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Abstract

Microbial genotyping is essential for investigating pathogen forensics, tracking epidemics, and
understanding evolutionary processes. We performed phylogenetic analyses and designed genotyping
assays for all available genomes from five viral species complexes or genera: Western, Eastern, and
Venezuelan equine encephalitis virus complexes, Hanta virus genus segments L, M, and S, and Orthopox
virus genus. For each virus group, whole genome Multiple Sequence Alignments (MSAs) and
phylogenetic trees were built. PCR signatures composed of primer pairs or TagMan triplets were
designed and mapped to the nodes of the trees for sub-type or strain specific PCR-based identification.
In addition, SNPs were identified and mapped to the nodes of phlyogenetic trees, and SNP microarray
probes were designed to enable highly multiplexed genotyping of an unsequenced sample by SNP array
hybridization. Near-perfect isolate resolution was possible for all viruses analyzed computationally using
either SNPs or PCR signatures. More tree nodes were represented by SNP loci than by PCR signatures, as
PCR signatures more often represented subsets of strains that did not correspond to a branch of the
tree. However, while PCR genotyping is possible, the number of PCR signatures needed to characterize
an unknown relative to the tree can be very large. SNP microarrays are a suitable alternative, as arrays
enable highly multiplexed, high resolution genotyping of an unknown in a single hybridization assay. All
TagMan signatures, SNPs and microarray probes are available as supplementary information.

Introduction

Forensic characterization of select agent viruses requires the detection of reliably measured
molecular variations between related viral strains. Critical characteristics of viral typing include
universality, sensitivity, specificity, efficiency, reproducibility and resolution. Although genomic
sequencing provides the highest resolution of measuring molecular variations and the cost of
sequencing is rapidly decreasing, it is not yet feasible to type every strain of every viral pathogen of
interest by sequencing. Additionally, modern sequencing platforms are geared for efficiently sequencing
human genomes and are quite expensive if used to sequence a single viral sample. Currently some PCR
assays have been developed on selected viruses for detection at the family level, but there is a lack of
sensitive and reliable assays for forensic discrimination of select agent viruses at the strain and isolate
level.

One approach pioneered at Lawrence Livermore National Laboratory (LLNL) is the use of high-
density microarrays to detect bacterial and viral pathogens and to do forensic analysis of biothreat
agents. Using this approach, we built an array to determine the presence/absence of genes known or
suspected to be tied to mechanisms of virulence and antibiotic-resistance, or vectors that could indicate
bacterial genetic engineering (1,2). In prior reports to the Department of Homeland Security (DHS), we
showed microarray results demonstrating that this “functional forensics fingerprinting” can readily
discriminate between species and strains of organisms for which we have sufficient knowledge of those
mechanisms. We also developed a Lawrence Livermore Microbial Detection Array to detect any
sequenced virus or bacteria within 24 hours (3). We used this array to identify a contaminating pig virus
from a rotavirus vaccine, a vaccine used worldwide to prevent rotavirus infection in infants (4). We also
used this array to diagnose viral infections from human clinical samples (5). This work is helping to
rapidly transition microbial forensics from a marker-based science into a sequence-based one, whether
the sequence data is determined via whole-genome sequencing or via microarray probes.

We have demonstrated how arrays with all known SNPs can provide accurate forensic
determination at a low cost (unpublished reports to DHS). We developed a high-throughput approach
called kSNP for polymorphism detection and assay validation, which combines automated analysis of
draft and finished genome sequence data with rapid microarray development and testing (6). Candidate
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SNP loci are first identified via sequence analysis, and then used to design probes for a high-density oligo
microarray, which can be quickly fabricated commercially by Maskless Array Synthesis (Roche
NimbleGen) (7) or ink-jet (Agilent) technologies (8). The array is then tested with a panel of strains of the
species of interest. This dual-platform use of sequencing and arrays easily distinguishes true
polymorphisms from loci that appear polymorphic due to sequencing errors encountered with modern
platforms. PCR primer sets can then be designed for the validated loci; in addition, the array itself can be
used for rapid genotyping of uncharacterized isolates. We applied this approach to several hundred
bacterial and viral genomes, and empirically tested it on six species and dozens of isolates as part of our
work for the National BioForensic Analysis and Countermeasures Center (NBFAC). Our estimated call
error rates for microarray probes averaged 0.5% for SNP loci when the array was hybridized with various
strains of B. anthracis (unpublished data).

The overall goal of this project was to design high resolution and cost-effective genotyping
assays for strain level forensic discrimination of select agent viruses, addressing a significant capability
gap for the viral bioforensics and law enforcement community. We used a multipronged approach
combining phylogenetic analysis, TagMan signatures, single nucleotide polymorphism (SNP) markers
and microarray probes to comprehensively characterize the viral sequences of Western, Eastern, and
Venezuelan equine encephalitis viruses, hantavirus L, M, and S segments, and orthopoxviruses. When
combined with lab data, the bioinformatics presented here should facilitate future studies to correlate
genotype with phenotypes such as virulence, transmission and antigenicity.

Methods

MSAs

MSAs were built with MUSCLE (http://www.drive5.com/muscle/; (9)) (WEE, VEE, EEE and
Hantavirus) or MAUVE (http://gel.ahabs.wisc.edu/mauve/ ; (10)) (Orthopoxvirus) when MUSCLE
exceeded memory before completion. Table 1 summarizes the fraction of the genome conserved across
all available sequences for each target set based on the MSAs. Maximum likelihood phylogenetic trees
were constructed from the alignments using RAXML v7.2.7
(http://wwwkramer.in.tum.de/exelixis/software.html ; (11)) with the GTR substitution matrix and the
GAMMA-based likelihood as described in the RAXmL manual (—-m GTRGAMMA option, other
parameters were RAXML defaults, and the best scoring maximum likelihood tree is reported).

Data files containing the complete fasta header information for all of the genome identifiers
shown on the trees are provided as supplementary information. The genome identifiers on the trees
have an appended “_#” to ensure that each sequence identifier fed into the kSNP software is unique,
since not all genomes had strain information.

PCR signatures

Signature candidates were designed with Multiple Set Clustering (12) and Primux (13), an
improved version of the MPP algorithm described in (14) to include degenerate bases. These signatures
included primers and probes with and without degenerate bases. Amplicons were 80-250 bp, primer
T.’s approximately 60-65°C, primer lengths 18-22 bases, probes 18-30 bases, and probe T,,’s
approximately 68-73"C.

TaqSim software (http://staff.vbi.vt.edu/dyermd/publications/files/TagSim Help.pdf) was used
to predict which signatures should detect which targets, assuming no mismatches of primers and probes
to targets. Signatures were either primers only or TagMan triplets (primers with a probe). Many of the
primer pairs were conserved among many sequences within a target set, and adding probes provided
additional discrimination. Mix and match alternative combinations of forward and reverse primers and
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probes were considered different signatures, even if some shared a primer or probe. Hundreds
tothousands of signatures were designed for the sequences in each target set (Table 1).

Signatures were mapped to the nodes of the MSA-based tree. Signatures predicted to detect
any cluster of targets that did not correspond to a node, that is, the exact set of sequences down a
branch on the tree, were considered homoplastic. Whether a signature maps to a node or is
homoplastic depends on the tree topology and the root ancestor/descendant relationship. Alternative
roots for a tree do not change the tree branching patterns; they do change the ancestor/descendant
relationships. Since no outgroups were used for building the trees, the MSA-based trees were unrooted.
Therefore, we drew each tree using the root that minimized the number of homoplastic signatures:
Signatures were mapped to each node for all possible roots of the tree. The root for which the tree had
the fewest homoplastic signatures was selected as the best root.

SNPs

We applied the kSNP software to find single nucleotide polymorphisms (SNPs) in whole genome
data (6).This is an alignment free method based on k-mer (oligos of length k) analyses. A SNP locus is
defined by the sequence context of length k surrounding the SNP (k-1)/2 bases either side of the SNP
with a variant SNP allele at the central base. This representation of a SNP locus is based on surrounding
sequence information rather than positional information in a genome. It differs from traditional
alignment-based concepts of a SNP locus, and it allows us to consider draft genomes which are available
only as contig fragments in which positional information relative to the complete genome is not known.
kSNP is also useful for viruses in which there may be highly divergent and poorly alignable regions
among a large group of sequences, and conserved regions only exist among small subgroups of
sequences. There is no bias that otherwise results from the choice of a reference sequence or from
considering only a subset of regions of the genome that can be easily or quickly aligned. kSNP scales to
hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as
unassembled contigs. The method is fast to compute, finding SNPs and building a SNP-based phylogeny
in seconds to hours. Here, SNP-based trees were calculated from a simple hamming distance metric of
the number of SNP allele differences between each target sequence, and SNP alleles were mapped to
the nodes. For moderately diverse target sets like viral species complexes, SNP-based trees are
consistent with MSA-based trees. However, in cases where target sets contain viruses of different
species, SNP trees cannot always distinguish higher level relationships between different viral species
since variations are larger than single nucleotide changes. In such cases when the correspondence
between the SNP-based tree and the MSA tree was poor, we mapped SNP alleles to the MSA-based tree
instead.

To improve accuracy, memory efficiency, and speed, we made some modifications from the
kSNP software described in (6): 1) k-mer enumeration with a suffix array was replaced with a new hash
table implementation using the Jellyfish software (15); 2) Calls to blastn (16) to find all candidate loci in
all genomes were replaced with calls to MUMmer (17); 3) trees were rooted so as to maximize the
number of SNP alleles that map to nodes of the tree (to minimize homoplastic SNPs), as described above
for PCR signatures.

SNP analysis was performed with k=13 and k=25. k=13 identified more SNP alleles than k=25.
Fewer SNPs were found with the larger k because a longer length of conserved sequence surrounding
the SNP is required. With these divergent viruses, shorter k means that SNPs in closer proximity to one
another can be found, thus reducing the stringency for conservation surrounding a SNP. A value of k=13
for viruses should provide better resolution of unsequenced novel isolates than k=25, so all results
reported below are for k=13.

Microarray Probe Design
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Microarray probes were designed for every SNP. Probe design strategy maximized sensitivity
and specificity based on extensive prior lab testing on a Roche NimbleGen microarray platform, where
we demonstrated 100% SNP allele call rates and 99.5% accuracy (in prep, and unpublished reports for
DHS). We determined that maximum sensitivity and SNP discrimination accuracy result if the SNP base is
at the 13™ position from the 5’ end of the probe (the end farthest from the array), probes are between
32 and 40 bases long, and length varies so as to equalize hybridization free energy (AG) to the extent
possible within the allowable length range. Probes shorter than 32 bases have high false negative rates,
and longer probes are inefficient at discriminating single base mismatches. We found that AG is a better
predictor of hybridization than T,,. Probe candidates with hybridization free energy below AG=-43
kcal/mol were shortened until either their AG exceeded -43 kcal/mol or they reached the minimum 32
bases. Probes were designed around the SNP on both the plus and minus strands, for all four possible
SNP alleles, and all surrounding sequence variants. We design probes for both the plus and minus
strands; these are not the reverse complements of one another because the SNP does not lie at the
center of the probe. There are probes for each of the four variants on each strand, so at least eight
probes per SNP locus. In addition, any sequence variation outside of the k-mer SNP context of conserved
bases is captured in multiple alternative probes for that allele, so there may be more than 8 probes per
SNP locus, although for a given hybridization, only the probe variant with the best signal is used for
assessing the SNP allele at the 13% position. Finally, probes are trimmed from the 3’ end to remove any
N’s or other degenerate bases, and omitted altogether if doing so results in a probe less than 32 bases. If
a probe is a subsequence of any other, only the shorter of the two is kept. If necessary to fit on the
desired array format, probes can be omitted for alleles not represented in the target sequences, e.g. for
biallelic SNPs and some of the possible probe variations outside the conserved k-mer context for some
alleles. Pruning to the subset to detect only observed alleles in the available genomes dropped the
probe counts by over 70%. Both unpruned and full sets of probes are provided as supplementary data.
These probe counts could be further reduced, for example, by including probes for only a subset of the
SNPs for each node or homoplastic group.

All data presented/discussed here is available as supplementary information or by contacting
the authors.

Results

Trees based on MSA’s or SNPs are shown in Figures 1-7, showing either branch lengths that
scale with genetic distance (MSA trees) or the number of PCR signatures or SNP alleles that map to each
node (in blue at the node) and leaf (in brackets after the strain name). Counts of homoplastic PCR
signatures or SNPs cannot be shown on the tree. Table 1 summarizes the numbers of genomes, PCR
signatures, SNPs, and homoplastic markers for each viral target set.

The vast majority of PCR signatures are strain-specific (mapping to the leaves) and or
homoplastic, detecting combinations of sequences that do not map exactly to a node of the MSA trees.
The homoplastic signatures nonetheless may be useful; some signatures may detect most of the
members of a clade. For the Orthopoxviruses, the majority of signatures are homoplastic, predicted to
detect various subsets of the target sequences.

Where branch lengths are very short, usually PCR signatures can be found. Few signatures map
to the more distantly related targets separated by long branch lengths like those seen between different
species. Many of the antigenic subgroups and species within the equine encephalitis virus complexes
and Hantavirus genus do have PCR signatures at forensic level resolution. In cases where zero signatures
map to a node of interest, one would need to use a combination of homoplastic signatures or leaf-level
signatures to detect and discriminate all the desired targets.

For the Orthopoxviruses, there are three variola-specific PCR signatures, three variola minor
specific signatures, two vaccinia, seven camelpox, one taterapox, and six ectromelia specific signatures.
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Cowpox falls into two clades. There are some subtype and strain signatures, but due to the relatively
high level of conservation across this double-stranded DNA virus, combinations of homoplastic
signatures would likely be required to classify an unknown down to a forensic level using PCR signatures.

Almost all targets had substantially higher fraction of nodes without PCR signatures than
without SNPs (Figure 8). Likewise, most targets had a larger fraction of PCR signatures that were
homoplastic compared to the fraction of SNPs that were homoplastic. Homoplastic PCR signatures often
were predicted to detect only a subset of the strains down a branch. The one exception was Hanta
segment L, for which the vast majority of PCR signatures were genome-specific, that is, they mapped to
the leaves, and so were not considered homoplastic.

Comparisons between MSA and SNP trees for each viral group

The MSA and SNP trees for WEE viruses are nearly the same, except that the MSA tree has the
Fort Morgan and Buggy Creek as nearest neighbors to the Highlands J viruses, but the SNP tree has the
branch to Fort Morgan and Buggy Creek viruses from the root, since there were no SNP loci present in
both clusters to indicate that they are more closely related to one another than to other species in the
WEE virus complex. There are no PCR signatures at this node either, nor is there a single PCR signature
that classifies all Sindbis viruses together.

MSA and SNP trees for VEE are the same for the upper part of the trees, but SNPs cannot
correctly place the divergent Pixuna, Cabassou relative to the others, since each is very divergent from
other members of the species complex, and branches off near the root of the tree. These isolates do
share some SNPs with other isolates, but only homoplastic SNPs that do not correspond to any nodes of
the SNP-based tree. Nor are there PCR signatures for many of the nodes at the bottom of the tree that
lead to the Cassabou and other divergent isolates.

MSA and SNP trees for EEE are similar. The BeAr strain and the PE-3 and PE-0 are relatively
different from the other larger group of EEE viruses that cluster tightly at the top of the tree, and it is
difficult to tell whether BeAr or the PE-3/PE-O cluster is closer to the large cluster. For EEE, only the
Patent W02005000881 and Florida91-4697 sequences cannot be discriminated based on SNPs. The
patent sequence is a live attenuated vaccine derived from the Florida91-4697 parent isolate. It has five
deleted codons at the furin cleavage site. All other branches and strains can be discriminated based on
SNPs, most by dozens of loci.

The SNP-based tree for OPXV does not correspond to the MSA tree or other published work
(REF), and most of the internal nodes have zero SNPs that map to them. The SNP tree captures strain-
level relationships, but SNPs are not adequate to determine relationships among different species.
Mapping SNPs instead to the MSA-based tree shows that SNPs do correspond to most of the nodes of
the MSA tree, showing that there are species- and clade-specific SNPs. The Orthopox tree shows that
there are 3067 species-specific SNP alleles for variola and 442 subtype-specific SNP alleles for variola
minor. There are hundreds of clade-specific SNPs at most levels of the tree, which should enable high
confidence classification of an unknown isolate.

OPXV illustrates a case where SNPs can provide excellent forensic genotyping capabilities but
only if they are combined with the tree derived from a full genome sequence alignment, since SNPs
alone do not build an adequate tree. Of the nearly 800 PCR signatures we generated, very few of them
mapped to internal nodes of the MSA tree, while the vast majority mapped to leaves or to strain
groupings that did not correspond exactly to a branch of the tree. Therefore PCR signatures may be a
poor choice for phylogenetic subtyping of OPXV compare to SNPs; To categorize an unknown to any
given branch would require testing against combinations of many PCR signatures, since most nodes have
no PCR signature corresponding exactly to the strains down that branch.

MSA and SNP trees for Hanta L segment have nearly identical branching topology for species
within the genus. The SNP tree cannot distinguish the branch structure among some species (nodes at
the far left of the tree) where there are zero SNP loci in common between branches, but there are
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nevertheless sufficient SNPs for most branches and all leaves to place an unknown on a tree based on
SNP allele calls, whether it be the MSA- or the SNP-based tree. Few of the internal nodes have PCR
signatures, so again one would need to test a large panel of PCR signatures capturing the variation near
the leaves against an unknown to place it on the tree.

As for OPXV, MSA-based trees for Hantavirus segments M and S showed inter-species
relationships more clearly than did SNP-based trees, since although SNPs could differentiate species,
they could not determine higher level clustering between species. Therefore, the SNPs were mapped to
the MSA tree instead of the SNP tree. Segments M and S have over a hundred sequences each, making
visualization on a tree difficult. There are dozens of species, as well as many “unclassified Hantavirus”
sequences. Most SNPs map close to the leaves of the trees (species, subspecies, and strain) and do not
map to higher level branches shared across species, but SNPs do allow clear clustering by species.
Considering the challenge of finding genus-level conserved primers or employing the hundreds of assays
it would take to classify the three segments of an unknown hantavirus by any single-plex approach such
as PCR, the value of a microarray is clear for species and strain level characterization, as well as
identification of new segment recombinant strains.

Discussion and Conclusions

We performed whole genome alignment, SNP discovery and microarray design, and PCR
signature design for genotyping all available finished and draft genomes of WEE, EEE, VEE, Hantavirus L,
M and S segments, and Orthopox. Almost every available genome can be discriminated on the basis of
SNPs or PCR signatures. Trees based on SNPs alone were compared with those based on the full MSA,
showing good correspondence at the strain level within a species, and that species clustered separately.
For very large and diverse groups of sequences spanning an entire genus, however, SNPs were
insufficient to build the topology at higher levels like the clustering between different species. For these
target sets, mapping SNPs to a tree built from the full MSA proved optimal.

We include plots showing trees with branch lengths scaled by genetic distance, as well as
cladograms with PCR signature and allele counts, since comparing the trees illustrate the difficulty of
obtaining PCR signatures for long branches. In many cases, only the shortest branches have
corresponding PCR signatures. Therefore, to place an unknown sample on the tree using PCR signatures,
one usually cannot traverse the tree from the top down (root to leaf) because there are no or very few
PCR signatures at the more conserved levels. Instead, the sample must be tested against many leaf level
and homoplastic signatures for classification as to the most similar leaf. This issue is less problematic for
SNP genotyping, since SNP alleles exist to discriminate more of the conserved nodes, and, more
importantly, highly multiplexed analysis like arrays makes it possible to determine all SNP alleles in an
unknown in a single assay.

Every node may not have SNP alleles that correspond exactly to that node, but those nodes are
nonetheless differentiable by combining information from a number of homoplastic SNP loci. As such,
the microarray approach that queries all known SNPs for an unknown isolate in a single assay is much
more powerful than a set of single-plex assays for a limited number of canonical SNPs or PCR signatures
that map to a small handful of the nodes of a tree. As our knowledge of viral diversity expands, the need
for larger multiplexes for genotyping unknowns grows apace. Due to the large numbers of signatures
and thus reactions that would be required to classify an unknown down to the subtype and strain level,
TagMan PCR reactions for forensic classification will likely be labor intensive and expensive. Using a PCR-
based technology that allows higher levels of multiplexing is an option, such as a bead based assay (e.g.
Luminex), although the multiplexing levels are still in the tens of assays rather than the hundreds of
thousands available from a microarray.

One possible disadvatage of a SNP array compared to PCR genotyping signatures is lower array
sensitivity compared to PCR. However, considering that a small sample would need to be subdivided
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into aliquots for many PCR reactions, the sensitivity difference between arrays and PCR might disappear.
Whole genome preamplification with random hexa- or nona-mers or virus-specific whole genome
amplification with conserved degenerate primers that tile across the viral genome are possible methods
to increase sensitivity prior to array hybridization (1,5). In other work, we have designed conserved,
degenerate primer sets that tile across whole genomes and which should amplify all sequence variants
of the viruses discussed here (manuscript in prep).
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Table 1: Target count, conservation across available genomes, numbers of signatures designed, number of homoplastic signatures that do not
correspond to a node or leaf of the MSA tree, number of SNP loci, number of homoplastic SNP loci based on SNP hamming distance tree (EEE, VEE, WEE,
Hanta L) or MSA tree (Hanta M and S and OPXV), number of SNP probes, number of SNP probes for the alleles observed among available genomes, and

the resolution of the SNP

Organism # Fraction of | # of PCR # of # SNP #homo- | #SNP # probes Strain resolution based on
Target | genome signatures | homoplastic | loci plastic probes for SNPs
sequen | conserved PCR SNP loci observed
ces signatures alleles
only
EEE 11 0.63 9,065 4,134 936 15 15565 4588 | EEE_Florida91-4697
and
EEE_PatentW02005000881
cannot be resolved by SNPs
VEE 38 0.47 13,577 4,510 4421 285 96,945 26,430 | All resolved
WEE 36 0.37 5,926 1,595 3382 177 68,257 19,745 | All resolved
Hanta 32 0.36 2,011 64 4992 243 107,753 27,591 | All resolved
segment L
Hanta 129 0.05 4,712 809 9914 1084** 271,017 70,145 | All resolved
segment M
Hanta 265 0.10 945 365 9066 1806** 343,621 89,768 | Hantavirus_Hantaan_AP1168
segment S and
Hantavirus_Hantaan_AP1371
cannot be resolved by SNPs
Orthopox 121 0.49 791 471 82493 | 10781** | 2,354,505 625,296 | Taterapox_NC_008291.1 and

Taterapox_Dahomey cannot
be resolved by SNPs

* the 2 SNP unresolvable taterapox genomes are most likely duplicate genomes that resulted because we used the pre-publication sequences from

collaborators as well as the sequences that were later entered in Genbank. Without confirmation from our collaborators that the genomes are different
versions of the same isolate, we keep them both in our database.
**Homoplastic SNP counts based on mapping SNPs to the MSA tree rather than the SNP-based tree.
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Figure 1A: Maximum likelihood phylogenetic tree for WEE based on a whole genome multiple sequence
alignment, showing branch lengths scaled by genetic distance.
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Figure 1B: The MSA tree for WEE (from Figure 1A) with counts of the number of signatures (TagMan or
primer pairs) that map to the sequences on that branch. Strain-specific signature counts are in brackets
after strain names. Branch lengths are not to scale (cladogram format). The longer branches in Figure 1A
have zero signatures, and only the short branches have many PCR signatures, so it is difficult to view the
PCR signature counts on the phylogram in Figure 1A with accurate branch lengths.
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Figure 1C: SNP-based tree for WEE with counts at each node of the number of SNP alleles shared by the
genomes down that branch, and genome-specific allele counts shown in brackets after the strain name.
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Figure 2A: MSA-based tree for VEE, as in Figure 1A.
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Figure 2B: PCR signature counts mapped to nodes, as in Figure 1B, for VEE.
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Figure 2C: SNP-based tree for VEE, as in Figure 1C.
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Figure 3A: MSA tree as in Figure 1A, for EEE.
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Figure 3B: PCR signature counts mapped to nodes, as in Figure 1B, for EEE.

Page | 17



—— EEE_Floridag1-a697 0]
18
—— EEE_F atentif02005000551 [0]

15

4 — EEE_Georgiad7[33]

30 ——— EEE_MothAmerican_antigenic_wariety[30]

EEE_FLO3-920[21]

131
—— EEE_FER[H]

21
L —— EEE_ref_giz1215484[52]

50

EEE_N.J-50[40]

—— EEE_FE-0_0155[292]
30

EEE_FE-3_0815[28%]

EEE_Be=AMIB0ST[272]

Figure 3C: SNP tree for EEE, as in Figure 1C.
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Figure 4A: MSA based tree for OPXV, as in Figure 1A.
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Figure 4B: PCR signature counts mapped to nodes, as in Figure 1B, for OXPV.
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Figure 4C: MSA-based tree for Orthopox with SNP allele counts mapped onto tree.
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Figure 4D: SNP-based tree for OPXV, with SNPs mapped onto tree, as in Figure 1C. Not all strains or node
SNP counts are shown, but most are zero, since the SNP-based tree is a poor estimate of phylogeny
compared with the MSA-based tree in Figure 4C.
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Figure 5A: MSA based tree for Hanta segment L with accurate branch lengths, as in Figure 1A, and also
showing PCR signature counts at the nodes and in brackets after strain names, as in Figure 1B.

Page | 23



Hantawirus_Hantaan_17[Z]
Hantawirus_Hantaan_20[0]
Hantavirus_Hantaan_segmentlL_<g10[3]
Hantaan_Hantavirus_ LR1_segmentl_393[22]
Hantavirus_Hantaan_Q32_segmentl_77[393]
antavirus_A8_segmentl_Z95[123]
antavirus_Hantaan_S4FLi_segmentl_1356[156]
Hantavirus_Z10_chrl_g24[415]
ntavirus_Soochong_-15C-1_364[118]
antavirus_Soochong_-25C-2_315[116]
Hantawirus_Hantaan_Mc167_segmentl_TA[331]
Hantavirus_Dobrawa-Belgrade_DOBY_Ano-Poroia_afla_1999_ 419[295]
Hantavirus_Dobrawa-Belgrade_Saaremaa_Saaremaa- 160V _segmentl_26[0]
Hantavirus_Seoul_ZT10_segmentl_92[7]
Seoul_Hantavirus Z37_segmentl_165[3]
Hantavirus_Seoul_ZT71_segmentl_83[3]
Hantavirus_Seoul_422[200]
0 — Hantavirus_Seoul_Seoulvirus_ 199 _segmentl_165[219]

3'-'J'|$a ntavirus_Sin_Mombre_d07[5]
—|E£ antavirus_Sin_Mombre_segmentencoding_<01[5]
1]

Hantavirus_Sin_Mombre_Conwict Creek_107_segmentl_238[255]
_E‘lﬁa ntavirus_Andes CHI-TE13_segmentl_265[221]
antavirus_Andes_segmentl_<04[231]
ntavirus_FPuumala_276[17]

antavirus_FPuumala_DTR_Ufa-97_12[18]
Hantavirus_Puumala_Kazan_segmentl_87[302]
Hantavirus_Puumala_segmentl_<H13[05]
Hantavirus_Puumala_Umea_hu_segmentl_S0[31]
Hantavirus_Tula_segmentl_d14[268]
Hantavirus_Prospect_Hill_segmentl_93[285]
= Hantavirus_Thottapalayam_WRC-G66H2_segmentl_121[24]

antavirus_Thottapalayam_segmentl_4g27[28]

Figure 5B: SNP-based tree for Hantavirus segment L, as in Figure 1C.
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Figure 6A: MSA tree for Hanta segment M. Some strain names are not shown, for better legibility.
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Figure 6B: MSA-based tree for Hanta segment M with PCR signature counts mapped onto tree. Not all
strains are shown.
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Figure 6B: MSA-based tree for Hanta segment M with SNP allele counts mapped onto tree. SNPs were
insufficient for determining branching relationships at the higher (inter-species) levels, as can be seen by
all the zeros on nodes at the left of the tree, so we show the SNP counts mapped onto the MSA-based

tree rather than the SNP-based tree.
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Figure 7A: MSA tree for Hanta segment S. Some strain names are not shown, for better legibility.
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Figure 7B: PCR signatures mapped onto MSA tree for Hanta segmentS.
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Figure 7C: SNP tree for Hantavirus segment S. Some sequences and nodes are not shown, for better
legibility.
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Figure 8: Chart showing that SNPs have better representation on tree nodes than do PCR signatures,
since PCR signatures have a higher fraction of nodes with zero PCR signatures and more homplastic PCR

signatures than do SNPs.
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