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Abstract. We discuss existing and new computational analysis techniques to
classify local atomic arrangements in large-scale atomistic computer simulations
of crystalline solids. This article includes a performance comparison of
typical analysis algorithms such as Common Neighbor Analysis, Centrosymmetry
Analysis, Bond Angle Analysis, Bond Order Analysis, and Voronoi Analysis.
In addition we propose a simple extension to the Common Neighbor Analysis

method that makes it suitable for multi-phase systems. Finally, we introduce a
new structure identi�cation algorithm, the Neighbor Distance Analysis, that is
designed to identify atomic structure units in grain boundaries.
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1 INTRODUCTION

1. Introduction

Atomistic simulation methods such as molecular dynamics (MD), molecular statics,
and Monte Carlo schemes are routinely used to study crystalline materials at the
atomic scale. In many cases crystal defects play a critical role in materials behavior,
and their identi�cation in the simulation data is essential for the understanding of
materials properties. Classical atomistic simulation models, however, do not keep
track of crystal defects explicitly. These models are governed by a Hamiltonian or
other rules which determine the trajectories of individual particles. Therefore, crystal
defects and defect-free crystal regions must be recovered from the generated particle-
position datasets in a post-processing step to enable the interpretation of simulation
results.

For this purpose, many computational analysis methods have been developed in
the past. Their task is to assign a structural type to each atom or particle based on
an analysis of its local environment. Most such methods attempt to match a local
structure to an idealized one (such as fcc or bcc), and measure how closely they �t.
This information can then be used to color particles for visualization purposes or to
quantify the occurrence of di�erent crystalline phases and defects in a simulation.
Another important application is �ltering the simulation data on the �y to reduce it
to a manageable amount, e.g. by storing only particles with an atypical environment.

Our goal is to give an overview of current computational analysis techniques,
as they are o�ered by many visualization tools and simulation codes, and as they
are employed in many recent simulation studies described in the literature. In
particular we will review the most commonly used structure characterization methods
for molecular dynamics simulations of crystalline solids:

• (a) energy �ltering,

• (b) centrosymmetry parameter analysis (CSP) [1],

• (c) bond order analysis [2],

• (d) common neighbor analysis (CNA) [3],

• (e) bond angle analysis (BAA) [4], and

• (f) Voronoi analysis.

In addition to describing the respective strengths and weaknesses of these methods,
we introduce two new identi�cation schemes:

• (g) adaptive common neighbor analysis (a-CNA) and

• (h) neighbor distance analysis (NDA).

The adaptive CNA is a simple extension of the common neighbor analysis method
to improve the characterization of multi-phase systems. The computationally more
expensive NDA is targeted at the classi�cation of complex structural environments as
they occur inside crystal defects such as grain boundaries.

As part of this paper we have implemented all discussed algorithms for
benchmarking purposes. We provide the source code of this analysis tool at
http://asa.ovito.org/ as a reference, to facilitate the use of the described techniques,
and to foster their advancement by the research community.
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2 EXISTING ANALYSIS METHODS

2. Existing analysis methods

Here, we focus on analysis techniques for simulation studies of crystalline solids
only. A broader overview of structural characterization methods and shape matching
algorithms for general particle systems has recently been given by Keys et al. [5].

2.1. General considerations

One can name several features that an ideal structure characterization technique
should provide:

• Accuracy - The method should be able to correctly distinguish several structural
environments solely based on the local arrangement of atoms and independent of
the crystal orientation (rotational and translational invariance).

• Robustness - The algorithm should assign a local structure to most particles in
the system and avoid errors arising from small displacements of particles from
their equilibrium or symmetry positions.

• Computational e�ciency - Since the local structure characterization needs to be
performed for every particle in a system, and possibly at high frequency as part
of an on-the-�y analysis, the computational cost is an important factor.

• Simplicity - Because wide-spread use of a method requires an algorithm that is
easy to implement and understand.

• Universality - Ideally, the set of reference structures recognized by the method is
not hard-coded into the algorithm and can be easily extended by the user.

Note that the �rst two requirements are in con�ict with each other: A low sensitivity
to atomic displacements usually comes at the price of a reduced capability of the
identi�cation method to distinguish similar structures. Some of the methods discussed
here allow the user to explicitly control this tradeo� between accuracy and robustness.
In general one wants to avoid any wrong classi�cations, i.e. false positives as well as
false negatives, in the structure recognition process.

The techniques discussed in this paper can be divided into two sets. Methods
(a)-(c) quantify the similarity of a given atomic arrangement to a particular reference
structure. A positive match is detected by comparing the computed similarity measure
to a threshold chosen by the user. A high threshold increases the robustness (and the
chance of false positives) while a low threshold increases the sensitivity (and the chance
of false negatives). The aim of the second group of methods is to distinguish between
several reference structures and to uniquely assign a type to each particle in the system
(with the possibility of assigning no type at all if the local atomic arrangement deviates
too much from all of the reference structures). These structure identi�cation methods
are usually based on a discrete signature that is calculated from the particle positions,
and which identi�es the arrangement unambiguously.

2.2. Energy �ltering

The potential energy of an atom can be used as a simple indicator to decide whether
it forms a perfect lattice with its neighbors. Given that atoms which are part of a
crystal defect are usually higher in energy than the perfect lattice (the ground state),
one can detect defective atoms by using a simple threshold criterion: Atoms having
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2.3 Centrosymmetry parameter 2 EXISTING ANALYSIS METHODS

a potential energy above the threshold are considered defect atoms, while low-energy
atoms are classi�ed as regular crystalline atoms.

Several shortcomings of this method have contributed to the fact that it is rarely
used nowadays. The atomic energy levels of perfect lattice atoms and metastable
defects can easily overlap due to degeneracies, elastic strain energy, or thermal energy.
Then the discrimination between the di�erent structural states becomes impossible.
Moreover, the potential energy of individual atoms is speci�c to the employed
interaction model, and, for quantum mechanical descriptions and some interatomic
potentials, is not de�ned at all. This is why one prefers purely structural analysis
methods, which characterize the spatial arrangement of atoms without reference to
the interatomic interaction laws.

2.3. Centrosymmetry parameter

The centrosymmetry property of some lattices (e.g. fcc and bcc) can be used to
distinguish them from other structures such as crystal defects where the local bond
symmetry is broken. Kelchner et al. [1] have developed a metric, the so-called
centrosymmetry parameter (CSP), that quanti�es the local loss of centrosymmetry
at an atomic site, which is characteristic for most crystal defects. The CSP of an
atom having N nearest neighbors is de�ned as

CSP =
N/2∑
i=1

∣∣ri + ri+N/2

∣∣2 (1)

where ri and ri+N/2 are vectors from the central atom to a pair of opposite neighbors.
Practical ways of �nding these pairs are described in [6] and in the accompanying
documentation of the visualization programAtomEye [7] and the molecular dynamics
code LAMMPS [8]. The latter uses the following scheme: There are N(N − 1)/2
possible neighbor pairs (i, j) that can contribute to above formula. The sum of two

bond vectors, |ri + rj |2, is computed for each, and only the N/2 smallest are actually
used to compute the CSP. For centrosymmetric lattice sites, they will be pairs of
neighbor atoms in symmetrically opposite positions with respect to the central atom;
hence the i + N/2 notation in formula 1. The CSP is close to zero for regular sites
of a centrosymmetric crystal and becomes non-zero for defect atoms. The number of
nearest neighbors taken into account is N = 12 for fcc and N = 8 for bcc.

The main advantage of the CSP is that it is only marginally a�ected by elastic
distortions of the crystal. In particular, any a�ne deformation of the lattice does not
change its degree of centrosymmetry at all. The CSP is, however, sensitive to random
thermal displacements of atoms. Being only a scalar measure, the CSP's capability
of discriminating between di�erent defect types is rather weak. The noise induced
by thermal displacements and inhomogeneous elastic strain may well dominate any
characteristic di�erences between defect structures. Most notably, the method can
only be applied to the class of centrosymmetric lattices (which does not include hcp,
for example), and it provides no means of distinguishing multiple centrosymmetric
crystal phases.

The user needs to choose a proper threshold to distinguish defect atoms from
perfect lattice atoms. At elevated temperatures the distribution of CSP values in a
perfect crystal becomes broader, and may begin to overlap with the characteristic
range of crystal defects. To show this, we have measured the CSP distributions in a

4



2.4 Bond order analysis 2 EXISTING ANALYSIS METHODS

Figure 1. Distribution of CSP values (normalized by the square of the lattice
parameter) measured at various homologous temperatures (in a Cu crystal). The
CSP values have been sampled from atoms located in the defect-free fcc lattice
and in a fcc stacking fault (corresponding to an hcp-like arrangement of neighbors
with broken centrosymmetry).

perfect fcc Cu crystal and inside an intrinsic stacking fault at various temperatures
(Fig. 1). While at low homologous temperature the two distributions are well-
separated, the identi�cation of perfect fcc atoms becomes less reliable at high
temperature (above 60% of the melting temperature). Note that other crystal defects
such as Shockley partial dislocations exhibit CSP values lower than those of stacking
fault atoms.

2.4. Bond order analysis

Given a central atom, we can project its near neighbor bonds to a unit sphere. Based
on these projected vectors one can de�ne a set of local bond order parameters, also
known as Steinhardt order parameters [2], that are rotationally invariant combinations
of spherical harmonics. The bond order parameters exhibit characteristic values for
each crystal structure, allowing us to discriminate between them.

Given the N neighbor vectors r1 . . . rN of a central atom, the l-th order parameter
is de�ned according to Steinhardt as

Ql =

√√√√ 4π

2l + 1

+l∑
m=−l

|qlm|2 (2)

with

qlm =
1
N

N∑
i=1

Y m
l (ri). (3)

Here, the complex functions Y m
l (r) = Y m

l (θ, ϕ) are the spherical harmonics, whose
evaluation is computationally expensive. Note that the set of local bond order
parameters, {Ql} with l = 1, 2, 3, . . ., is invariant under rotations of the coordinate
system (meaning that it is independent of the crystal's orientation). Bond order
parameters up to l = 3 are zero for lattices with cubic symmetry, and one usually
takes into account the values of Q4 and Q6 to discriminate between fcc, hcp and bcc
phases. ‡

‡ One obtains the following reference values for the perfect lattices: Qfcc
4 = 0.191, Qfcc

6 = 0.575 and

Qhcp
4 = 0.097, Qhcp

6 = 0.485 and Qbcc
4 = 0.036, Qbcc

6 = 0.511.
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2.5 Common neighbor analysis 2 EXISTING ANALYSIS METHODS

The parameter set (Q4, Q6) can be used to measure the structural order of a
particle system when averaged over all atoms. Hence, bond order parameters are
often used in computational studies of crystallization to determine the fractions of
crystalline and liquid phases. Crystal deformation and thermal �uctuations, however,
smear out the order parameter distributions [9]. Thus, to assign a particular structure
type to a particle, one needs to de�ne non-overlapping regions in the Q4-Q6 parameter
plane [10] for all crystal phases considered. The choice of these regions is arbitrary,
and, to our knowledge, no generally accepted scheme for the classi�cation of bond
order parameters exists so far.

2.5. Common neighbor analysis

Structure analysis methods that employ more complex, high-dimensional signatures
to characterize arrangements of atoms are usually better in discriminating between
several structures. A popular method of this type is the common neighbor analysis
(CNA) [3, 11]. Unlike the CSP and the local bond order parameters, the CNA does
not directly take into account the spatial vectors pointing from the central atom to its
neighbor. Instead, a characteristic signature is computed from the topology of bonds
that connect the surrounding neighbor atoms.

Usually, two atoms are said to be (near-)neighbors, or bonded, if they are within
a speci�ed cuto� distance rcut of each other. For densely packed structures (fcc and
hcp) the cuto� distance is set to be halfway between the �rst and second neighbor
shell, giving for fcc

rfcccut =
1
2

(√
1/2 + 1

)
afcc ' 0.854 afcc, (4)

where afcc is the lattice constant of the crystal structure. For the bcc lattice, two
neighbor shells need to be taken into account, and atoms are considered to be bonded
with their �rst- and second-nearest neighbors:

rbcccut =
1
2

(
1 +

√
2
)

abcc ' 1.207 abcc. (5)

To assign a local crystal structure to an atom, three characteristic numbers are
computed for each of the N neighbor bonds of the central atom: The number of
neighbor atoms the central atom and its bonded neighbor have in common, ncn; the
total number of bonds between these common neighbors, nb; and the number of bonds
in the longest chain of bonds connecting the common neighbors, nlcb. This yields N
triplets (ncn, nb, nlcb), which are compared to a set of reference signatures to assign a
structural type to the central atom (Table 1).

fcc (N = 12) hcp (N = 12) bcc (N = 14) cubic diamond (N = 16)
12 × (421) 6 × (421) 8 × (666) 12 × (543)

6 × (422) 6 × (444) 4 × (663)

Table 1. CNA signatures of common crystal structures. For example: An hcp-
coordinated atom has six bonds of (421) type and six of (422) type. That is, any
two near-neighbors in a hcp crystal have exactly four common neighbors, which
are interconnected by two bonds. And the longest continuous chain these two
bonds form is either of length one or two (in six cases each).
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2.6 Bond angle analysis 2 EXISTING ANALYSIS METHODS

The common neighborhood parameter [12] should be mentioned as an alternative
analysis method, which was proposed by Tsuzuki et al. to combine the strengths
of both the CNA and CSP methods. The CNA has also been extended to binary
atomic systems by taking the chemical species of common neighbors into account as
an additional criterion [13]. This extension enables the identi�cation of simple binary
structures such as L10, L12 etc.

2.6. Bond angle analysis

The bond angle analysis has been developed by Ackland and Jones [4] to distinguish
fcc, hcp and bcc coordination structures. From the N bond vectors of the central atom,
an eight-bin histogram of the N(N − 1)/2 bond angle cosines, cos θijk, is computed
�rst. Here, θijk denotes the angle formed by the central atom i, and two of its
neighbors, j and k. The obtained histogram is then further evaluated using a set
of heuristic decision rules to determine the most likely structure type. These rules
have been optimized by the authors such that a robust discrimination of the most
important crystal structures is archived. The number of neighbors used to calculate
the bond angle distribution is determined adaptively by employing a cuto� radius that
is proportional to the average distance of the six nearest neighbors.

2.7. Voronoi analysis

The Voronoi decomposition [14] can serve as a geometric method to determine the
near neighbors of a particle (i.e. its coordination number) by considering the faces
of the Voronoi polyhedron enclosing the particle. Furthermore, the geometric shape
of the Voronoi polyhedron re�ects the characteristic arrangement of near neighbors.
For this reason the Voronoi decomposition has been employed in simulation studies of
liquids and glasses to analyze various properties of their atomic structure [15, 16].

To e�ectively characterize the arrangement of near neighbors, the computed
Voronoi polyhedron for a particle is translated into a compact signature by counting
the number of polygonal facets having three, four, �ve and six vertices/edges. This
yields a vector of four integers, (n3, n4, n5, n6), that identi�es the structural type. For
instance the Voronoi polyhedron of an fcc lattice atom is equivalent to the fcc Wigner-
Seitz cell and comprises 12 facets with four vertices each. Thus the corresponding
signature for fcc is (0,12,0,0). The polyhedron of a bcc atom has facets with four and
six vertices, and the corresponding signature is (0,6,0,8).

Even though the Voronoi method has been used numerous times for the analysis
of particle systems without long-range order such as liquids and glasses, it has rarely
been applied to simulations of crystalline materials. One reason is that singular
Voronoi vertices, which are adjacent to more than three facets, and which occur in
the Voronoi decomposition of some highly symmetric crystalline packings such as
fcc and hcp, will dissociate into multiple vertices as soon as the atomic coordinates
are only slightly perturbed. This dramatically changes the Voronoi polyhedra and
the computed signatures [17], making the identi�cation of such crystal structures
nontrivial.

In our implementation we use the following approach to mitigate the problem
of singularities in the Voronoi decomposition of fcc crystals: First, the conventional
Voronoi polyhedra are constructed (using the Voro++ code library [18]). When
counting the number of edges of a Voronoi facet, we skip edges which are shorter than
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a certain threshold. Thus, a singular vertex, which may have dissociated into multiple
vertices due to perturbations, will still be counted as one. Small facets with less than
three edges above the threshold are completely ignored. The edge threshold is set to
30% of the polyhedron's maximum radius.

It should be pointed out that the described sensitivity of the Voronoi method to
perturbations of the atomic coordinates, in addition to the high computational cost
of the Voronoi polyhedron construction, render its application to crystalline systems
rather unattractive. Remarkably, the Voronoi method, in its simplest form described
here, is not capable of discriminating hcp-coordinated atoms from fcc atoms because
the corresponding Voronoi polyhedra have a (0,12,0,0) signature in both cases.

3. New analysis methods

We now describe two new methods, which can provide superior analysis results for
some applications. The adaptive common neighbor analysis is a simple extension of
the standard CNA method, which adds some convenience on the user's side and the
ability to analyze multi-phase systems. The neighbor distance analysis (NDA), in
contrast, is a completely new algorithm that employs a more complex signature to
identify a wider range of atomic arrangements.

3.1. Adaptive common neighbor analysis

The common neighbor analysis method described in section 2.5 is one of the most
frequently used structure identi�cation methods for atomistic simulation studies of fcc,
hcp, and bcc crystal plasticity. It provides e�cient and unambiguous classi�cation of
local atomic arrangements, making it possible to e�ectively distinguish crystal defects
from undisturbed lattice atoms. The only parameter required is the cuto� radius,
which determines the maximum separation of near-neighbors, and which must be
chosen according to the crystal phase under consideration (cf. Eqs. 4 and 5).

In the case of multi-phase systems, however, the choice of the cuto� parameter is
no longer well-de�ned. In many cases, for instance a fcc-bcc bicrystal simulation, one
cannot specify a global cuto� radius that �ts all phases equally well. We therefore
propose to pick the cuto� radius individually for each atom and in dependence of the
reference structure we want to compare it to. We implement this approach, which we
refer to as adaptive common neighbor analysis (a-CNA), as follows.

Given a central atom to be analyzed, we �rst generate the list of Nmax nearest

neighbors and sort it by distance. Nmax is the maximum required number of neighbors
for all considered reference structures, e.g. Nmax = 16 for the set of structures listed
in Table 1. One can generate such a nearest neighbor list either by means of a k-d
tree data structure [19] and a recursive k-th nearest neighbor query algorithm [20], or
by sorting a pre-existing neighbor list that has already been generated on the basis of
an excessively large cuto� radius (for instance, to compute the interatomic forces in a
molecular dynamics simulation).

To test whether the local coordination structure matches an fcc crystal, we take
only the �rst Nfcc = 12 entries from the sorted neighbor list. The average distance
of these 12 nearest neighbors provides a local length scale, analogous to the approach
used in the bond angle analysis. That is, we can de�ne a local cuto� radius, which
is speci�c to the current atom and used for matching with the fcc reference structure

8



3.1 Adaptive common neighbor analysis 3 NEW ANALYSIS METHODS

only:

rlocalcut (fcc) =
1 +

√
2

2
·
∑12

j=1 |rj |
12

. (6)

The local cuto� is subsequently used to determine the �bonding� between the 12
nearest neighbors and to compute the CNA signature as usual. If the signature does
not conform to fcc, the algorithm proceeds with testing against the next candidate
structure. For the bcc structure, for instance, the 14 nearest neighbors must be taken
into account and a local cuto� is computed as

rlocalcut (bcc) =
1 +

√
2

2

[
2√
3
·
∑8

j=1 |rj |
8

+

∑14
j=9 |rj |

6

]
. (7)

Here, the local length scale is determined from the eight nearest neighbors in the
sorted neighbor list (forming the �rst shell) and the successive six neighbors (forming
the second shell). Their average distances are weighted accordingly to yield the local
cuto� radius that lies halfway between the second and third bcc coordination shell.

The computational cost of the adaptive CNA increases with the number of
reference structures to be tested. In practice, however, the analysis is only 25%
more expensive than the standard CNA when identifying fcc, hcp, and bcc atoms.
This cost is in most cases o�set by the convenience of a parameterless method (no
cuto� radius) and the superior analysis results provided. To demonstrate the strength
of the adaptive CNA we have applied it to a simulation of the Fe-Cu multi-phase
alloy. In the simulation study, a combination of Monte Carlo sampling (variance-
constrained semi-grandcanonical ensemble [21]) and conventional MD time integration
was used to determine the equilibrium structure of Cu-rich precipitates in a Fe-rich
bcc matrix. The equilibrium distribution of Cu atoms at a prescribed temperature
is found via Monte Carlo transmutation steps, while alternating MD steps allow the
positional degrees of freedom to relax simultaneously. This enables structural phase
transformations to occur in the simulation. Starting o� from a random distribution
of Cu atoms in the bcc-Fe matrix, the Cu atoms precipitate to form a spherical
particle. At certain conditions, the crystal structure of the cluster changes from bcc
to a multiply-twinned 9R structure (herringbone structure) [22] as shown in �gure 2.
The system has been quenched to zero temperature to remove thermal displacements
prior to the structure analysis.

The results of the conventional common neighbor analysis strongly depend on the
cuto� parameter used. A cuto� that is suitable for identifying the 9R phase is given
by Eq. 4 and the lattice constant of fcc-Cu, while for the identi�cation of the bcc-Fe
phase one would apply formula 5. Varying the cuto� between these limiting cases
lets the observed bcc-9R interface slide and makes the precipitate appear smaller or
larger. In all cases, the CNA will be unable to assign a structural type to the atoms
right at the interface since their coordination does not match to either of the reference
structures. The adaptive CNA overcomes this problem by computing a cuto� radius
for each atom and taking into account the local dilatation. Virtually every atom in
the bcc-9R interface is identi�ed as crystalline by the a-CNA, giving even slightly
better analysis results than the bond angle analysis, which was speci�cally designed
for applications like this.
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Figure 2. Cross-sectional view of a Cu-rich 9R precipitate in bcc-Fe (viewing
direction 〈111〉bcc). The same simulation snapshot has been analyzed with several
coordination structure identi�cation methods discussed in this paper. Atom colors
indicate the local structural type as classi�ed by the algorithms.

3.2. Neighbor distance analysis

In section 2 we described several structure matching methods that all exploit structural
symmetries in some way. Instead of directly comparing the actual atomic positions to a
set of reference coordinates, they condense the particle coordinates into characteristic
signatures which are invariant under rotation, and which can easily be compared. This
transformation is essentially what makes the identi�cation process e�cient and robust
(see [5] for an in-depth discussion). Note that, at the same time, this data reduction
usually results in some insensitivity to elastic deformations: Small perturbations of
the atomic positions do not change the calculated signature.

In general, however, the atomic arrangements found in the core regions of crystal
defects such as grain boundaries may not exhibit any symmetries or order (e.g. discrete
neighbor shells). It might therefore be more di�cult to reduce their description to a
small, but unambiguous set of characteristic numbers (and even less so to a scalar
signature like the CSP). Thus, in such a case, one has to resort to more extensive
types of signatures, as we will propose it in the following. Here, we will introduce
the neighbor distance analysis (NDA), a new structure identi�cation method that
aims at situations where the coordination structure of atoms is lacking any particular
symmetries or shell structure that could be exploited, as it is often the case in crystal
defect cores.
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3.2 Neighbor distance analysis 3 NEW ANALYSIS METHODS

Let us assume that a reference coordination structure (which we want to
search for in the simulation data) is speci�ed in terms of the list of bond vectors
(R1, . . . ,RN ) connecting the central atom with its N nearest neighbors (with N being
a freely selectable parameter). The coordination pattern for fcc lattice atoms, for
instance, would consist of N = 12 neighbors, with the reference vectors (R1, . . . ,RN )
comprising the 1/2 〈110〉 vector family. We assume that this list of vectors is ordered
according to their distance from the central atom such that R1 ≤ . . . ≤ RN .

Given an atom to be analyzed and to be tested against the reference pattern
described above, we �rst determine its N nearest neighbor vectors, (r1, . . . , rN ), and
sort them according to their magnitude (such that r1 ≤ . . . ≤ rN ). Obviously, this
is not su�cient to associate the actual neighbor bonds with their counterparts in the
reference pattern: The bond lengths may be perturbed by thermal displacements, and
the ordering can be non-unique if neighbors are arranged on shells. Despite that, we
may compute a local hydrostatic scale factor, λ, from the two sorted bond lists:

λ =
1
N

N∑
i=1

(Ri/ri) . (8)

This scale factor relates the lattice constant of the reference structure (which is
arbitrary, and may be chosen to be unity) to that of the actual crystal, which depends
on factors such hydrostatic stress, temperature, and chemical composition.

The one-to-one mapping between the reference vectors (R1, . . . ,RN ) and the
actual neighbor vectors (r1, . . . , rN ), as we still need to determine it, can be expressed
in terms of a permutation σ = (rσ(1), . . . , rσ(N)) of the original neighbor list. Note
that multiple equivalent permutations may exist due to symmetries of the coordination
structure.

How is the permutation mapping σ determined? For this we de�ne a new type of
signature that is based on the linear distance dij = |ri − rj | between two neighbors i
and j of the central atom, which is invariant under rotation. Hence, we give this
approach the name neighbor distance analysis (NDA). We need to consider that
particle positions may be displaced due to thermal vibrations or elastic distortions
of the crystal. Let the maximum allowed deviation of an atom from its equilibrium
position be given by a user-de�nable parameter δmax. Then the test structure
(r1, . . . , rN ) matches the reference pattern if at least one mapping σ exists such that
the condition

|Ri −Rj | − δmax︸ ︷︷ ︸
dmin

ij

≤ λ
∣∣rσ(i) − rσ(j)

∣∣︸ ︷︷ ︸
dij

≤ |Ri −Rj |+ δmax︸ ︷︷ ︸
dmax

ij

(9)

is ful�lled for all N(N − 1)/2 neighbor pairs. That is, all rescaled distances must lie
in the corresponding intervals of the reference structure. This condition is illustrated
in �gure 3(a).

To �nd a valid permutation map σ that ful�lls condition 9 (or to con�rm the non-
existence), up to N ! possible permutations of the neighbors must tested (�gure 3(b)).
To avoid a fully exhaustive search, the search space can, however, be considerably
reduced by pruning the combinatorial search tree and employing a backtracking
algorithm [23]. As an additional optimization step prior to the full combinatorial
search we perform an early rejection test on the entire coordination structure by
sorting both the list of pair-wise distances, {dij}, and the list of distance ranges,{[

dmin
ij , dmax

ij

]}
, in ascending order (�gure 3(c)). If any of the distances falls outside
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(a)

(b) (c)

Figure 3. (a) Schematic picture of a low-symmetry coordination structure.
Dashed circles indicate the maximum distance a neighbor may deviate from
its equilibrium position. This yields six min-max constraints on the mutual
distances between the four neighbors in the example. (b) For a positive match, a
permutation of the neighbors must exist such that the actual distances fall into
the intervals of the reference pattern. (c) By sorting the neighbor distances and
the reference intervals, a quick rejection test can be performed without knowledge
of the actual neighbor-to-reference mapping.

the corresponding admissible range, no valid permutation map can exist and the test
structure does not match the reference pattern.

The user needs to specify two control parameters for each NDA reference pattern:
The number of nearest neighbors to be taken into account (N) and the maximum
admissible displacement (δmax). N must be at least three, should include complete
shells, and, apart from that, be as small as possible for best e�ciency.

The maximum admissible displacement δmax determines the tolerance of the
identi�cation process. In general one wants to use a large δmax to make the
recognition of structures robust at high temperatures or in the presence of strong
elastic distortions. On the other hand, an excessively large δmax parameter may lead
to false positives when testing against multiple, only slightly di�erent coordination
patterns.

Note that we proposed the NDA primarily for identifying defective coordination
structures that cannot be handled well with existing methods. In simple cases (such
as perfect fcc, hcp, or bcc lattices), the conventional techniques such as the CNA
are the more economic choice. One important advantage of the NDA, however, is
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3.2 Neighbor distance analysis 3 NEW ANALYSIS METHODS

Figure 4. Molecular dynamics simulation of a nanoindentation experiment.
The bicrystal contains a Σ11 〈101〉 [113] symmetric tilt boundary that acts as
a barrier for lattice dislocations. The neighbor distance analysis was used to
identify undisturbed grain boundary regions (purple atoms), thereby revealing
the cores of secondary grain boundary dislocations (dark gray atoms), which are
the product of reactions of lattice dislocations with the boundary.

its capability to identify a wide range of coordination structures. In contrast to the
bond angle analysis method, for instance, which employs hard-coded decision rules,
the catalog of reference structures recognized by the NDA can be easily extended. The
user simply has to provide a set of perfect reference coordinates, from which the NDA
signature for an atom can be automatically generated.

We demonstrate this for a molecular dynamics simulation of a Σ11 〈101〉 [113]
symmetric tilt grain boundary [24] in fcc aluminum. This low-energy grain boundary
(GB) is composed of repeating structural units, which can be well identi�ed with the
NDA. Two di�erent coordination structures occur in a perfect Σ11 〈101〉 [113] GB.
Hence, the reference pattern catalog contains two GB-speci�c structures in addition
to the perfect fcc and hcp signatures. The latter is needed to identify atoms in
fcc instrinsic stacking faults, which exhibit an hcp-like coordination structure. The
maximum displacement parameter is set to 21% of the nearest neighbor distance, i.e.
δmax = 0.21R1.

The simulation setup consists of a bicrystal with a single Σ11 GB and a
nanometer-sized spherical indentor tip. The prismatic dislocation loops nucleated
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4 COMPARISON

Dimensionality Computational
of signature cost factor

Atomic energy 1 -
Centrosymmetry parameter 1 1
Common neighbor analysis 3N 3
Adaptive common neighbor analysis 3N 4
Bond angle analysis 8 4
Bond order analysis 2 100
Voronoi analysis 4 50
Neighbor distance analysis N(N − 1)/2 20

Table 2. Comparison of structure identi�cation methods discussed in this article.
The signature dimensionality is the number of components of the vector that
identi�es a particular coordination structure, and which is used for matching
within the given analysis framework. N denotes the number of near neighbors of
a central particle. The cost factors are expressed relative to the computational cost
of calculating the centrosymmetry parameter and do not include time spent on
generating neighbor lists. Note that timings are approximate, depend on the input
dataset, and are based on our own, optimized implementations of the algorithms,
which we provide for reference.

beneath the indentor interact with the GB (absorption, transmission, and re-emission).
Figure 4 shows the NDA analysis results visualized with OVITO [25]. In the large
picture, fcc atoms have been removed to reveal all crystal defects. One can observe GB
dislocation loops gliding in the Σ11 boundary. The inset shows a cross-section of the
symmetric tilt GB with two secondary GB dislocations. Grain boundary dislocations
are clearly visible because the characteristic structure of the GB is disturbed inside
their cores (dark gray atoms).

4. Comparison

The various structure identi�cation methods discussed in this article employ di�erent
types of descriptors or signatures to identify atomic coordination structures. In
general, the classi�cation of a structure is not based on the particle coordinates
themselves but rather on a derived descriptor. The size of this signature di�ers for
each analysis method as shown in Table 2. While the centrosymmetry parameter
is a scalar quantity, the neighbor distance analysis method takes into account all
pair-wise distances between the N neighbor atoms. In general, the capability of a
characterization method to discriminate between a wide range of structures requires
a signature with a su�cient number of degrees of freedom.

We have implemented all analysis algorithms discussed in this article within a
single computer code framework to facilitate the comparison between them. The code
is made available for download at the website http://asa.ovito.org/. This may be
useful for researchers that wish to further explore comparisons between the methods
or for someone trying to understand the details of the implementations. To measure
and compare their computational costs we applied all discussed methods to the Fe-Cu
dataset shown in �gure 2. For those analysis algorithms that assign a structural type
to each atom, we have included fcc, hcp, and bcc as possible candidates. Calculating
the centrosymmetry parameter is the least expensive analysis, and we have taken it
as reference for our timings. Accordingly, the computation time per atom of the other
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5 OUTLOOK

methods (Table 2) is expressed in terms of multiples of this reference time.

5. Outlook

Note that the list of methods discussed here is not exhaustive. Indeed, there exist
many more methods, with new ones still appearing, such that a truly exhaustive
study is beyond our �nite capabilities. The aim of the present work was to focus on
often-cited techniques that are routinely used in current simulation studies.

Filtering methods such as the CNA or the CSP are e�cient and convenient
techniques that serve well in the visualization and interpretation of datasets obtained
from molecular dynamics simulations of simple systems with fcc, hcp, or bcc structure.
All available structure identi�cation methods have several limitations in common
though, which should be addressed by future work. By taking into account only
near neighbors of a central atom, the described methods are e�ectively limited to
simple lattices with a monatomic basis, where the characterization of the short-range
structure around individual atoms is su�cient. For identi�cation of complex lattices
with multiple atoms per primitive cell (such as 9R) one needs to take into account
the medium-range order of atoms. The same applies to the automated identi�cation
of structured crystal defects such as coherent grain boundaries with large Σ, whose
characteristic structural units may comprise many atoms with each having a di�erent
local environment.

Furthermore, the sensitivity of structure recognition methods to perturbations
of the particle positions is a problem that hampers the analysis of systems at high
temperature or under large deformation. While the e�ect of thermal displacements
can, in many cases, be e�ectively mitigated by the use of time-averaged particle
positions or by quenching the system using a steepest-descent technique, non-uniform
lattice strains can easily interfere with the identi�cation of coordination structures.
The reason is that most structure signatures used to identify atomic arrangements are
invariant only under rotation but not under arbitrary a�ne deformations.

So far, the structure characterization techniqes described in this article are
primarily used to �lter simulation datasets to reveal crystal defects for visualization
purposes. In addition, they are employed to estimate crystal defect densities
in MD simulations (e.g. fcc stackings faults and twin boundaries [26], or
dislocations [27]). More recently, however, they have become integral parts of several
sophisticated analysis and simulation methods. Examples for such applications are
the characterization of dislocation lines via an automated Burgers circuit analysis [28],
the mapping of a crystal to a stress-free con�guration to separate elastic from plastic
deformation [29], and the automated construction of a catalog of structural motives
for the e�cient discovery of transition events in self-learning kinetic Monte Carlo
simulations [30]. Such applications usually require more than simple classi�cation
of local atomic arrangements. For instance, to determine the local crystallographic
directions in a crystal [31], it is necessary to map all neighbors of the central particle to
the reference pattern in a one-to-one fashion (as it is already performed by the neighbor
distance analysis described in section 3.2), and to determine the list of all equivalent
neighbor permutations, which correspond to the elements of the point symmetry group
of the structure at hand.
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