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1 Description of Model

The model consists of a two dimensional Cartesian Ising lattice of flippable
spins, ŝ ∈ {−1,+1}. Spin exchange probabilities were determined according
to the Metropolis algorithm, with a single time step defined as follows:

1. Propose a new configuration via random change to the initial configu-
ration

2. Calculate the energy difference, ∆E, between the two configurations

3. Generate a random number 0 ≤ r ≤ 1

4. If r ≤

{
1 ∆E < 0

e
−∆E
kBT else

, then keep the new configuration, otherwise

keep the old configuration

Kawasaki dynamics provides the method for proposing new configura-
tions. A single nearest neighbor pair is selected, uniformly at random, from
the initial configuration and swapped to produce the proposed configuration.
This method has the effect of conserving the number of each type of spin
which, in the interpretation of our system, represents conservation of mass.

The energy difference, ∆E ≡ ∆Ebond+Egrav, is calculated from the effect
of the traditional nearest neighbor bond force (leading to ∆Ebond) and a
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gravitational force (leading to ∆Ebond). To determine the effects of the bond
force, a spin interaction energy, J , is prescribed and a configuration is defined
to have a total bond energy given by

Ebond ≡
−J
2

∑
ŝi=all spins

∑
ŝj=nearest neighbors of ŝi

ŝi · ŝj. (1)

Given the constraints of Kawasaki dynamics, the bond energy difference,
∆Ebond, between an initial state and a proposed state, generated by swapping
a single pair of spins ŝi and ŝj in the initial state, can be calculated locally.
It is given by

∆Ebond = −J

 ∑
ŝk=nearest neighbors of ŝi

ŝi · ŝk +
∑

ŝk=nearest neighbors of ŝj

ŝj · ŝk


proposed

(2)

+

 ∑
ŝk=nearest neighbors of ŝi

ŝi · ŝk +
∑

ŝk=nearest neighbors of ŝj

ŝj · ŝk


initial

 .
The total gravitational energy of a configuration, after prescribing spin

masses m+1 and m−1 to +1 and -1 spins respectively, a gravitational constant
g, and a lattice spacing ∆h, is

Egrav ≡ g
∑

ŝi=all spins

miyi∆h, (3)

where yi andmi are the row number and mass of spin ŝi. The gravitational
energy difference between an initial state and a proposed state, generated by
swapping spins ŝi and ŝj, in the initial state is

∆Egrav = (mi −mj) g (hi − hj) . (4)

Since, spins can only swap with their neighbors the definition

Edrop ≡ (m+1 −m−1) g∆h (5)
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is useful. The gravitational energy difference for any swap of adjacent
similar spins (both +1 or both −1) is zero because the initial and proposed
configurations are indistinguishable. However, the gravitational energy dif-
ference for any swap of adjacent dissimilar spins ŝ+1 and ŝ−1, originally at
heights y+1 and y−1, is

∆Egrav =


Edrop y+1 > y−1

−Edrop y+1 < y−1

0 y+1 = y−1

. (6)

The input parameters to the simulation are the gravitational strength,
Edrop (in units of the spin interaction energy, J), the temperature, kBT (in
units of J), and the lattice dimensions nx and ny (in units of the lattice
spacing, ∆h). Periodic boundary conditions were used on the boundaries
normal to the x̂ direction. Finite, fixed boundary conditions were used on
the boundaries normal to the ŷ direction. No edge existed in the +ŷ direction
from the top row of spins or in the −ŷ direction from the bottom row of spins.
With these boundary conditions the total number of nearest neighbor pairs
is Nbonds = 2nxny − nx. The code was written is C++ and run on a single
processor.

2 Model Benchmarking

In order to benchmark our model, we tested the effects of gravitational and
bond forces independently. Both could be removed easily and analyzed theo-
retically, but isolated verification still gives confidence that they will function
as intended in concert.

2.1 Gravitational Forces

To benchmark the effect of gravitational forces, bond forces were removed.
This was done by removing its contribution when calculating the energy
difference of a proposed swap. Normally, the probability of a spin pair flipping
depends on the six spins surrounding the pair, but without bond forces, it
depends only on the two spins involved. The lack of significant collective
effects makes the following assumption approximately true: the probability of
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a given lattice site being +1 is independent of the probability of its neighbors
being +1. Usually this is a bad assumption because bond forces cause like
spins to clump, so having +1 neighbors makes it more likely for the given site
to be +1 itself. This assumption allows us to create a mathematical method
to deterministically approximate the statistical evolution of any arbitrary
simulation.

We begin with initial conditions, a finite nx×ny lattice with a distribution
of +1 and −1 spins, and boundary conditions (in this case periodic in x̂ and
fixed in ŷ). We take our initial conditions and translate them into a function
S(0, x, y) → [0, 1] over x ∈ [0, nx), y ∈ [0, ny) where S(0, x, y) maps to 0 at
the locations of −1 spins and 1 at the locations of +1 spins. The probability
of a lattice site being +1 is the sum of the probability that it was +1 last time
step times the probability that it didn’t swap with a −1 and the probability
that it was −1 last time step times the probability that it did swap with
a +1. This can be written, in our previously established notation, as the
recurrence relation

S(t+ 1, x, y) = S(t, x, y)



1−

0@1−

8<: 1 y = ny
S(t, x, y + 1) else

9=;
1Ae−EdropkBT

Nbonds


·

1−

0@1−

8<: 1 y = 0
S(t, x, y − 1) else

9=;
1A

Nbonds


·
(

1− (1−S(t,(x+1)%nx,y))
Nbonds

)
·
(

1− (1−S(t,(x−1+nx)%nx,y))
Nbonds

)



+ (1− S(t, x, y)) ∗



8<: 0 y = ny
S(t, x, y + 1) else

9=;
Nbonds

+

8<: 0 y = 0
S(t, x, y + 1) else

9=;e

−Edrop
kBT

Nbonds

+S(t,(x+1)%nx,y)
Nbonds

+S(t,(x−1+nx)%nx,y)
Nbonds


. (7)

Equation 7 was solved iteratively from the initial conditions appearing
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Figure 1: Initial conditions used for gravitational force benchmarking

in figure 1 to give the probability distribution given in figure 2 at t=5000
considerations. This theory was compared with the distribution in figure 3,
generated by averaging over 100,000 simulation runs. The mean absolute
difference was 0.5% and the maximum absolute difference was 2.5% across
all lattice sites.

2.2 Bond Forces

To benchmark the effect of bond forces, the effects of gravity we removed. We
started with a 100×400 lattice (nx = 100, ny = 400) with a flat interface with
a normal in the ŷ direction. The lattice was allowed to reach equilibrium at
various temperatures between 0 and 4J , after which the average bond energy
per spin was calculated. A theoretical prediction was determined through
modifying the solution for the average bond energy in the grand canonical
ensemble.

In the grand canonical ensemble the lowest energy state is a homoge-
neous lattice of spins. Our system uses the canonical ensemble which, with
heterogeneous initial conditions, necessitates a spin interface in the lowest
energy state. If the lattice size is infinite the two cases, canonical and grand
canonical, become equivalent because the number of interface bonds is O(nx)
and the total number of bonds is O(nxny). For a finite lattice, the difference
between the lowest energy states of the two cases can be calculated from the

5



LLNL-TR-497289: Simulating the Rayleigh-Taylor instability with the Ising
model

Figure 2: Theoretical probability distribution at t=5000 time steps

Figure 3: Simulation probability distribution at t=5000 time steps, averaged
over 100,000 runs
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Figure 4: Simulation results subtracted from theoretical prediction of prob-
ability distribution at t=5000 time steps

ratio of interface to total bonds to be

∆ 〈Ebond〉finite =
3J

ny
. (8)

Now, with the adjustment to the finite canonical result, it becomes

〈Ebond〉 =
3J

ny
− coth

(
2

kBT

)1−
(

1− 2tanh2

(
2

kBT

))
2

π
K

2sinh
(

2
kBT

)
cosh2

(
2

kBT

)
 J (9)

where K(k) = F (π
2
|k2) =

∫ π
2

0
dθ√

1−k2sin2(θ)
is the complete elliptic integral

of the 1st kind. This theory is compared against the results of simulations
in figure 5. The mean absolute difference is 6% and the maximum absolute
difference is 17%.

2.3 Critical Temperature Estimation

In order to estimate the critical temperature, kBTc, of the system we can
apply equation 10 for free energy, F , to the situation of initially segregated
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Figure 5: Average bond energy per spin for simulation and theory

species without the influence of gravity. We arbitrarily chose the top half of
the lattice to be +1 spins and the bottom half to be -1 spins. At equilibrium
the two species have mixed at the interface to a degree dependent on the
lattice temperature, kBT . By estimating the energy, E, and the entropy, S,
of the mixing region as functions of kBT , we can minimize the free energy
and arrive at an estimation of the critical temperature.

F = E − TS (10)

2.3.1 Simplifying Assumptions

The following assumptions were made to approximate Onsager’s result for the
critical temperature of the two dimensional infinite Cartesian Ising lattice:

1. The vertical spin composition profile is an error function

2. The horizontal spin distribution is uniformly random

Simulations show the probability of a given lattice site being +1 as a
function of height of the mixing region is fit by an error function reasonably
well (see figure 6, where ω1, ω2, ω3, and l are fit parameters). Taking the
derivative of the error function fit, we can get a Gaussian distribution with
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Figure 6: Error function fit, Fit = ω1

(
erf

(
2
√
ln(2)

l
(y − ω2)

))
+ ω3, to

simulation data, nx = 100, ny = 400, Edrop = 0, and kBT = 1.75J

a full-width at half maximum (FWHM), l, characteristic of the width of the
mixing region.

In addition to assuming an error function profile, we must also assume a
relationship between bond energy and density. For example, near the top of
the lattice there are very few -1 spins, so they have almost entirely dissimilar
neighbors. But near the interface there is a large population of -1 spins,
which will often be adjacent, reducing the energy, E. For this approximation
we will assume that, at a given height, the probability of a spin occupying
a lattice site is independent of the occupants of neighboring sites (thermal
effects dominate bond effects).

2.3.2 Energy Calculation

Using these assumptions we can calculate the energy of the interface. At a
given height y above the interface, if f(y) is the chance of being +1, there are
nx (1− f(y)) -1 spins. Each spin has 4 neighbors each with a f(y) chance of
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being +1. This argument is symmetric about the initial interface meaning
the total bond energy is just twice the bond energy above the initial interface.

If we let f(y) = erf

(
2y
√
ln(2)

l

)
and let ny =∞, we arrive at

E

2
=

∫ ∞
0

4nxerf

(
2y
√
ln(2)

l

)(
1− erf

(
2y
√
ln(2)

l

))
J dy (11)

E =
4nxl√
πln(2)

(√
2− 1

)
J (12)

2.3.3 Entropy Calculation

Entropy is defined to be the kB times the natural log of the number of states
possible which satisfy the constraints of the system. In this calculation the
only constraint is the area (A) in which mixing is permitted to occur. The
mixing of two species in an area has associated entropy given by

S = kB · ln
((

2A

A

))
= 2AkBln(2). (13)

For the assumed profile, A =
∫∞

0
erf

(
2y
√
ln(2)

l

)
dy = nxl

2
√
πln(2)

, which

can be substituted to produce

S = nxlkB

√
ln(2)

π
. (14)

2.3.4 Free Energy

The free energy of the system can be calculated as a function of temperature,
kBT , and mixing FWHM, l, by combining equations 10, 12, and 14 to produce

F =
4nxl√
πln(2)

(√
2− 1

)
J − nxlkBT

√
ln(2)

π
. (15)

To find the critical temperature, we minimize F by setting the derivative
with respect to the mixing width equal to zero and get
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kBTc = 2
(√

2− 1
)( 2

ln(2)

)
J. (16)

This evaluates to 2.390335 . . . J , which differs by only 5% from the ex-
act critical temperature for an infinite two dimensional Cartesian lattice of

2
ln(1+

√
2)

= 2.269185 . . . J . Our approximation is high because it slightly

overestimates the mixing energy due to the second assumption. Since it is
energetically favorable for spins to clump together, it is more likely for similar
spins to be adjacent.

3 Physical Laws

By analyzing the flipping mechanism closely, we can determine the laws of
motion for the system. Since spins do not maintain an intrinsic velocity vec-
tor, velocity is an instantaneous quantity. We use the conventional definition
of velocity as the time rate of change in position. The concept of energy in
equations 1 and 3, so we can define force as

~F ≡ −~∇E. (17)

Since energy is defined over the lattice, the gradient in our definition be-

comes discrete and our definition reduces to ~F = −
(

∆Eu
∆h

û+ ∆Ed
∆h

d̂+ ∆Er
∆h

r̂ + ∆El
∆h

l̂
)

,

where û is the unit vector upwards, ∆Eu is the energy difference resulting
from an upwards swap, and ∆h is the lattice spacing (see figure 7). We can
nondimensionalize our units to the lattice spacing to get:

~F = −
(

∆Euû+ ∆Edd̂+ ∆Err̂ + ∆El l̂
)

(18)

Here force is conceived as a vector with four elements instead of two as
would be expected physically.

To relate force to spin motion we note that, since our swapping algorithm
is probabilistic, our velocity will be expressed as a probability distribution.
From inspection of the Metropolis algorithm with Kawasaki dynamics, the
probability of a spin flipping in a direction in a single time step is equal to
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Figure 7: Unit vector and energy difference definitions

the probability that the pair is selected times the probability that it swaps.
The likelihood of a pair being selected is 1

Nbonds
and, given an applied force

F , the likelihood of a selected pair swapping is f(F ) =

{
1 F < 0

e
−F
kBT else

. This

leads to the velocity distribution

~v =



+1û f(Fu)
Nbonds

+1d̂ f(Fd)
Nbonds

+1r̂ f(Fr)
Nbonds

+1l̂ f(Fl)
Nbonds

0 1− f(Fu)+f(Fd)+f(Fr)+f(Fl)
Nbonds

(19)

in units of ∆h
time step

. By averaging the velocity over a large number of
trials we can remove the stochastic nature of the system, convert to the
conventional two element vector, and get

~〈v〉 =
f(Fr)− f(Fl)

Nbonds

î+
f(Fu)− f(Fd)

Nbonds

ĵ. (20)

Since the maximum of f(F ) is 1 and the minimum is 0 there will be a

maximum average speed of
∣∣∣ ~〈v〉∣∣∣

max
=

√
2

Nbonds
. A speed limit is a consequence
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of any system possessing discrete space, discrete time, and the restriction
to nearest neighbor swaps. We can modify Newton’s Laws, to predict the
time-averaged evolution of our system as follows:

1. The velocity average position of a body remains constant unless the
body is acted upon by an external force

2. �������~F net = md~v
dt
→ ~〈v〉= f(Fnet

r )−f(Fnet
l )

Nbonds
î +

f(Fnet
u )−f(Fnet

d )

Nbonds
ĵ

3. The mutual forces of action and reaction between two bodies are equal,
opposite, and collinear

4 Stability Conditions

We can apply these laws to determine the stability of perturbations to the
Rayleigh-Taylor instability by balancing bond and gravitational forces on the
fluid interface.

4.1 Square Wave Theory

For a flat interface initially at y0, a square wave perturbation is of the form

g(x) =

{
y0 + A 0 ≤ x ≤ λ

2

y0 − A λ
2
≤ x ≤ λ

. Visually, we can determine the arc length to

be l = 4A + λ and use it to find the bond energy of a single wavelength,
Eλ
bond. All 2λny − λ bonds are −1J , except those on the interface, which are

+1J , giving an overall bond energy of

Ebond = −(2λny − λ)J + 2J ∗ l
= (−2ny + 3)λJ + 8AJ. (21)

Applying equation 17, the bond force is

Fbond = −dEbond
dA

= −8J. (22)

The total gravitational energy with the perturbation is just the initial
gravitational energy plus the energy of swapping the two blocks of spins to

13



LLNL-TR-497289: Simulating the Rayleigh-Taylor instability with the Ising
model

create the perturbation. Edrop represents the energy gained by swapping a +1
spin with a vertically adjacent −1 spin. Therefore, the gravitational energy
of a group of heavy spins over light spins is the product of the difference
between average height of the heavy and light spins, the number of spins
that swap, and Edrop. This leads to an overall gravitational energy of

Egrav = Eflat
grav − (A)

(
λA

2

)
Edrop

= Eflat
grav −

λA2

2
Edrop, (23)

where Eflat
grav is the total gravitational energy of the lattice with no perturba-

tion to the flat interface.
Applying equation 17, the gravitational force is:

Fgrav = −dEgrav
dA

= λAEdrop. (24)

We can write the net force on the perturbation as F net = Fbond + Fgrav
and we know that, for instability growth, it must be positive. This gives

Edrop >
8

λA
(25)

as the instability condition for the square wave.
We remark that, for an interface normal to the ŷ, the lattice supports a

maximum wavelength of nx. Also, if gravity is strengthened sufficiently, any
wavelength is unstable and, as the perturbation grows, it will become more
energetically favorable. Lastly, if the interface between two species is initially
flat, thermal effects are entirely responsible for seeding the perturbation. The
process of seeding perturbations with thermal effects is stochastic. Theoret-
ically, any perturbation will be formed, but on a timescale dependent on its
wavelength and amplitude. We theorize that the wavelengths that are seen
in simulations are those, permitted by equation 25, that can be thermally
formed on the shortest timescales.

4.2 Sine Wave Theory

The same analysis can be repeated for a smooth sine wave of the form g(x) =
y0 + A · sin(2π

λ
x) giving a stability condition of
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Edrop >

(
4

λA

)√
λ2 + 4π2A2

4π2A2
(26)(

E

(
2π

∣∣∣∣∣ 4π2A2

λ2 + 4π2A2

)
−
(

λ2

λ2 + 4π2A2

)
F

(
2π

∣∣∣∣∣ 4π2A2

λ2 + 4π2A2

))
,

where F (φ|k) =
∫ φ

0
dθ√

1−ksin2(θ)
and E(φ|k) =

∫ φ
0

√
1− ksin2(θ) dθ are the

incomplete elliptic integral of the first and second kind. This, however, is for a
smooth sine wave where the simulation lattice can only approximate a curved
perturbation with vertical and horizontal lines. Repeating the analysis once
again for a discrete-space sine wave, g(x) = y0 +

[
A · sin(2π

λ
x)
]
, gives a

stability condition of

Edrop >
16

λA
, (27)

showing the sine wave is always less energetically favorable than the square
wave.

4.3 Validity of Stability Theory

In order to apply this analysis only to the appropriate situations, we would
like to determine the range of input parameters that support the assump-
tions of the derivations. Because Kawasaki dynamics conserves mass, our
equations for Egrav are true with any conditions. However, our equations
for Ebond in equation 21 assumes the perturbation interface is sharp, which
is only an approximation for non-zero temperatures. With increasing tem-
perature the interface becomes fuzzier and the bond energy per unit inter-
face length increases. To formalize this effect we introduce a factor, cth,
that represents departure from sharpness. To determine the formula for cth,
we image a flat interface and translate the concept of bond energy from

Ebond(ŝi, ŝj) =

{
−1 ŝi = ŝj

+1 ŝi 6= ŝj
to Ebond(ŝi, ŝj) =

{
0 ŝi = ŝj

+2 ŝi 6= ŝj
, adding Nbonds

to the total bond energy. In this new system the total lattice bond energy is
solely the interface energy. In the absence of gravity, we can apply equation
9 to get the energy of the lattice, apply the bond energy translation, and
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compare it with the interface energy to get

2 · cth · nx = nxny 〈Ebond〉 (ny, kBT ) + (2nxny − nx) (28)

cth =
1

2
(ny (〈Ebond〉 (ny, kBT ) + 2)− 1) . (29)

At low temperatures cth ≈ 1.0, meaning our stability conditions are valid,
but at high temperatures cth � 1.0 and the analysis may no longer apply.
It should be noted that equation 9 is only accurate for the equilibrium bond
energy. This is conservative because, if the initial interface is sharp, the
interface will be fuzzier at equilibrium then at any other time.

4.4 Results

To test the square wave stability condition, we seeded a single wavelength
on the interface of a λ × 400 lattice with kBT = 0.75 (corresponds to cth =
1.04). If the perturbation amplitude increased by 2.5 spins the simulation
was recorded as growing. If the perturbation amplitude decreased by 2.5
spins the simulation was recorded as receding. Amplitude was measured at
a given time step by first dividing the lattice in half vertically. Zone 1 was
0 ≤ x < λ

2
and zone 2 was λ

2
≤ x < λ. Then, moving outwards (up in zone

1 and down in zone 2) from the initial interface, the majority occupant of
each half row was noted. The position of the first change in the majority
occupant from one row to the next determined the amplitude of each side.
The overall amplitude was just the average value of the amplitudes of both
zones. Frequently, especially in simulations with smaller wavelengths, lateral
protrusions would separate the instability growth from the main body of
spins before growth or recession could be established. This is outside the
constraints of the theory, so these cases were discarded.

The results of the study appear in figures 8, 9, and 10. Ecrit ≡ 8
λA

, so
stability theory predicts a unit step function at Edrop − Ecrit = 0 in each
figure. The width of the transition region is caused by thermal effects on the
interface length. The width does not follow simply from equation 29 because
the timescale of the simulation is comparable or less than the time scale for
the interface to reach thermal equilibrium.

Simulation shows that, if thermal fluctuations are used to seed the insta-
bility, only perturbations similar to square waves are seen, not a sine waves.
If a sine wave is seeded on the interface, it first morphs into a square wave
and then follows square wave stability theory.
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Figure 8: Stability results for λ = 8 simulations

Figure 9: Stability results for λ = 10 simulations
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Figure 10: Stability results for λ = 14 simulations

5 Instability growth rate

The scaling of the instability growth rate can be determined by applying
our modified version of Newton’s second law with the net force on interface
(see equations 22 and 24). In our constrained system Newton’s second law

is given by ~〈v〉 = f(FA)−f(F−A)

Nbonds
Â. Since the net force felt by the interface,

~F = (λAEdrop − 8)Â, is continuous, FA = −F−A, leading to

〈v〉 =

〈
dA

dt

〉
= ctransit

(
1− e

8−λAEdrop
kBT

)
. (30)

ctransit is a factor that arises from the fact that we are swapping an en-
tire row of spins across an extended distance on the lattice. This is a se-
ries of events that cannot be accomplished in one time step, like swapping
one spin with its nearest neighbor. We know little about ctransit, so to be
completely general we assume it is a function of all simulation parameters,
ctransit(A, λ,Edrop, kBT, ny).

We will now approximate ctransit as independent of amplitude (ctransit(A, λ,Edrop, kBT, ny) ≈
ctransit(λ,Edrop, kBT, ny)). This makes sense because, to grow the instability,
we must exchange the two rows circled in figure 5. In order to swap, these
spins can either proceed along the side of the instability, through the opposing
instability, or a combination of these two routes. But, as soon as they leave
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Figure 11: Seeded square wave perturbation with coordinate systems

their initial row, bond energy ceases to have an effect. Swapping along the
side of the perturbation or through opposing spins entails no change in bond
energy. Once they leave their home row, gravity forces them towards their
destination and bond forces have little effect. On the other hand, the initial
swap, freeing them from their home row, is improbable. Initially, the pair is
surrounded by similar neighbors and after the swap they are surrounded by
dissimilar neighbors. The leads to the proposition that the limiting factor in
instability growth is the occurrence of improbable microscopic ‘triggers,’ not
migration distance.

Confirmation of this is given in figure 5. We can see that varying the
amplitude by a factor of five causes a relatively minor spread in velocity,
compared with doubling the wavelength or Edrop.

We numerically integrate equation 30 with a leapfrog method and use
ctransit as a fitting parameter to compare with simulation (see figure 5). How-
ever, since low temperatures (less than ∼ 1.5) are necessary to simulate any-
thing structured, the numerical integration is nearly linear. This is because
8−λAEdrop

kBT
→ −∞ when kBT is small, so equation 30 becomes

〈
dA
dt

〉
= ctransit.

If the input parameters are chosen such that 8 − λAEdrop ≈ 0, the numer-
ical integration will initially depart from linearity, but, as A increases, the
average velocity quickly approaches a constant.
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Figure 12: Velocity as a function of Edrop, λ, and A ∈ {4, 8, 12, 16, 20} (kBT =
0.75J and ny = 400)

Figure 13: Comparison of growth rate theory and simulation for a square
wave with initial an amplitude of four (λ = 10, Edrop = 0.4J , kBT = 0.75J ,
and ny = 400)
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6 Conclusions

The Ising model, implemented with the Metropolis algorithm and Kawasaki
dynamics, makes a system with its own physics, distinct from the real world.
These physics are sophisticated enough to model behavior similar to the
Rayleigh-Taylor instability and by better understanding these physics, we
can learn how to modify the system to better reflect reality. For example,
we could add a vx and a vy to each spin and modify the exchange rules to
incorporate them, possibly using two body scattering laws to construct a
more realistic system.
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