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Abstract. In plane shockwaves the uniaxial strain rate can greatlgest¢he rate at which dislocation flow
can relax the concomitant shear stress. The result is anlioven plastic state in which the compression is
1D uniaxial initially and only after a period of time does flagtice relax to a more 3D compressed state due
to plastic flow. Here we use an analytic calculation based gereeralization of the Gilman model of flow
involving dislocation evolution to predict the phases aigtic relaxation and to derive an analytic estimate
of the relaxation time, including a decomposition into ihation and flow times, suitable for comparison
with in-situ x-ray diffraction. We use molecular dynamics (MD) to stuthe threshold for homogeneous
nucleation both in shock compression of single crysta]Ii0). We find that shock heating on the Hugoniot
substantially lowers the threshold pressure for homogeseacleation.
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INTRODUCTION

The advent ofn-situ x-ray diffraction in material
dynamics experiments has provided new insight into
the processes of plasticity, as well as phase trans-
formation and other processes that affect the crys-
talline lattice. In-situ x-ray diffraction was first used
to study plasticity in gas gun experiments [1], and
was subsequently extended to laser-driven experi-
ments [2—4]. Diffraction from single crystals has
shown that the material that is initially compressed
uniaxially relaxes to a more equiaxed state over a
time period that depends on the material. Loveridge-
Smith, et al. [2] have shown that copper relaxes to
an approximately 3D state in less than a nanosecond,
whereas silicon has not relaxed after a nanosecond.

Like silicon, body-centered cubic (bcc) materials
have high Peierls barriers, and there is interest in de-
termining the plastic relaxation time for these mate-
rials. The interest in bcc plastic relaxation times has
other motivations as well. Recently, a technique for

measuring the strength of metals at high pressure has
been developed on fusion-class lasers. The inferred
strength of the bcc metal vanadium [5] has been
found to be in good agreement with predictions of
a multiscale strength model for vanadium developed
from first principles [6, 7]. Experiments and analysis
that determine the mechanisms of dislocation flow
independently help reduce the non-uniqueness and
gain more confidence in the model.

Here we show explicitly how plastic relaxation
times can be used to constrain parameters of mod-
els of plastic flow that explicitly evolve dislocation
density,p, including the Gilman model [8] and the
multiscale strength (MS) model [7]. The analysis as-
sumes conventional plastic flow, in which disloca-
tions flow in response to shear stress, undergoing
multiplication during flow. When the shear stress is
sufficiently high,p can jump rapidly due to homoge-
neous nucleation. We use molecular dynamics (MD)
to investigate the threshold for homogeneous nucle-
ation in a shocked tantalum crystal.



METHODS

The rate of plastic relaxation following a strong
shock can be calculated theoretically within various
models. We focus on two. The first is a continuum
analysis based on a generalization of the Gilman
model for the dislocation kinetics. The second is an
atomistic analysis using MD to investigate plastic
relaxation due to homogeneous nucleation.

The dislocation-based continuum model we use
includes the motion and multiplication of disloca-
tions under applied shear stress. The constitutive
model consists of four equations:
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wherep is the dislocation densitysy; is the asymp-
totic saturation densitRis a dislocation multiplica-
tion rate,v is the dislocation velocityy is the Burg-
ers vectoro is the shear stress, aid is the plas-
tic strain rate. Dots indicate time derivatives at fixed
Lagrangian position. Equation (1) is a reformulation
of the Gilman model for dislocation evolution [8].
Equation (2) is the Orowan Law [9], which kinemat-
ically links the plastic strain rate to the dislocation
flow. Equation (3) is the dislocation mobility law.
Since the shear stress is high, at least initially, we
assume that the dislocations are in the phonon drag
regime.B is the phonon drag coefficient [9]. Equa-
tion (4) approximates the saturation dislocation den-
sity as a power law in the plastic strain rate with
parameterpsap andn, following Barton, et al. [7].
We are going to interpret the dislocation velocity as
the mean velocity of dislocations, and have thus in-
cluded a Taylor factoM and an Orowan facton
to average over the glide systems in the grains of a
polycrystalline metal. For simplicity, we assume that
the strength of the crystal is dominated by the lat-
tice resistance, and thus neglect the work hardening
contribution. Its effect will be considered elsewhere.
The state variable must be initialized with the dis-
location density in the metal prior to deformatiqg,
With suitable parameters, this model is an approxi-
mation to the MS model [7].

We also use molecular dynamics simulation of the
compression of the bcc lattice to understand plas-

tic relaxation at stresses sufficiently high that de-
fects nucleate homogeneously from the lattice. MD
integrates Newton’s equatidh= mafor a large set

of atoms. We calculate the forces from a quantum-
based many-body potential designed for high pres-
sure: the Model Generalized Pseudopotential The-
ory (MGPT) potential [10]. The MGPT potential
for Ta contains many-body bond-bending and bond-
stretching forces, and has been shown to agree well
with first principles calculations of elastic constants
and defect energies at pressures up to and beyond the
shock melting pressure of 3 Mbar. We use the dd-
cMD code [11, 12] and rapidly compress the finite-
temperature lattice uniaxially along the Rayleigh line
to the Hugoniot state. The simulation is held at that
volume and internal energy, and the ensuing stresses
are output. We also output the various structural in-
formation for each atom in order to verify whether
defects have nucleated or not [13].

RESULTS

Relaxation of stresses below the threshold for ho-
mogeneous nucleation involves incubation and flow
of dislocations. In this case we apply the dislocation-
based continuum model described above to a mate-
rial point near the drive surface. Similar consider-
ations apply to other locations, but not considered
here. Initially the dislocation density may be too low
to permit an appreciable dislocation flow since the
plastic flow described by Orowan’s Eq. (2) contains
the mobile dislocation density as a factor. The result
is anincubation periodvith exponentially increasing
dislocation density due to dislocation multiplication
but little relaxation of the shear stress. The Gilman
model for dislocation evolution may be rewritten as-
suming constantr as

()
(6)
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wherev is the dislocation velocity at the initial shear
stress,gp. If p < psat, the solution of this equation

is exponential growth of the dislocation density with
time constantinc: p ~ poet/rim. Here we have as-
sumed that the stress has not relaxed appreciably so
thatv ~ vg. The solutions will be discussed in more
generality elsewhere. At long times the dislocation
density asymptotes {0t
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FIGURE 1. (Color online) Plastic relaxation time as

estimated from Eq. (12) and calculated using the multiscale
strength model [7]. The two agree to about 10% above the
pressure of 10 GPa.

The asymptotic value of the saturation density de-
pends on the strain rate through Eq. (4). Substituting
this power law intgp = psa along with the mobility
law (3) results in an upper bound (supremum) esti-
mate for the saturation density:

b2 ny 1/(1-n)
m(@52)]"" o
Psu p/ 4, (8)

where ppeak iS an estimate of the peai. As the
dislocation density builds up toward this value, the
plastic strain rate rises fromyb? gp/(M?B) toward

ér‘%ax = Ppean] b? 0'0/(MZB), 9)

and then decreasing as the shear stress relaxes.

After the incubation period the relaxation enters
theflow period Here the shear stress relaxation rate
is proportional to the plastic strain ratg:= —2GeP,
whereG is the shear modulus. Using this relation-
ship, Orowan’s equation may be rewritten as

Psup =

Ppeak ~

g = —T2,0 (10)
M?2B
Tflow m (11)

where we have approximatgdas the constaripeax
This expression then gives the time constapy, for
the exponential decrease in stress with plastic flow.

Putting this all together, we arrive at an estimate
for the total plastic relaxation time:

Ttot ~ Tinc|09(12Ppeak/PO)+Tflow (12)

50— ——— —
=+ 62.5 GPa
-- 65.9GPa
= 40H 71.3 GPa —
=} I\ -=+ 89.3 GPa
S — 301.5GPa
9304 e
\!
N L e e e bbbl R ekl -
2] H ™
» K \\
8 20 NN e
7] oo
o \
g v
ZIN T N :
[N O, UYL reu A Ara A A N AN
0 5 10 15 20
Time (ps)
FIGURE 2. (Color online) Shear stress as a function of

time following the (100) shock in Ta as calculated with
MD. The response is elastic Bt= 625 GPa. The next 3
curves show rapid relaxation to a non-zero strength due to
homogeneous nucleation of defects. An example of shock
melting at 301.5 GPa is shown for comparison.

This relaxation time depends logarithmically on the
initial dislocation density. It increases tny. (6) for
each e-fold that the dislocation has to increase to
saturate and then an additional flow time constant
Tr1ow (11) for the stress to relax.

The constitutive model used here is an approxi-
mation to the MS model [7] at high stresses. We can
use the MS model parameters to get quantitative esti-
mates of the relaxation time (the phonon drag coeffi-
cient isB = &ob1p/Co). The results are shown in Fig.

1. Relaxation times foP > 10 GPa are less than 8 ns
(for 10 < P < 60 GPaTjnc is 0.26 to 0.75 ns and the
incubation period is 1.6 to 3.5 ns). The analytic for-
mulas derived here agree well with relaxation times
we have calculated using the MS model.

Next we turn to homogeneous nucleation. At high
shear stresses new mechanisms can become active as
the lattice approaches a mechanical instability. Dis-
location shear loops and other defects can nucleate
directly from the bulk lattice, as seen in MD [14], but
with little experimental evidence thus far. Analysis
of this process to date is based on finding a negative
stress-strain coefficient [15] or an imaginary phonon
[16] as calculated at zero temperature. Here we sim-
ulate (1000 shock compression of a perfect single
crystal of Ta, including the considerable increase in
temperature due to dissipation in strong shocks.

In the plot in Fig. 2 we show the evolution of
shear stress in the time after shock compression



for five different pressures (negative mean stresses):
P=625,659,713,89.3 and 301.5 GPa. The upper
curve is an elastic response for the50 ps duration

of the simulation with no appreciable relaxation. The
65.9 GPa curve shows a metastable statef@rps
prior to homogeneous nucleation and relaxation. The
71.3 and 769 GPa curves show rapid relaxation with
no detectable metastable state, relaxing to a final
stress of~ 5 GPa (a lower bound for the strength).
For the fifth curveP is above shock melting, leading
to rapid relaxation and no residual shear stress. For
P > 65.9 GPa, relaxation happened in less than 5 ps
and forP > 71.3 GPa less than 2 ps. The threshold
for homogeneous nucleation in the shosk65 GPa,

is considerably lower than in isothermal compres-
sion at room temperature; 85 GPa. The state fol-
lowing homogeneous nucleation on the Hugoniot is
very disordered and quite different than that in 300 K
isothermal compression where shear loops and twins
are observed with orientation analysis [13].

DISCUSSION

We have developed a theoretical model of plastic
relaxation from 1D to 3D compression due to plastic
flow. We have derived an analytic estimate of the
relaxation time, including incubation and flow times.
This model is closely related to the recent MS model
[7], and using the parameters from that model we
have predicted ns relaxation times. Conversely, the
formulas have shown explicitly what parameters of
the model can be tested by diffraction experiments
measuring relaxation times.

We have also used MD to go beyond conventional
plasticity and study the threshold for homogeneous
nucleation of dislocations and other defects in shock
compression of single crystal Ta. We have found that
shock heating on the Hugoniot substantially lowers
the threshold for homogeneous nucleation and short-
ens the relaxation time from ns to ps. The plastic state
might be related to recently proposed phenomena in
high temperature Ta: Bingham plasticity [17] aad
phase [18]. The MD simulations predict a threshold
for homogeneous nucleation easily within the range
of laser-driven shock diffraction experiments on Ta
and point to the need to extend conventional plastic-
ity models to include homogeneous nucleation.
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