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Abstract

We present a new algorithm for automatic parallel load balancing in classical
molecular dynamics. It assumes a spatial domain decomposition of particles
into Voronoi cells. It is a gradient method which attempts to minimizes a cost
function by displacing Voronoi sites associated to each processor/sub-domain
along steepest descent directions. Excellent load balance has been obtained for
quasi-2D and 3D practical applications, with up to 440 · 106 particles on 65536
MPI tasks.
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1. Introduction

Achieving a good load balance between cpus in large parallel calculations is
crucial for an optimal use of computer resources. With large scale molecular
dynamics (MD) now being performed on thousands of processors and involving
billions of particles, this is even more important as the time to solution will be
determined by the processor taking the longest time to complete its assigned
work.

While for some applications such as homogeneous solids or liquids a natural
uniform spatial domain decomposition leads to a fairly good load balance, many
applications of interest show inhomogeneities due either to the local density of
particles or to a different amount of computational work/particle at various
locations. Load balancing is also needed for applications to finite systems with
vacuum regions which cannot be decomposed naturally into spatially uniform
subdomains.

Dynamic load balancing is also important when the performance of each
processor differs. This is the case for heterogeneous computer clusters, but also
if one processor is running slower than its peak performance due to various
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hardware problems. As we are moving towards supercomputers with hundreds
of thousand processors, the likelihood of having one processor causing slowdowns
becomes non-negligible.

Typically in parallel molecular dynamics simulation algorithms, the spa-
tial computational domain is divided into subdomains associated to processors.
Each processor is responsible for advancing particles located inside its assigned
sub-domain at a certain point in time. Work assigned to each processor then de-
pends on various algorithmic choices and a good load balancing will be achieved
if one can minimize the time processors are idle waiting for others to complete
their work. Overhead due to communications should also be limited to minimize
time to solution, which in general means keeping the surface to volume ratio to
a relatively low value.

Various algorithms have been proposed in recent years to address parallel
load balancing in molecular dynamics simulations. Their detailed implementa-
tion typically depends on choices made in the domain decomposition algorithm.
Deng et al. [4] proposed to divide space into a number of sub-domains larger
than the number of processors and assign multiple sub-domains to each proces-
sor. Load balancing can then be improved by exchanging sub-domains between
tasks. This idea can be generalized and computational work (instead of do-
mains) can be divided into many “units of work”. This is the approach used
in NAMD, where load balancing is achieved by an appropriate distribution of
these units of work [12].

Other approaches typically modify the shapes and positions of the subdo-
mains associated to each processor. Nakano and Campbell [16] for instance use a
curvilinear-coordinate approach to reshape and resize domains while preserving
nearest neighbor topology and minimize the number of communications. Deng
et al. [5] proposed another scheme in which they move the vertices of the domain
decomposition grid towards the most heavily loaded regions of space. They also
constrain the original topology of the mesh to remain the same, while allowing
the shapes of each domain to vary. Fleissner et al. [6] use an orthogonal re-
cursive bisection as a domain decomposition scheme in a hierarchical approach
based on wall clock time measurements. Sub-domain boundaries are aligned
with the coordinate axis. In GROMACS, [8] the domain decomposition is done
one dimension at a time, load balancing each dimension successively.

Closer to the approach we propose in this paper, Zhakhovskii et al. [19] de-
scribed an algorithm for 2D domain decompositions made of Voronoi cells. They
propose to move the locations of Voronoi sites—and thus domain boundaries—
to balance computational work load at regular intervals. Diffusion based algo-
rithms, which move domain boundaries to reach an equal number of particles
on each processors were proposed two decades ago[2] for a 1D domain decom-
position. In that case, Voronoi tessellations are trivial to compute. Koradi et
al. [11] also proposed a load balancing scheme for Voronoi cell based domain
decomposition. Their approach consists however in changing the metric used to
assign particles to Voronoi centers in order to improve load balancing. Voronoi
sites are moved after a load balancing step to coincide with the center of mass
of the particles associated with the local subdomain.
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In this paper, we present a new dynamic load balancing algorithm for general
3D molecular dynamics simulations for the case of a spatial domain decompo-
sition of particles into Voronoi volumes. This is the domain decomposition
algorithm used in our code ddcMD. In ddcMD, each parallel task is associated
with a Voronoi cell and that task is responsible for propagating in time all the
particles initially located within the boundaries of that domain, which we will
call “local” particles. Each processor also needs to know about the positions
of some “remote” particles which interact with the local particles though short
range forces but belong to other tasks. Each Voronoi cell is essentially described
by the positions of a Voronoi site: all the points in space closer to that site than
any other site form the Voronoi cell associated to that site. This means that the
positions of the Voronoi sites determine the amount of work each task has to
accomplish. Moving those sites will change the assignment of particles to tasks
and thus computational load.

Following the idea proposed by Zhakhovskii et al. [19] for 2D domain decom-
positions, we propose to move the locations of Voronoi sites to balance compu-
tational work load at regular intervals. Our approach is a gradient method [3]
in which we try to minimize a cost function G. Following the steepest descent
direction of the cost function has the net effect of exchanging particles between
adjacent domains and leads to a diffusion algorithm. Our approach goes beyond
what is proposed in [19] by introducing a better estimate of the work transfer
between task using actual values of Voronoi cells volumes and facets, and apply-
ing it to large scale 3D problems. To calculate the gradient of the cost function
G with respect to Voronoi sites positions, we estimate the amount of work/unit
volume and work flows through cells interfaces. We use a widely available com-
putational geometry software (Qhull [1]) to calculate tessellations, as well as
volumes and facets areas of general Voronoi cells in 3D. Our approach is scal-
able and associates one Voronoi cell to each MPI task. But the computational
work for each Voronoi cell can be shared among multiple cores.

After describing our load balancing algorithm in section 2, we demonstrate
the efficiency of this approach on various applications in section 3 showing al-
most perfect load balancing.

Note that the problem of optimizing the locations of Voronoi sites is quite
general and in no way restricted to molecular dynamics. For instance the facility
location or geographical optimization problem (in 2D) falls into that category
and make use of similar algorithms [10].

2. Algorithm

2.1. Load balance Algorithm

Let us assume the calculation is divided among P parallel tasks. Let t
(k)
i

be a timing measured on task i between the last two load balancing iterations
k − 1 and k, which may include numerous MD steps. Following [3], suppose we
transfer a net amount of work wij from task j to task i before running the next
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iteration. We then expect the new timing on task i to become

t̃
(k+1)
i = t

(k)
i + η

∑

j∈Zi

wij (1)

where Zi denotes the set of all the tasks sharing a Voronoi facet with the Voronoi
cell i, and η is the wall clock time necessary to execute a unit of work. We assume
the average timing over all the tasks for an iteration is constant over time and
we denote it by T̄ :

T̄ =
1

P

P
∑

i=1

t
(k)
i . (2)

Now let us define a load balancing function

G({ti}
P
i=1) =

1

P

P
∑

i=1

(

ti − T̄

T̄

)2

. (3)

This function reaches it minimum of zero for a perfectly balanced calculation.
The goal of a load balancing algorithm will be to adequately choose the amount
of work to transfer between tasks to minimize that function. It is easy to see
that G simplifies to

G({ti}
P
i=1) = −1 +

1

P

P
∑

i=1

(

ti
T̄

)2

. (4)

and thus the problem of minimizing G is equivalent to minimizing F given by

F ({ti}
P
i=1) =

1

P

P
∑

i=1

(

ti
T̄

)2

. (5)

Let r
(k)
i denote the Voronoi site associated to the Voronoi cell i at step k.

At step k + 1, it will be at a new location denoted by

r
(k+1)
i = r

(k)
i + δr

(k)
i (6)

Let Vi denote the volume of the Voronoi cell i. Let us also denote by Aij

the area of the common Voronoi facet shared by cells i and j, and by nij the
unit vector normal to that facet, pointing outside of cell i. We can estimate the
amount of work wij transferred from task j to task i by the following expression

w̃ij =
1

η
τ

(k)
ij · Aij · nij ·

[

1

2
δr

(k)
i −

1

2
δr

(k)
j

]

(7)

where

τ
(k)
ij =

1

2

(

t
(k)
i

Vi

+
t
(k)
j

Vj

)

.
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Figure 1: 2D illustration of particles/work transfer resulting from Voronoi sites displacements:
One of the initial sites (black diamonds) is moved to a new position resulting in a new Voronoi
tessellation (dashed red lines). Some particles (colored according to initial Voronoi tessella-
tion) now belong to a different Voronoi cell which results in more work for the new cell they
belong to and less work for the old one.

is a local (symmetric) measure of the timing per unit of volume.

Indeed τ
(k)
ij /η can be interpreted as the density of work per unit volume,

while the rest of the expression—to first order—is the volume transferred from

cell j to cell i when the centers i and j move by δr
(k)
i and δr

(k)
j respectively. Fig-

ure 1 illustrates how moving a Voronoi site shifts particles from one subdomain
(task) to an adjacent domain. Note that here we use a linear model, that is we
assume that the work load is directly proportional to the volume of the Voronoi
cell. This is good enough, even though in general the work load scales closer to
the square of the number of interacting pairs of particle to be computed.

We have at first order

δF = F ({t̃
(k+1)
i }i=1,...,P ) − F ({t

(k)
i }i=1,...,P )

≈
1

P

2

T̄ 2

P
∑

i=1

t
(k)
i

(

t̃
(k+1)
i − t

(k)
i

)

=
η

P

2

T̄ 2

P
∑

i=1

t
(k)
i

∑

j∈Zi

ωij

Thus the α component of the first derivative of F with respect to a Voronoi
site position rl is given by:

∂F

∂r
(k+1)
l,α

∣

∣

∣

∣

∣

r
(k+1)
l

=r
(k)
l

= 2
η

P T̄ 2

P
∑

i=1

t
(k)
i

∂

∂r
(k+1)
l,α





∑

j∈Zi

wij



 (8)
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If we assume that Vi, Aij ,nij remain constant at first order from step k to

step k + 1, and δr
(k)
i , i = 1, . . . , np are small, we can write

∂

∂r
(k+1)
l,α

w̃ij ≈
1

2

τ
(k)
ij

η
Aij(nij)α [δil − δjl] . (9)

and then obtain the estimate

∂F

∂r
(k+1)
l,α

∣

∣

∣

∣

∣

r
(k+1)
l

=r
(k)
l

≈
1

PT̄ 2

P
∑

i=1

t
(k)
i

∑

j∈Zi

τ
(k)
ij Aij(nij)α [δil − δjl]

=
1

PT̄ 2

∑

j∈Zl

(

t
(k)
l − t

(k)
j

)

τ
(k)
lj Alj(nlj)α.

Now we can move the Voronoi sites by one step in the steepest descent
direction to reduce F

r
(k+1)
i = r

(k)
i − α∇ri

F. (10)

Knowing that the minimal value for F is 1, we compute α according to the
following equation

F (0) − α (∇F )
T
∇F = 1 (11)

where

∇F =









∇r1
F

∇r2
F

· · ·
∇rP

F









.

That results in

α =
F (0) − 1

‖∇F‖2
=

1

‖∇F‖2

(

∑P

i=1(t
(k)
i )2

PT̄ 2
− 1

)

. (12)

In practice, we introduce a relaxation parameter γ (typically larger than 1)
and move Voronoi centers according to

r
(k+1)
i = r

(k)
i − γα∇ri

F. (13)

The efficiency of this algorithm can be limited if one needs to wait for the
next call to the load balancer to make another move (which may come quite
a few MD steps later). However the process can be improved by introducing
some inner iterations. If we assume the density of work is somewhat uniform
locally and the work is proportional to the volume of the Voronoi cell, one can
guess the new load for each task by computing the volume of the new Voronoi
cell and multiplying it by the local density of work,

t̃
(k+1)
i ≈ V

(k+1)
i

t
(k)
i

V
(k)
i

.
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This requires only a Voronoi tessellation calculation without moving any par-
ticles or computing any forces. Using these new “extrapolated” loads, one can
apply another step of the algorithm described above. One can repeat this pro-
cess several times. We denote the number of these iterations inner iterations as
ninner. This procedure is very useful to quickly reach a good load balance when
the starting domain decomposition is very unbalanced.

2.2. Voronoi tessellation

For a set of points in the Euclidean space, a Delaunay triangulation is a
triangulation such that no point in the set is inside the circumsphere of any
simplex in the triangulation (see e.g. [17]). The Delaunay triangulation of a
discrete set of points located at general positions corresponds to the dual graph
of the Voronoi tessellation for this set of points. The original points are called
Voronoi sites. The centers of the circumspheres are called Voronoi vertices.
Connecting the Voronoi vertices produces the usual Voronoi diagram where
each cell is the domain of all the points closer to its Voronoi site than any other
site.

We use the Qhull software [1] to compute the 3D Delaunay triangulation
of a set of points (Voronoi sites), as well as the Voronoi vertices associated to
each site. Qhull implements the Quickhull algorithm for computing the convex
hull (see e.g. [15]). The problem of finding the Delaunay triangulation of a set
of points in three dimensions can be converted to the problem of finding the
convex hull of a set of points in a four dimensional space.

Knowing the Voronoi vertices allows us to compute the areas of the common
facets shared by pairs of Voronoi cells, as well as the volume of each Voronoi
cell. For facets containing more than three Voronoi vertices, we apply again the
Qhull algorithm to determine a triangulation (in 2D) of that facet. The area is
then computed by summing up the areas of the triangles. Once all the facets
areas are known, it is easy to evaluate the volumes of the Voronoi cells by using
these areas and the distances between the facets and the Voronoi cells centers,
summing up the volumes of the simplices made by each facet and the Voronoi
site.

For large scale jobs (104–105 tasks), calculating the whole tessellation on
each task would become quite expensive. In practice, this is not required since
each parallel task needs to compute only the simplices which include the local
Voronoi center. To do that, each task needs to know all the possible neighbor
tasks and their Voronoi sites. This may not be possible at the very first step
if nothing is known about the distribution of the Voronoi sites. In that case,
each parallel task has to compute the geometry of the local Voronoi cell using
all the Voronoi sites. Qhull offers the option of computing a limited Delaunay
triangulation which include only the facets with vertices including a certain site.
Using the Quickhull algorithm however, irrelevant sites may be decimated very
quickly and this computation can be done very fast. At any subsequent step
however, the local Voronoi tessellation calculation usually involve only of the
order of 10 to 30 sites and is extremely fast.
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2.3. Implementation

In ddcMD, the particle-based domain decomposition scheme does not use
spatially implicit communication partners [18]. Instead, each processor main-
tains a list all the other processors it must communicate with and the particles
with which the local particles interact (the communication table). The proces-
sors on the list are exactly the ones that own atoms within the interaction cut-off
distance of an atom owned by that processor. This list limits communication to
as few neighboring processors as possible during a normal molecular dynamics
step.

The explicit communication lists allow a simulation to proceed without
changing ownership of the atoms each time they cross the boundary of the
Voronoi cell of the processor to which they were originally assigned. However,
as particles diffuse over time, the range of the communication lists can become
unacceptably large. Thus, a reassignment of particles to processors is done peri-
odically to limit communication costs. Each atoms is assigned to the processor
with the closest domain center (Voronoi site).

To compute the local Voronoi cell and its properties, a task must compute
the local Delaunay tessellation (see Section 2.2). For that it needs to know
the Voronoi sites of all the adjacent cells it is connected with. In general, the
Voronoi sites linked through a Delaunay triangulation to a particular site s on
processor Ps may not correspond to the set of processors a particular task need
to communicate with to compute atomic interactions. But as long as the list
of input sites used to compute the tessellation contains the adjacent sites, it is
sufficient.

Measuring load imbalance can be done in various ways. The optimal timer
to use for our load balance scheme is likely to depend on the specific problem
one tries to simulate and will depend in particular on the relative cost of forces
calculation and the average number of particles/task. We have implemented
various options to compare load between tasks, such as number of local par-
ticles, number of local interacting pairs, measured wall clock time to compute
local forces, measured wall clock time minus idle time, etc. For the numerical
examples presented in section 3, we estimate the load by measuring wall clock
time and subtracting idle time. Idle time is not obvious to measure and is
implementation specific. In ddcMD, we use two specific barriers and measure
the time each task spends waiting at those barriers. Those barriers correspond
to a synchronization point after the exchange of interacting particles between
adjacent domains and another synchronization point after the force calculation.
We also include in the idle time the time each task spends waiting at specific
blocking MPI receive calls.

In practice, the load balancing scheme itself is not very computationally
intensive. The computation of the local Voronoi structure and the adaptation
of the domains centers takes less than 1% of the total computational cost for
all the examples we have experimented with. There is however an indirect cost
due to the fact that the list of local atoms and interacting atoms belonging to
other processors needs to be recomputed after changing the domains. This task
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can have a non-negligible cost in some cases, but is mitigated by an appropriate
synchronization of load balancing and neighbor table calculation steps, since
this task has to be performed at regular intervals anyway.

Note that if load balance is applied at regular intervals like every n steps,
while other operations such as calculating neighbor tables are done whenever
needed, two consecutive cpu timings measurements may not include the same
operations and thus may vary substantially.

Approaches based on wall clock time measurements are capable of taking
into account fluctuations from within the simulation due to particle motion as
well as from outside the simulation, e.g. uneven processor loads on clustered
workstations, or even processor performance on a homogeneous cluster.

3. Numerical Results

We have implemented the algorithm above for the general 3D case usually
encountered in MD. We have however adapted it also for quasi-2D problems
where one dimension is much smaller than the other two. The domain decom-
position is done only in two dimensions for that case. We start by showing
results for a quasi-2D problem since it is easier to visualize. Then we apply our
algorithm to a finite system (Fe nanowire) and a Lennard-Jones condensation
problem.

3.1. Quasi-2D problem: two molten metals in contact

We consider the problem of an interface between two fluids flowing in oppo-
site directions to simulate Kelvin-Helmholtz instability. We consider a physical

domain of dimensions 20.1 × 1254.7 × 1257.3Å
3

containing 2 × 106 atoms. The
top half (z > 0) is composed of aluminium atoms while the bottom half (z < 0)
is made of copper atoms. Both types of atoms interact with forces derived from
an embedded atom model (EAM) potential. [13] Periodic boundary conditions
were used in the x- and y-directions, while a static potential was used in the
z-direction to confine the atoms.

Load imbalance comes from the fact that liquid copper is more dense than
liquid aluminium. This leads not only to a larger number of particles in a given
size subdomain, but also to a larger number of interacting pairs for a given
potential cutoff radius and consequently more work to compute forces between
interacting atoms. The initial and final (after load balancing) Voronoi tessella-
tion are shown in Fig. 2 for an initial 1×16×16 uniform domain decomposition
on 256 processors. Imbalance is not very large for this problem, but load bal-
ancing still leads to a reduction in wall clock time of about 10%.

A more stringent test of the algorithm on this system is carried out by start-
ing with an initial Voronoi tessellation obtained from randomly placed Voronoi
sites. In that case the initial load imbalance is quite high. Applying our load
balance algorithm every 100 MD steps quickly leads to an almost perfect load
balancing. Convergence is illustrated in Fig. 3 where the minimum, maximum
and average values of the load are plotted as a function of MD steps. For the
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Figure 2: Voronoi cells and sites (in the yz-plane) for Al-Cu two fluids simulation: initial
(uniform) domain decomposition (left) and Voronoi cells and sites after load balancing (right).

last data point (MD step 5000), the minimum and maximum values for the load
differ from the average value by only 1%. Fig. 4 shows the initial and final
tessellations for this run. Although the domain decomposition after balancing
is quite different for the two sets of initial Voronoi site (lattice vs. random)
the final performance is quite similar with the maximum timing in the random
case only about 2% higher than in the lattice case. Thus even if the algorithm
may lead to a local minima which depends on the choice of the initial Voronoi
tessellation, the timings obtained—at least in this case—are acceptably close to
the optimal ones.

3.2. Finite system: Fe nanowire

Finite systems with empty space typically lead to load imbalance if a uniform
domain decomposition is used. Some domains contain a large volume of vacuum
and not much computational work, while others are densely populated with
atoms. We illustrate the performance of our load balancing algorithm for such
systems with an application to a Fe nanowires.

We consider a nanowire made of 133280 atoms in a periodic cell of length
200 Angstrom along the wire axis. The length of the computational domain in
the other two dimensions is 102 Angstrom. Atoms interaction is modeled with
EAM potentials[14].

We performed an MD calculation on 64 processors, starting with a 4× 4× 4
uniform domain decomposition and an average number of atoms/task of 2082.
With this domain decomposition, the distribution of atoms on tasks has initially
a minimum of 680 atoms and a maximum of 2860 per task. After 500 MD steps,
applying our load balancing scheme every 100 steps based on measured timings,
that spread is substantially reduced, with a minimum number of atoms/task of
1892 and a maximum of 2246. We used ninner = 5 and γ = 20. The number
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(left) and tessellation obtained after load balancing (right).
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of interacting pairs of atoms on each task is more closely related to computer
time. Its spread also decreases quickly as illustrated in Fig. 5. Fig. 6 shows
a cross section of the nanowire with atoms colored according to the domain
decomposition. Load balancing leads to a reduction in wall clock time of about
30 %.

3.3. Lennard-Jones condensation

As an illustration of load balancing for a 3D non-uniform MD problem, we
consider condensation in a Lennard-Jones gas. The Lennard-Jones potential is
defined by

φ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(14)

where r is the distance between two particles (see e.g. [7]). The simulations
are performed using a shifted truncated potential, φ(r) = 0 for r > Rc and
continuous at r = Rc, with a cut-off radius of Rc = 2.5σ. We use the parameters
ǫ = 0.0104eV and σ = 3.405Å corresponding to Argon, with masses of 40 atomic
units.

We setup our simulation with 2.5 · 106 particles placed on a simple cubic
lattice in a cubic domain of side length 816 Angstrom, which corresponds to
about 0.22 the density of liquid. We then apply a small random displacement to
each particles before running a molecular dynamics simulation with a Langevin
thermostat set at T = 81 K, that is below the boiling temperature. Periodic
boundary conditions are used in all three directions. The calculation was carried
out using 512 tasks on 256 nodes of a Blue Gene/L computer.

Initially, load imbalance is quite small since the particle distribution is quite
uniform. As times goes on, condensation begins and clusters of particles start
to form. As more and more particles group together, load imbalance increases.
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Figure 6: Cross section of nanowire with atoms colored according to subdomain they belong
to. Comparison of run with uniform domain decomposition (left) and after applying load
balancing algorithm (right).

Fig. 7 shows the minimum and maximum timings measured over the 512 proces-
sors involved. A run without load balance is also shown for comparison. After
2.5 × 106 steps, the wall clock time/iteration for the unbalanced calculation
is 32% higher than the balanced one. load balancing keeps the minimum and
maximum load within 2.5% of each other.

To test our algorithm on a large scale simulation, we extended our Lennard-
Jones test problem to 42×106 particles and ran a molecular dynamics simulation
using the same conditions as described above for the smaller problem. We
carried out 106 steps using 16384 MPI tasks on 8192 nodes of a Blue Gene/L
computer. The results are plotted in Fig. 8. One notices that the spread between
the minimum and maximum timers, while still small, is larger than for the
smaller scale test. One also notices a “bump” in the maximum time with load
balancing at roughly step 900000. A closer look at the number of particles
(local and remote) on one of the tasks involved in this bump (task 2835), shows
discontinuities in the particle count at the same time (Fig. 8, right). A similar
discontinuity can be observed for the volume of the Voronoi cell associated to
that task. These discontinuities are an indication that at some point during
the simulation, the tessellation was trapped into a local minima of the load
balance cost function. As this local minima leads to a situation where load is
increasingly unbalanced, the situation becomes unstable and leads suddenly to
more drastic moves and reorganizations of the Voronoi tessellation. While such
situations may temporarily increase load imbalance the overall effect of the load
balance algorithm is still a substantial reduction in wall clock time compared to
an unbalanced simulation, keeping imbalance to a very reasonable overhead.
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Figure 7: Lennard-Jones condensation problem with 2.5 · 106 particles and 512 MPI tasks:
Minimum and maximum timings over all the MPI tasks for unbalanced and balanced cases.
For a better display, only one out of every 400 points is shown here. For this test, γ =
10, ninner = 1.
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3.4. Imperfect Hardware

Imperfect or underperforming hardware can cause a load imbalance even
when the system being simulated has a homogeneous density. One example of
such problems we have observed involves high rates of correctable DRAM errors
on Blue Gene/L and Blue Gene/P nodes. Because the errors are correctable
the simulation can continue, however when the rate of such corrections becomes
sufficiently high, the time spent performing these corrections can substantially
reduce the computing performance of the affected CPU.

To demonstrate the performance of our algorithm in such a case, we ran a
simulation on 16,384 Blue Gene/P nodes (65,536 MPI tasks) at a time when
there were nodes in the system that were about to be replaced due to a high
rate of correctable errors. The simulation consisted of 440×106 copper particles
with uniform density. Forces were again calculated with an EAM potential [13].

The impact of the failing nodes on the performance of the calculation was
profound. Although the number of atoms per task was initially uniform all but
two mpi ranks spent over 80% of their time in synchronization barriers waiting
for the slow hardware to catch up. The wall clock time per MD time step was
initially nearly 3 seconds. After 1,400 time steps with load balancing, the time
spent in barriers was reduced from 2.4 seconds per step to less than 0.3 seconds
per step, a reduction of 87%. The overall wall time per step was reduced to
less than 0.75 seconds per step. While our window of opportunity to run this
large scale test was relatively short, it was sufficient to demonstrate how our
algorithm was able to quickly reduce imbalance and improve performance by
more than a factor of 4 in this case of imperfect hardware.

4. Concluding remarks

We have presented a dynamic load balancing algorithm for classical MD
simulations. By moving the Voronoi sites that define each parallel subdomain,
excellent load balancing has been obtained for various applications including
problems with imbalances caused both by inhomogeneous atom arrangements
and by inhomogeneous hardware performace. Overhead is very small and usu-
ally well below 1% of the computation time.

One drawback of a diffusion algorithm such as the one we are proposing is
the potentially long time it may take to propagate information across the ma-
chine. However, it can be argued that this is an initial condition problem only,
and that once any initial load imbalance has been accounted for, dynamic par-
ticle motion that tends to increase load imbalance should not propagate faster
than the particles and thus should be resolved on the fly. Local diffusion process
also have the significant advantage that they are much easier to parallelize on
a large number of processors since they involve no centralized load balancing
strategy or global communication whatsoever. Also the inner iterations we have
introduced allow a much faster redistribution of the load across the processors
and achieve a good load balance quickly, even for non-optimal initial domain de-
compositions. The diffusion process could be further accelerated by integrating
our load balancing technique into a multi-level diffusion strategy [9].
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We have shown that our strategy is highly scalable, with successful tests
on up to 65,536 MPI tasks. Although we occasionally observed some tempo-
rary deviation from good load balancing related to local minimas of the cost
functional we are trying to minimize, these deviations remain small and the
algorithm brings the system back to good load balancing after a short time. In
any case, even with these temporary small imbalances, our algorithm leads to a
much faster time to solution for non-uniform particle distributions.
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