 
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The rarefaction wave with a minimum strain 
(ξmin) equal to zero is a special case where the long 
wave sound speed represented by c0 at the point of 
zero strain is infinite for n < 1, but the solitary 
rarefaction wave speed is finite.  We consider the 
validity of the rarefaction solitary wave solution in 
long wave approximation with this singularity point 
by comparison with results for discrete chain.  It 
should be mentioned that a similar situation exists 
for the case with strongly nonlinear compressive 
solitary waves in “normal” material (n>1).  

Figure 2. Solitary rarefaction strain wave in a chain 
of 800 particles compressed with a static force of 1 
N and n = 3/4 impacted by one particle at 6 m/s.  
The initial disturbance disintegrates into wave 
packets, periodic waves and the leading rarefaction 
solitary wave after travelling ~600 particles.  The 
strain is offset by 1.5 for each time for visual clarity.

Numerous numerical investigations using n>1 
agree well with the results obtained using the long-
wave approximation [2, 5-9].  For example, the 
classical Hertzian interaction between perfectly 
elastic spherical particles is a special case of Eq. (3) 
where n = 3/2.  Additionally, the ratio of the solitary 
wave speed, Vs,r to the sound speed c0 is infinite.  
This ratio is positive Vs,r/c0 > 1 for 0 < n < 1,
meaning the solitary rarefaction wave speed is 
supersonic [2].

In Fig. 2 impact velocity of 6 m/s was specified 
for the first particle to which a constant force is 
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applied.  The initial compression pulse quickly 
diminishes due to nonlinear dispersion and the first 
rarefaction pulse immediately behind it eventually 
becomes the leading pulse.  It is quite unusual 
behavior since impact loading is expected to result 
in compression pulse for “normal” materials.  At 
this impact speed, the resulting minimum strain 
value of the leading rarefaction pulse is equal to 
ξmin= 0 with ξ0 = 1 with a measured velocity of 0.94 
m/s, compared to 0.93 m/s from Eq. (9) with cn = 1 
and n=3/4, which is within 2%.  

The agreement between the speed of the leading 
pulses of the discrete system of particles and the 
results from the long wave approximation is 
excellent for the special case mentioned above.  It is 
interesting that solitary rarefaction waves may arise 
by specifying a velocity toward or away from the 
rest of the chain and suggests different methods to 
test materials experimentally.

The closed form exact and approximate 
solutions given in Eq. (6)-(8) are in a good 
agreement with the discrete simulations for different 
values of n.  

CONCLUSIONS

We investigated rarefaction waves in nonlinear 
periodic systems with a ‘softening’  f o r c e-
displacement relationship.  A closed form 
expression describing the shape of the strongly 
nonlinear rarefaction wave is found for n = 1/2.  The 
width of the exact solution does not depend on the 
amplitude of the strongly nonlinear solitary 
rarefaction wave and it is smallest for n = 1/2 among 
investigated values of n.  The agreement between 
the supersonic pulse speed of the waves predicted 
from the theory and numerical calculations is within 
2%.  A chain of particles under impact was shown to 
propagate a rarefaction pulse as the leading pulse in 
initially compressive impulsive loading in the 
absence of dissipation.
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