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Summary: 

Conventional displacement-based methods for estimating stress intensity factors require special 

quarter-point finite elements in the first layer of elements around the fracture tip and substantial 

near-tip region mesh refinement. This paper presents a generalized form of the displacement 

correlation method (the GDC method), which can use any linear or quadratic finite element type 

with homogeneous meshing without local refinement. These two features are critical for 

modeling dynamic fracture propagation problems where locations of fractures are not known a 

priori. Because regular finite elements’ shape functions do not include the square-root terms, 

which are required for accurately representing the near-tip displacement field, the GDC method 

is enriched via a correction multiplier term. This paper develops the formulation of the GDC 

method and includes a number of numerical examples, especially those consisting of multiple 

interacting fractures. We find that the proposed method using quadratic elements is accurate for 

mode-I and mode-II fracturing, including for very coarse meshes. An alternative formulation 

using linear elements is also demonstrated to be accurate for mode-I fracturing, and acceptable 

mode-II results for most engineering applications can be obtained with appropriate mesh 

refinement, which remains considerably less than that required by most other methods for 

estimating stress intensities. 

 

Keywords: fracture mechanics, stress intensity factor, displacement correlation method, quarter-

point element, fracture propagation, fracture interaction 

 

1. Introduction 

The stress intensity factor (SIF) is an important concept in fracture mechanics for relating stress 

and energy release rate at the fracture tip to loading and crack geometry.  Although closed-form 

analytical solutions are available for a number of special fracture-load configurations (many of 

which have been compiled in [1]), SIF’s are often calculated in the context of numerical 

methods, especially the finite element method (FEM) for arbitrary fracture-load configurations. 
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Several methods are available for calculating or estimating SIF’s with the FEM, such as the J-

integral [2] and its variants, the stiffness derivative technique [3], and a suite of methods based 

on the interpretation of near-tip nodal displacements. In the last category, there are at least three 

variants, including the displacement extrapolation method [4-7], the quarter-point displacement 

method [8], and the displacement correlation method [9,10]. These methods and others have 

been compared in a number of studies [e.g. 5,11-14]. One of the most significant advantages of 

the displacement-based methods is the simple formulation. Although the displacement-based 

methods were often found to be less accurate than the J-integral or the stiffness derivative 

method under certain conditions, the accuracy remains acceptable for most engineering 

applications [e.g. 5,14]. Many of the displacement-based methods were developed in the 1970’s 

and 1980’s in tandem with various special “quarter-point” finite element types [15-19] used in 

these methods. Though few new developments have been made for the displacement-based 

methods in the intervening decades [20], they continue to be widely used. 

Displacement-based SIF calculation methods usually requires the following two conditions: 1) 

Quarter-point elements must be used in the first layer of elements around the crack tip; and 2) the 

mesh in the near-tip region has to be substantially refined for reasonable accuracy. This study 

seeks to relax these constraints of the displacement-based methods to accommodate analysis of a 

wider range of engineering systems, including hydraulic fracturing with explicitly coupled 

geomechanics-discrete fracture flow modeling [21]. The simulation of hydraulic fracturing 

serves as the motivating example for this paper. A hydraulic fracturing process usually involves 

modeling multiple cracks propagating along arbitrary paths, so the locations of the crack tips are 

not specified a priori. . If special quarter-point elements and refined mesh were required for each 

tip, the cost of remeshing would quickly overwhelm available computational resources. 

Moreover, the implementation of the J-integral or the stiffness derivative method in such an 

explicitly coupled Lagrangian hydromechanical simulator is impractical for similar reasons. The 

generalized displacement correlation (GDC) method proposed here enables practical simulation 

of the hydraulic fracturing process by relaxing the mesh and element restriction of the 

conventional displacement-base methods yet inheriting the simplicity and computational 

efficiency. 

We first review the mechanical and mathematical principles behind the original displacement-

based methods in a generalized context in section 2. Compared with the original derivation of 

these methods, the loading condition is generalized by including crack surface traction and the 

meshing scheme is generalized by circumventing the dependency on the specific shape functions 

of quarter-point elements. This new GDC formulation encompasses the original formulation 

based on quarter-point elements as a special case.  Subsequently, we develop the new 
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generalized formulation in section 3 and further enhance its accuracy in section 4 by introducing 

an empirical correction multiplier term. In section 5, we test the new method against a number of 

fracture-load configurations with an emphasis on cases with inter-crack interactions, a situation 

critical to our hydraulic fracturing simulator development effort. The numerical examples in 

sections 4 and 5 use the same Poisson’s ratio and near-tip mesh configuration. The sensitivity of 

the Poisson’s ratio and near-tip mesh configurations are evaluated in section 6. 

 

2. Review of displacement-based methods in a generalized framework 

Consider the two-dimensional (2D) continuum (linearly elastic and isotropic) around a crack tip 

as shown in Figure 1, with far-field normal (σf) and shear (τf) stress existing along with crack 

surface traction (σc and τc). Note that “traction” in this paper refers to stress distributed along 

fracture surface while the same term is often used in cohesive zone models for a different 

meaning. Stresses σf, τf, σc, and τc are independent of each other, but the spatial variation of each 

of them is not considered. Their values can be either positive or negative, with the arrows in 

Figure 1 indicating the positive stress directions. According to the superposition principle, the 

mechanical response of this system is the sum of the responses of the three cases [(a) to (c)] to 

the right of the equal sign in the figure. Case (a) and case (b) respectively correspond to the 

classical boundary/loading conditions for mode-I and mode-II fracturing, whereas in case (c) the 

crack surface traction balances the far-field stress. Only the stress conditions in the two former 

cases [(a) and (b)] induce stress/strain singularities in the near-tip region, while the latter case (c) 

generates homogeneous stress and displacement fields which contribute to the overall 

mechanical response but not the near-tip stress sigularity. The loading conditions in case (a) and 

case (b) are the symmetric and skew-symmetric (antisymmetric) parts of the load that induce a 

near-tip stress singularity, respectively. Much of the development of fracture mechanics 

disregards the tractions along the crack surface, so case (a) and case (b) have been the focus of 

previous studies. In certain applications such as hydraulic fracturing, the pressure inside the 

fractures is the main mechanism for driving fracture extension with σc< σf<0. Under such 

conditions, the stress condition in case (c) significantly contributes to the mechanical responses 

of the system and cannot be overlooked. 
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Figure 1 The near-tip region of a 2D medium and the separation of fracture modes according to 

the superposition principle. The polar coordinate system used in this study is denoted in the 

figure. Fracture openings in this and other examples are exaggerated for illustration purposes. 

With higher-order terms omitted, the displacement field (relative to the crack tip displacement) 

induced by loading case (a) is 
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where KI is the mode-I stress intensity factor; G is the shear modulus of the medium; β is a 

constant depending on whether this is a plane strain (β=2[1−ν] with ν being the Poisson’s ratio) 

or a plane stress (β=2/[1+ν]) problem. It we assume that the elasticity parameters (G and β) are 

constants for a given problem, the equation can be simplified as 
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where )(a
rf  and )(

af  are functions of the angular coordinate (θ) of the point where the 

displacement is measured. The effects of the elasticity parameters are incorporated into these two 

functions and they are considered constants for the purpose of this section. We can also write the 

corresponding equations for case (b), namely mode-II fracturing as 
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Loading in Figure 1(c) induces a homogeneous stress field quantified by σc, σx, and τc. σx is the 

normal stress component (not denoted in Figure 1) in the direction along the fracture tip, and is 

typically not concerned in fracture mechanics. The displacement induced by this homogeneous 

stress field is 
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for any known stress state ),,( cxc  . The explicit expression of functions c
rf  and cf  can be 

derived based on Hooke’s law, but it requires knowledge of the stress state and is not pursued 

here. Note that the cf terms also encompass the effects of small rigid-body rotation of the 

system, but this is not explicitly discussed in the following development. The most important 

implication of equation (5) for the scope of this paper is that along any “ray” direction 

originating from the fracture tip, the displacement of any point relative to that of the tip is 

linearly proportional to its distance to the crack tip under the homogeneous stress condition. 

Combining equations (2), (3), and (5), we can write the overall displacement field for the 

arbitrary loading condition in Figure 1 as 
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with KI and KII being the unknowns while ur and uθ can be obtained from FEM solutions. 

In order to apply any displacement-based stress intensity calculation method, the medium 

containing the fracture needs to be modeled using a finite element mesh. Quarter-point elements, 

with the inverse square root singularity embedded by shifting the mid-edge nodes on the ray 

edges to the quarter-points, are usually employed as the first layer of elements around the tip as 

shown in Figure 2. Displacements along the crack face (θ=π) at nodes A and B are obtained by 

solving the finite element model. Noticing that 0)( a
rf  and 0)( 

bf , we have  
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where lE is the length of the element edge (lE =|TB|=4|TA| in this particular case).  By applying 

basic linear equation manipulation/solving techniques, we can eliminate the terms involving c
rf  

or cf  and obtain 
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which is the core formulation for the displacement correlation method. The symmetry of the 

system can be exploited to improve the accuracy of the results with  
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The formulation for the so-called quarter-point displacement method  
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is valid only if the terms involving c
rf  and cf  in equation (6) vanish, implying the loading of the 

system is the sum of case (a) and case (b) excluding case (c) in Figure 1, i.e. there is no traction 

along the crack faces. This limitation of the quarter-point method was described by Tracey [10] 

but has largely been neglected, as it does not apply to the typical loading conditions in 

mechanical engineering, where crack surface tractions are absent. Although this limitation of the 

quarter-point displacement method does not lead to inaccuracies in many studies comparing 

these two methods in the context of mechanical engineering [12,13,19,22], it is highly 

deleterious if the method is to be used for hydraulic fracturing modeling or similar problems. The 

displacement extrapolation method suffers similarly since the loading scenario shown in case (c) 

of Figure 1 is not supported in the assumptions underlying that method. Based on this, we select 

the displacement correlation method as the basis for further development. 

The original development of the displacement correlation method and the quarter-point 

displacement method derive the same equations as equations (11) and (12), respectively, through 

a different procedure. The purpose of the above development is to provide the necessary basis for 

the development of the new generalized method in the next section. 
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Figure 2 Quarter-point element configurations near a crack tip. 

 

3. Formulation of the generalized method 

From the procedure in section 2, we see that the core of the displacement correlation method is to 

solve equations of the following form 

c
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a
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where ui, a
if , and b

if  are known from FEM solutions of the specific fracture-load configuration 

and near-tip region closed-form solutions; KI and KII are the two unknowns to solve; fi
c can be 

removed by the following procedure. Because fi
c is a function of the angular coordinate θ but not 

the radial coordinate r, we can use known displacements (either ur or uθ) and other information 

(ri, a
if , and b

if ) at two points with the same angular coordinate θ to eliminate the fi
c term. The 

symmetry and/or skew-symmetry of a
if and b

if can also be used to directly eliminate KI or KII 

when solving for the other. The choice of the four displacement components in obtaining 

equations (7) to (10), namely ),4/( Er
A
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B
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A luu  , and 

),4/(  E
B luu   allows this approach. ri=lE/4 and ri=lE are used for convenience to exploit nodal 

displacements in the quarter-point elements. However, displacements at other points (not 

necessarily nodes) can be used instead to solve equation (13). 

Through this generalization of the original displacement correlation method, the special quarter-

point element and near-tip region mesh refinement can be eliminated, and we can substitute the 

displacements at appropriate reference points and other necessary information into equation (13) 

to solve for SIF’s. In the selection of the reference points, we first consider points with θ=±π, 

consistent with the original displacement correlation method, where the features of  fr
a(π)=0 and 

fθ
b(π)=0 simplifies solution. If quadratic elements (i.e. shape functions are second-degree 
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polynomials) are used, we can use r=lE/2 and r=lE, which are both within the first layer of 

elements about the crack tip. Appealing to symmetry, we have 
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Solving the above equations yield the formulation for the generalized displacement correlation 

(GDC) method as 
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where the constants Gff b
r

a  2/)()(   follow from equations (1) to (3). This set of 

equations does not require quarter-point elements around the crack tip, but does require quadratic 

elements (6-node triangle or 8-node quadrilateral in 2D). Since the objective of this paper is to 

generalize the displacement correlation method, we further consider finite element models where 

linear elements (3-node triangle or 4-node quadrilateral) are used. Under this condition, 

equations (15) and (16) result in zero SIF’s owing to the linear shape functions. Using 

displacements across two layers of elements around the tip (i.e. at r=lE and r=2lE) and replacing 

lE /2 in the above equations with lE  and lE  with 2lE solve this problem, but renders the method 

impractical for modeling fractures with arbitrary paths. Figure 3 shows two problematic 

scenarios commonly addressed through FEM modeling of fractures: (a) sawtooth-shaped 

fractures typical in perturbed meshes where minor perturbation to node locations in the 

undeformed mesh is adopted to introduce randomness into fracture paths, and (b) a fracture 

having changed the direction of propagation. In both scenarios, the locations of points (2lE, π) 

and (2lE, -π) are ambiguous, making the method above inapplicable. To address this, we use 

displacements of points with θ=−π/2, 0, and π/2 and r=lE and r=2lE, and also exploit the 

symmetry of a
rf and bf and skew-symmetry of af and b

rf to obtain 
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where the constants Gf a
r  4/)12()2/(   and Gf b  2/)1()0(  . We term the GDC 

method based on equations (15) and (16) “Method A”, and that based on equations (18) and (19) 

“Method B”. Method B can be applied to any finite element types, and is therefore “more 

general” than Method A. Method A only requires displacements across one layer of elements 

around the tip while Method B requires two layers. Neither Method A nor Method B requires a 

special meshing scheme at the near-tip region, such as a mesh type or mesh resolution different 

from that of the remainder of the computation domain. Both methods are easy to implement in 

existing FEM packages. Note that the points where displacements are used in the calculation 

need not to be nodes of the finite element mesh. 

(a) (b)  

Figure 3 Two common scenarios where the locations of points (2lE, π) and (2lE, -π) are 

ambiguous. 

 

4. Enhancement of the generalized method 

Error in the calculated stress intensity factors using the GDC method can be attributed to at least 

two sources: 
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1) The inability of the adopted finite element’s shape functions to accurately represent the near-

tip displacement field. The quarter-point element family was originally formulated for the very 

purpose of better representing the near-tip field by including a square-root term in the shape 

functions in the ray directions.  

2) Omission of higher-order terms (1) and (3). These equations are accurate at the near-tip 

region, where the distances to the fracture tip and other sources inducing high displacement 

gradient are much smaller than the length of the fracture itself. In the GDC method, 

displacements at distances lE and 2lE (or lE/2 and lE) are used. Therefore, error increases with the 

ratio of element size to the fracture length. 

In order to demonstrate the accuracy of the GDC method, we use the proposed method on the 

simplest fracture system, i.e. a finite-length fracture in an infinite domain as shown in Figure 4. 

The fracture system considered here is straight crack of length 2a in a 2D infinite medium. Since 

most FEM models can accurately represent the linear displacement field induced by the loading 

condition in Figure 1(c), only the loading conditions in Figure 1(a) and (b) are combined and 

modeled. However, the effects of homogeneous stress fields are appropriately handled in the 

formulations of the GDC method, and the superposition of such a field would not affect the 

calculated SIF’s. The near-tip mesh configuration can have a considerable effect on the accuracy 

of the original displacement-based methods (e.g. [22]); in all the numerical examples in the 

current and next section, the mesh configuration shown in Figure 5(a) is used, and fracture tips 

are located at nodes shared by eight triangular elements. The other mesh configurations shown in 

Figure 5 will be investigated in section 6. In linearly elastic problems, the shear modulus of the 

medium, G does not affect the calculated stress intensity factors and thus can be arbitrarily 

selected. The model is assumed to be a plain-stress problem with a Poisson’s ratio of 0.2. The 

effects of the Poisson’s ratio will also be discussed in section 6. The finite element mesh is 

sufficiently large (with each dimension longer than 100a) such that the effects of the finite 

boundaries are minimal and the domain can be considered infinite. We use quadratic (6-node) 

triangle elements with full-integration (three Gaussian points) for both Methods A and B in this 

study, although Method B is not restricted to quadratic elements. 
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Figure 4 A finite-length crack in an infinite medium. 
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Figure 5 Four mesh configurations considered in this study. The conventional six-node triangle 
element is used in all the numerical examples of the present study but the mid-edge node is not 
shown in this figure. 

The theoretical solutions for the stress intensity factors in this crack configuration are 

yI aK   and aKII  . Numerical solutions of the SIF’s, denoted by K'I and K'II are 

obtained by solving finite element models with various levels of mesh resolutions (quantified by 

a/lE, the ratio of the half crack length to element length) and substituing the obtained 

displacement values into equations (15) and (16) or (18) and (19). We then seek an enhancement 

measure in the form of a “correction multiplier” to be added to equations (15), (16), (18), and 

(19). We will test the performance of the corrected/enhanced formulation on a number of more 

complex crack systems in next section for Methods A and B. The values of CI=KI/K'I and 

CII=KII/K'II, which are the multipliers that need to be applied to equations (15) and (16) or (18) 

and (19), respectively to correct the numerical solutions are shown in Figure 6 as functions of 

a/lE. The correction factors are significantly larger than unity, since the 6-node triangular finite 
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element cannot accurately represent the near-tip displacement field. CI and CII both converge to 

constant values as the element size becomes smaller relative to the crack length. We can fit the 

discrete data points with the following empirical relationship  

al
C

E /1 2

1





  (20) 

which has a similar format as the correction term used in [23]. The regression results are 
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where the superscripts A and B of CI and CII indicate whether the correction multipliers are for 

Method A or Method B. The coefficients of determination (R2) for all regressions are greater 

than 0.99. 

Mesh resolution a/l
E

Mesh resolution a/l
E

C
or

re
ct

io
n

m
ul

ti
pl

ie
r

C
I
an

d
C

II

C
or

re
ct

io
n

m
ul

ti
pl

ie
r

C
I
an

d
C

II

C
I
numerical results

C
II

numerical results

C
I
regression curve

C
II

regression curve

C
I
numerical results

C
II

numerical results

C
I
regression curve

C
II

regression curve

(a) (b)

al
C

E

I
/138.01

260.1


al

C
E

I
/640.01

555.1




al
C

E

II
/845.01

727.1




al
C

E

II
/163.11

831.2




1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 10 20 30 40 50
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 10 20 30 40 50

 

Figure 6 The effects of the mesh resolution on the correction multipliers. (a) Results for Method 
A; (b) results for Method B. 

The correction multipliers calculated using equation (21) converge but not to unity. This appears 

counterintuitive because even though the shape functions (quadratic for the above calculations 

and linear if linear elements were used) of a single element does not accommodate the square 
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root terms in equation (6), refining the mesh (with smaller lE) should result in piecewise 

quadratic shape functions for the mesh as a whole better representing the displacement field. 

However, regardless of the refinement level, only displacements within the first one (Method A) 

or two (Method B) layers of elements around the fracture tip are used. As the mesh is refined, the 

reference points where displacement information is used in the calculation are closer to the 

fracture tip. For infinitesimal elements, this mechanism can eliminate the error induced by the 

second source of error, but not the first. A similar phenomenon exist for the original 

displacement-based methods: Numerous studies have observed that errors of these methods do 

not converge to zero as the near-tip mesh is refined [12,13,18,19,22] and an explanation was 

offered by Harrop [24]. 

5. Accuracy of the generalized method for different fracture configurations 

The values as well as the regression formula of the correction multipliers in section 4 are 

obtained for a specific fracture-load configuration. Considering that the main purpose of this 

correction term is to correct errors caused by the finite elements’ inability to accurately represent 

the near-tip displacement field described by equations (1) to (3), we hypothesize that the same 

multipliers can be applied to all other crack-load configurations and obtain reasonable SIF 

results. In this section, we apply the correction multipliers obtained from the special case in 

section 4 to a spectrum of fracture configurations to test this hypothesis. Special attention is paid 

to coarse meshes and effects of interference between neighboring fractures and between fractures 

and free surfaces. Achieving acceptable accuracy under these conditions is crucial for managing 

the computational cost of the simulation of dynamic fracture propagation in complex fracture 

systems. Both Method A and Method B are evaluated for the first case in section 5.1. Since the 

mathematical and mechanical principles behind these two methods are similar, only the more 

general Method B is considered for the other three fracture-load configurations.  

5.1 Center-cracked infinite strip with a finite width 

Consider a center-cracked strip with an infinite length but finite width 2b. The crack is 2a long 

and perpendicular to the longitudinal direction of the strip as shown in Figure 7(a). The strip is 

subjected to a tensile stress σ in the longitudinal direction and a uniformly distributed shear stress 

τ along the fracture faces, inducing mode-I and mode-II stress concentration, respectively. The 

stress intensity factors are 

)/( baFaK II   and )/( baFaK IIII   (22) 

where FI and FII are the fracture-configuration correction factors that can be estimated using the 

modified Koiter’s formula [1]: 
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with a relative error of less than 0.1% for any a/b value. In this and other examples, if FI and FII 

are close to unity, it means this fracture-load configuration is similar to the reference 

configuration of a single fracture in an infinite plane. 

 

Figure 7 Center-cracked infinite strip with a finite width. (a) The crack configuration; (b) the 
mesh for the case where b=8lE and a/b=0.75 (with opening of the fracture exaggerated). The 
reference points used by Method A and Method B are indicated in the figure.  

To apply the GDC method, the strip is discretized into a finite element mesh of a length that is 

more than 12 times longer than its width, which is found to sufficiently approximate the infinite 

length according to a sensitivity analysis. Different levels of mesh refinement with b/lE ranging 

from 4 to 64 as well as various crack length-to-strip width ratios, i.e.,  a/b=0.125, 0.25, 0.50, 

0.75, and 0.875 are adopted to investigate the effects of these two factors. Due to the symmetry 

of the crack and mesh configuration, the tensile stress σ does not contribute to the calculated KII 

and τ does not contribute to KI. In all the numerical examples in section 4, a Poisson’s ratio of 

0.2 and the crack tip mesh configuration shown in Figure 5(a) (eight triangle elements connected 

to the tip) are used. The effects of the Poisson’s ratio and crack tip mesh configuration will be 
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studied in section 6. To allow precise comparison, the calculation results of the GDC method 

(both Method A and Method B) with the correction multipliers computed using equation (21) 

applied, as well as the theoretical solution based on equation (23) are shown in Tables 1-A to 2-

B. Note that the values of FI and FII, instead of the stress intensity factors KI and KII are shown. 

FI and FII can be considered normalized values of the SIF’s. Due to the relationships described in 

equation (22), the relatively errors for KI and KII are the same as those for FI and FII, respectively. 

Table 1-A Calculated FI values using the GDC method (Method A) for the center-cracked 

infinite strip. 

a/b 
FI, numerical result  Relative error (%) FI(a/b) 

eq.(23) b/lE=4 8 16 32 64  b/lE=4 8 16 32 64 

0.125 N/Aa N/Aa 1.011 1.004 1.007  N/Aa N/Aa 0.1 -0.6 -0.2 1.009 

0.25 N/Aa 1.038 1.032 1.036 1.040  N/Aa -0.1 -0.7 -0.3 0.1 1.039 

0.50 1.168 1.171 1.179 1.186 1.189  -1.5 -1.3 -0.6 0.0 0.3 1.186 

0.75 N/Aa 1.595 1.612 1.622 1.628  N/Aa -1.8 -0.8 -0.1 0.2 1.624 

0.875 N/Aa N/Aa 2.271 2.288 2.300  N/Aa N/Aa -1.3 -0.5 0.0 2.300 

Note: a N/A, numerical results unavailable due to the incompatibility between the a/b value and 
the mesh configuration. 

 

Table 1-B Calculated FI values using the GDC method (Method B) for the center-cracked 

infinite strip. 

a/b 
FI, numerical result  Relative error (%) FI(a/b) 

eq.(23) b/lE=4 8 16 32 64  b/lE=4 8 16 32 64 

0.125 N/A N/A 1.008 1.011 1.009  N/A N/A -0.1 0.2 0.0 1.009 

0.25 N/A 1.036 1.040 1.038 1.037  N/A -0.3 0.1 -0.1 -0.1 1.039 

0.50 1.196 1.186 1.182 1.183 1.184  0.8 0.0 -0.4 -0.3 -0.2 1.186 

0.75 N/A 1.640 1.618 1.617 1.619  N/A 1.0 -0.4 -0.5 -0.3 1.624 

0.875 N/A N/A 2.325 2.295 2.291  N/A N/A 1.1 -0.2 -0.4 2.300 
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Table 2-A Calculated FII values using the GDC method (Method A) for the center-cracked 
infinite strip. 

a/b 
FII, numerical result  Relative error (%) FII(a/b) 

eq.(23) b/lE=4 8 16 32 64  b/lE=4 8 16 32 64 

0.125 N/A N/A 1.013 1.000 1.006  N/A N/A 0.3 -0.9 -0.3 1.009 

0.25 N/A 1.040 1.030 1.038 1.045  N/A 0.1 -0.8 -0.1 0.6 1.039 

0.50 1.165 1.172 1.188 1.201 1.208  -1.8 -1.2 0.2 1.2 1.8 1.186 

0.75 N/A 1.579 1.621 1.645 1.658  N/A -2.8 -0.2 1.3 2.1 1.624 

0.875 N/A N/Aa 2.241 2.294 2.323  N/A N/A -2.6 -0.3 1.0 2.300 

 

Table 2-B Calculated FII values using the GDC method (Method B) for the center-cracked 

infinite strip. 

a/b 
FII, numerical result  Relative error (%) FII(a/b) 

eq.(23) b/lE=4 8 16 32 64  b/lE=4 8 16 32 64 

0.125 N/A N/A 1.021 0.994 1.001  N/A N/A 1.1 -1.6 -0.8 1.009 

0.25 N/A 1.027 1.018 1.031 1.041  N/A -1.2 -2.0 -0.8 0.2 1.039 

0.50 0.014b 0.972 1.132 1.181 1.200  -98.8 -18.1 -4.5 -0.4 1.2 1.186 

0.75 N/A -0.841b 1.124 1.502 1.610  N/A -152 -30.8 -7.6 -0.9 1.624 

0.875 N/A N/Aa -1.710b 1.432 2.070  N/A N/A -174 -37.8 -10.0 2.300 

Note: b degenerate results; see discussion below. The Bold typeface used in other tables 
highlights degenerate results owing to similar reasons. 

 

The results show that Method B for mode-I fracturing and Method A for both mode-I and –II are 

fairly accurate for all the scenarios considered, including those with very coarse meshes. The 

relative errors are generally smaller than 2% with few exceptions. The accuracy of Method-B for 

mode-II fracturing seems to be dependent on the fracture geometry and mesh resolution. For 

b/lE=4 with a/b=0.5; b/lE=8 with a/b= 0.75; and b/lE=16 with a/b=0.875), erroneous results are 

obtained. In these three situations, the fracture tip is two elements away (i.e. (b-a)/lE=2) from the 

lateral boundary. One of the displacement components used in equation (19), uθ(2lE,0) happens 

to be at the lateral boundary. The mechanical response at this point is substantially affected by 

the free-surface boundary condition and violate an assumption of the GDC method. This is not 

an issue for Method A or the calculation of KI using Method B because none of the displacement 

components used in equations (15), (16), and (18) is at the boundary. At the same mesh 

refinement level, if the distance between the crack tip and the lateral free-surface boundary is 4lE 
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instead of 2lE, the relative error for KII (Method B) is approximately between 20% and 40%, 

which though suboptimal for typical mechanical engineering applications is often acceptable for 

geo-science or geo-engineering scenarios due to the high aleatoric uncertainty in geo-systems. 

Nevertheless, if the crack tip is 6lE or farther away from the free surface, the error drops below 

10% for KII by Method B. 

5.2 Three-point bending beam with a notch at mid-span 

Consider a beam specimen with a span-to-height ratio of s/b=4 with a notch of length a cut at the 

mid-span as shown in Figure 8. The beam is subjected to a mid-span force P. Due to the 

symmetry of the configuration, the mode-II stress intensity factor is zero, and for mode-I 

)/(
2

3
2

baFa
b

Ps
K II   (24) 

where FI(a/b) is the fracture-configuration correction factor, with similar meaning to its 

counterpart in equation (22) but different values. Its value can be calculated using the following 

dimensionless regression equation proposed by Srawley [25] with a relative error smaller than 

0.5% 

2/3
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])/(7.2/93.315.2)[/1(/99.1
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baF


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  (25) 

To test the accuracy of the GDC method on this configuration, we perform FEM analysis with 

different levels of mesh refinement and different notch lengths. The results of Method-B are 

summarized in Table 3 in a manner similar to that of Tables 1 and 2. The results are generally 

accurate. In the worst case scenario, where the height direction of the beam is discretized into 

four element, the relative error is 11.7%, which remains acceptable for many engineering 

applications. As the mesh is refined, the numerical results for each geometrical configuration 

generally converge to the closed-form solution with some minor fluctuation (a few tenths of a 

percent), which is within the 0.5% error inherent in the closed-form solution. The accuracy is 

compromised when the notch is short or long compared with the beam height (e.g. a/b=0.125 or 

0.875). In both cases, the points where the displacements are used in the GDC method have 

similar distances to the notch tip and to the lower or upper free surface of the beam and are not 

within the near-tip region.  
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Figure 8 Three-point bending beam with a mid-span notch. 

Table 3 Calculated FI values using the GDC method for the three-point bend beam (Method B 

only). 

a/b 
FI, numerical result  Relative error (%) FI(a/b) 

eq.(25) b/lE=4 8 16 32 64  b/lE=4 8 16 32 64 

0.125 N/A N/A 0.944 0.965 0.972  N/A N/A -5.1 -3.0 -2.3 0.995 

0.25 N/A 1.013 1.005 1.003 1.001  N/A 0.5 -0.2 -0.4 -0.6 1.007 

0.50 1.581 1.468 1.422 1.409 1.406  11.7 3.7 0.4 -0.5 -0.7 1.416 

0.75 N/A 3.623 3.439 3.369 3.352  N/A 8.2 2.7 0.6 0.1 3.349 

0.875 N/A N/A 9.469 9.075 8.929  N/A N/A 7.1 2.6 1.0 8.843 

 

5.3 Two finite-length fractures along a single line 

In sections 5.3 and 5.4, we investigate the accuracy of the GDC method for scenarios with 

multiple fractures interacting with each other. We first consider the configuration shown in 

Figure 9, where two finite-length fractures along a single line existing in an infinite plane. This 

configuration tends to strengthen the stress intensity at the two tips A and B, compared with the 

configurations whether the two cracks exist alone in infinite planes. For any tip under a given 

far-field stress condition (σ and τ), the stress intensity factors (mode-I and mode-II) are 

dependent on certain geometrical features of the system, and the following closed-form solutions 

are available [1] 

)/,/( bcbaFbK A
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with )/( caaA  , )/( cbbB  , and BAk   and 
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In the numerical solutions, we fix the length ratio of the two fractures to be a/b=0.5 and 

investigate the effects of the mesh refinement levels (b/lE=4, 8, and 16) and the distance between 

the two fracture tips (c/b=1/2, 1/4, 1/8, and 1/16 whenever applicable). The finite element model 

is more than 50b long in each dimension to minimize the boundary effects. The numerical results 

for the two crack tips A and B are summarized in Table 4 and Table 5, respectively. 

σ

σ

τ

τ

2b 2a2c

A B

 

Figure 9 Two finite-length fractures along a single line in an infinite plane. 
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Table 4 Calculated stress intensity for the two-fracture case at crack tip A (Method B only). 

b/c 

FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII

anly.

solu.b/lE=4 8 16 b/lE=4 8 16 b/lE=4 8 16 b/lE=4 8 16 

2 1.027 1.036 1.041 -1.5 -0.6 -0.2 0.975 1.015 1.035 -6.5 -2.7 -0.7 1.043

4 1.044 1.071 1.090 -5.1 -2.7 -0.9 0.318 1.004 1.068 -71.1 -8.7 -2.9 1.100

8 1.137 c 1.113 1.163 -5.6 c -7.7 -3.5 N/A 0.246 1.076 N/A -79.6 -10.7 1.206

16 N/A 1.249 c 1.248 N/A -9.3 c -9.3 N/A N/A 0.185 N/A N/A -86.5 1.377

32 N/A N/A 1.445 c N/A N/A -11.4 c N/A N/A N/A N/A N/A N/A 1.632

 

Table 5 Calculated stress intensity for the two-fracture case at crack tip B (Method B only). 

b/c 

FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII

anly.

solu.b/lE=4 8 16 b/lE=4 8 16 b/lE=4 8 16 b/lE=4 8 16 

2 1.078 1.113 1.122 -4.2 -1.1 -0.3 0.978 1.058 1.098 -13.1 -6.0 -2.5 1.126

4 1.117 1.197 1.238 -11.2 -4.8 -1.5 -0.526 1.038 1.177 -142 -17.4 -6.3 1.257

8 1.304c 1.287 1.387 -10.9 c -12.1 -5.2 N/A -0.370 1.204 N/A -125 -17.7 1.464

16 N/A 1.533c 1.541 N/A -12.9 c -12.5 N/A N/A -0.270 N/A N/A -115 1.761

32 N/A N/A 1.878 c N/A N/A -13.4 c N/A N/A N/A N/A N/A N/A 2.169

Note: c limit of the mesh coarseness reached where only one element exist between tip A and tip 
B. KII cannot be calculated at this level of mesh refinement using Method B. 

The trends observed in this series of results are similar to those from sections 5.1 and 5.2. 

Method B of the GDC method is more accurate for mode-I stress intensity than for mode-II. 

Even under pathological conditions, i.e. mesh coarseness limit reached and strong numerical 

coupling between the two tips, the error is of the order of 10%. The accuracy for mode-II is non-

ideal but still acceptable for many applications. The only exceptions are when the two tips are 

only two elements away from each other. In this situation, uθ(2lE,0) used in equation (19) for a 

tip is the displacement of the other tip, resulting in strong numerical coupling between the two 

fractures. In these situations, Method A is more appropriate since it uses displacements “behind” 

fracture tips, where less numerical coupling between the two fractures is expected.  

5.4 An infinite array of parallel fractures in an infinite plane 

Consider the fracture configuration shown in Figure 10 where an infinite array of parallel finite-

length cracks are periodically arranged on an infinite plane subjected to far-field stress. The 
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interaction between fractures tends to reduce mode-I stress intensity but enhance mode-II stress 

intensity. The stress intensity factors are )/( haFaK II   and )/( haFaK IIII   where FI and 

FII are the crack configuration correction factors as functions of the crack length and the interval 

between neighboring cracks. The analytical solutions for FI and FII are unavailable but well-

accepted numerical solutions are presented in [1] and are plotted as continuous curves in Figure 

11. In the FEM solution of this study, we investigate the effects of mesh refinement level 

(a/lE=16, 8, 4, and 2) and distance between adjacent fractures (a/h). Due to the periodicity of the 

configuration, only one crack and the surrounding medium need to be included in the mesh with 

appropriate periodic boundary conditions applied. The width of the mesh is more than 50 times 

the crack length to minimize the effects of the far-field lateral boundaries. As shown in Figure 

11, the results of the GDC methods (Method B only) are fairly accurate for mode-I with relative 

errors below 10%. The results for mode-II are less accurate and the most significant factor 

affecting the accuracy is h/lE. When h/lE=4 (i.e. eight elements between adjacent cracks), the 

relative error can be as high as 30% for large a/h values, but the ascending trend of the FII-

a/(a+h) curve can still be reproduced. When h/lE=2, the relative error becomes unacceptably 

large and fails to represent the general trend of the FII-a/(a+h) curve. Among all the numerical 

cases, the shortest distance between neighboring cracks is 4lE (i.e. h/lE=2).  If the neighboring 

cracks are only 2lE apart, Method B for mode-I will fail because all the displacement components 

used in equation (18) would be zero due to the symmetry of the problem, yielding zero stress 

intensity. This condition dictates the largest element size that can be used for mode-I. 
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Figure 10 Parallel finite-length fractures in an infinite plane. 
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Figure 11 Comparison of the GDC method results and well-accepted reference numerical 
solutions [1]. The latter are shown as continuous curves and they have an estimated error of less 
than 1%. a/(a+h) is used as the horizontal axis to be consistent with the notation in [1]. Note that 
a/(a+h)=1/(1+h/a). 

 

6. The effects of mesh configurations and the Poisson’s ratio 

In all the numerical examples in sections 4 and 5, the Poisson’s ratio is assumed to be 0.2. As 

shown in equation (1), the Poisson’s ratio is related to the value of β thereby affecting the near-

tip displacement field. As mentioned in section 3, the accuracy of the GDC method (without 

enhancement through the correction multipliers) depends on the ability of the finite element in 

representing the near-field displacement field. Therefore, it is expected that the values of CI and 

CII are dependent on the Poisson’s ratio.  We repeat the numerical examples on a single fracture 

in an infinite plane in section 4 with Poisson’s ratios ranging from 0 to 0.4, and the correction 

multipliers required for obtaining accurate SIF’s for different mesh refinement levels are shown 

in Figure 12. A unified regression model is established by assuming the two constants in 

equation (20) to vary linearly with respect to the Poisson’s ratio, and the regression results are 
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The effects of the Poisson’s ratio are more significant for mode-I than for mode-II. Even for 

mode-I, ignoring these effects by using the correction multipliers for ν=0.2 introduces less than 

4% incremental error to the calculated SIF’s for arbitrary Poisson’s ratio.  
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Figure 12 The effects of the Poisson’s on the correction multipliers for (a) mode-I and (b) mode-
II at different mesh refinement levels. The effects on CII are small and the regression curves are 
not plotted. Only the results for Method B are shown. 

The correction multipliers are also dependent on the near-tip mesh configuration. All the 

previous numerical examples are based on the mesh configuration shown in Figure 5(a) where 

eight triangular elements are connected to the tip node. The other thee configurations in Figure 5 

are also common in FEM analysis. We repeat the numerical analysis in section 4 with the 

additional mesh configurations to determine the correction multipliers for different 

configurations and the results for a Poisson’s ratio of 0.2 are shown in Figure 13. Note that 

mesh-i, mesh-ii, and mesh-iii use the same space discretization scheme with the only difference 

among them being in the location of the crack tip and the crack orientation. For a given mesh, the 

lE value of mesh-iii is 2  times larger than that for mesh-i and mesh-ii. To use mesh 

configuration iv, lE in equation (18) is replaced with 2/3' EE ll . This constrains the solution to 

only use the displacements of points within two element layers of the tip. 

The trend of the variation of the correction multipliers with respect to the mesh refinement level 

is the same for all the mesh configurations. The curves become relatively flat when a/lE>8. In 

configurations i and iii, the near-tip region is discretized into eight elements in the angular 

direction while it is discretized into four elements for mesh-ii. Better refinement in the angular 

direction improves the displacement field representation, yielding correction multipliers closer to 

unity. In the region with a radius of 2lE around the tip, more elements are involved in mesh-iii 

than in mesh-i (the mesh is the same for these two configurations but lE for mesh-iii is longer), 

enabling a better displacement field representation. Despite these observations, the effects of the 
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mesh configurations on the correction multipliers are moderate. If we used the correction 

multipliers for mesh-i on mesh configuration ii, it would induce an error of 4%. 

Additionally, though all the examples in this paper are for plane-stress conditions using Method 

B, application of the generalized Method B to plane-strain conditions or Method A to plane-

strain and plane-stress conditions is straightforward. 
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Figure 13 The effects of near-tip mesh configurations on the correction multipliers for (a) mode-I 
and (b) mode-II at different mesh refinement levels.  

7. Concluding remarks 

The original displacement-based methods for calculating stress intensity factors require quarter-

point finite element elements and near-tip refinement. The generalized displacement correlation 

(GDC) method proposed in this paper has two advantages: 1) It is designed to work with 

conventional finite element types, and 2) it uses a homogeneous mesh without local refinement 

around fracture tips. The former feature makes it convenient to implement the new method in 

existing finite element packages. The latter is important for modeling dynamic fracture 

propagation problems where the locations of fractures are not known a priori. The formulation 

of the new method is also valid for fracture systems where traction and shear exist on the surface 

of the fractures.  

We propose two suites of formulations, termed Method A and Method B, for the GDC method. 

The former utilizes displacement information within one layer of elements around the fracture 

tip, and requires quadratic or higher-order finite elements. The latter can work with any element 

types, but requires displacements within two layers of elements. To enhance accuracy of both 

methods, a correction multiplier is also proposed. Without this correction term, the accuracy of 

the GDC method is limited due to the inability of regular finite element types to accurately 
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represent the near-tip displacement field. Through a series of numerical examples with a variety 

of crack configurations, we find that that the new GDC method is acceptably accurate for 

calculating mode-I stress intensity factors. Even in the limit of mesh coarseness when there is 

only one element between the two tips of the adjacent fractures, the error is of the order of 10%. 

The accuracy of Method B for mode-II is less than for mode-I, but acceptable results for most 

engineering applications, especially for geo-engineering applications, can be obtained even with 

coarse meshes. Severe errors are inevitable if the points where displacements are used for the 

calculation are very close to other fracture tips or boundaries of the computation domain. 

However, this is not unique to the GDC method, and other comparable methods suffer under the 

same conditions because the near-tip region is inadequately resolved. To correctly model these 

problems (e.g. tips close to each other or to the boundaries), sufficiently fine meshes must be 

adopted.  

Only the correction multipliers for quadratic six-node triangle elements are presented in this 

paper. Correction multipliers for any combination of element type and mesh configuration can be 

easily determined through a small number of FEM simulations following the procedure in 

section 4. Only one crack-loading configuration needs be considered, and the resultant correction 

multipliers can be used in arbitrary fracture-load configurations with the same mesh.   
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