
LLNL-TR-509454

A New Ensemble of
Perturbed-Input-Parameter Simulations
by the Community Atmosphere Model

C. Covey, S. Brandon, P. T. Bremer, D. Domyancis, X.
Garaizar, G. Johannesson, R. Klein, S. A. Klein, D. D.
Lucas, J. Tannahill, Y. Zhang

October 28, 2011



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



A New Ensemble of Perturbed-Input-Parameter Simulations by the 

Community Atmosphere Model

Curt Covey, Scott Brandon, Peer-Timo Bremer, David Domyancic, Xabier Garaizar, 

Gardar Johannesson, Richard Klein, Stephen A. Klein, Donald D. Lucas, John 

Tannahill, and Yuying Zhang

Lawrence Livermore National Laboratory, Livermore, CA

27 October 2011

LLNL-TR-509454

CORRESPONDING AUTHOR:

Curt Covey, LLNL Mail Code L-103, 7000 East Avenue, Livermore, CA 94550

E-mail: covey1@llnl.gov

mailto:covey1@llnl.gov


2

ABSTRACT 

Uncertainty quantification (UQ) is a fundamental challenge in the numerical 

simulation of Earth’s weather and climate, and other complex systems. It entails 

much more than attaching defensible error bars to predictions: in particular it 

includes assessing low-probability but high-consequence events. To achieve these 

goals with models containing a large number of uncertain input parameters, 

structural uncertainties, etc., raw computational power is needed. An automated, 

self-adapting search of the possible model configurations is also useful.

Our UQ initiative at the Lawrence Livermore National Laboratory has 

produced the most extensive set to date of simulations from the US Community 

Atmosphere Model. We are examining output from about 3,000 twelve-year climate 

simulations generated with a specialized UQ software framework, and assessing the

model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of 

the input parameters we vary are related to the boundary layer, clouds, and other 

sub-grid scale processes. Our simulations prescribe surface boundary conditions 

(sea surface temperatures and sea ice amounts) to match recent observations.

Fully searching this 21+ dimensional space is impossible, but sensitivity and 

ranking algorithms can identify input parameters having relatively little effect on a 

variety of output fields, either individually or in nonlinear combination. Bayesian 

statistical constraints, employing a variety of climate observations as metrics, also 

seem promising. Observational constraints will be important in the next step of our
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project, which will compute sea surface temperatures and sea ice interactively, and 

will study climate change due to increasing atmospheric carbon dioxide.
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Modern climate models produce detailed three-dimensional simulations of 

temperature, wind, humidity, and other meteorological fields in a large domain 

extending month-by-month over decades to centuries of time. Errors are inevitable 

given imperfectly known initial conditions, boundary conditions, and the large 

number of assumptions that must be made about poorly understood small-scale 

phenomena, like cloud formation and turbulence. Indeed, numerical simulations of 

many complex systems, from macromolecules to galaxies, are subject to the old 

saying that “all models are wrong but some models are useful.” Since the first three-

dimensional climate models were run on 1970s supercomputers, attempts have 

been made to attach defensible probabilities to their predictions. This article 

presents initial climate-related results from an uncertainty quantification (UQ) 

initiative at the Lawrence Livermore National Laboratory (LLNL). The initiative 

follows a broad multidisciplinary approach to advancing UQ in climate science and 

other endeavors of interest to LLNL (e.g., the National Ignition Facility).

A full probabilistic assessment of climate prediction uncertainty must include 

not only outcomes that are most likely, but also a quantification of low-probability 

but high consequence events. Even a 1% chance of catastrophic flooding, for 

example, might be significant in designing a dam. Therefore much climate UQ in 

recent years has involved probability density functions (PDFs). The canonical PDF 

describes the idealized but well-defined quantity T2xCO2 , the equilibrium global 

mean surface warming due to doubled atmospheric carbon dioxide. Over the past 

decade many research groups, using different climate models and different methods 

of analyzing climate model output, have published T2xCO2 PDFs.  Traditional 
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climate model evaluation uses multi-model ensembles (MMEs) in which the output 

of different climate models, developed somewhat independently, is inter-compared 

(Randall et al. 2007). T2xCO2 PDFs can be derived from MMEs, but small sample 

sizes limit this approach (Raisanen 2005). Beginning about a decade ago, two 

groups in the United Kingdom have followed a different approach. 

The UK groups constructed perturbed parameter ensembles (PPEs) from 

variants of the UK Meteorological Office Hadley Center climate model HadCM3. A 

PPE may be constructed from a single climate model by varying the values of 

selected internal input parameters within “reasonable” limits. Within the UK, the 

QUMP project (Quantifying Uncertainties in Model Prediction; Murphy et al. 2004) 

employs Met Office supercomputer facilities, while the CPDN project 

(climateprediction.net; Piani et al. 2005, Stainforth et al. 2005) employs worldwide

“cloud computing” as described below. Collins et al. (2010) update and summarize 

the UK PPE results. In the United States, Jackson et al. (2008) and Sanderson (2011)

have applied the PPE technique to the Community Atmosphere Model (CAM). Other 

groups are now generating PPEs from other models (Neelin et al. 2010, Yokohata et 

al. 2010, Klocke et al. 2011).

A striking implication has emerged from the work to date. Although PDFs of 

T2xCO2 peak in the range ~ 1.5 – 4.5 K (consistent with MMEs dating back to the 

two-member “ensemble” assessed by Charney 1979), they are often noticeably

skewed toward higher climate sensitivity. This result implies that T2xCO2  values 

5 K for the real Earth are plausible, albeit less likely than the canonical 1.5 – 4.5 K 

range (see Box 10.2 of Meehl et al. 2007a). Very high climate sensitivity implies 
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potentially catastrophic effects from even modest carbon dioxide emissions. Most 

PPE simulations to date, however, come from a single source: HadCM. Sanderson

(2011) obtained very different PDFs from his limited number of CAM simulations, 

despite his attempt to construct a PPE with similar uncertain input parameters to 

the previous HadCM work. Further, the PDFs shown in Box 10.2 of Meehl et al. 

(2007a)—which are constructed from both PPEs and a variety of other methods—

exhibit substantial variation not only in their “tails,” but also in their means and 

dispersions. These results provide motivation for continued PPE construction and 

analysis using CAM.

METHODS. The LLNL UQ initiative constructs PPEs from versions of CAM 

algorithmically close to those employed by Jackson et al. (2008) and Sanderson 

(2011), but with a greatly expanded list of variable input parameters (see Table 1). 

As described below, the CAM ensembles are generated using LLNL’s UQ Pipeline 

software framework. We aim to assess T2xCO2 as well as more directly useful 

predictions of climate change (e.g., regional as opposed to global-mean changes). 

First however, we created and are now analyzing a large database of simulations in 

which sea surface temperatures (SSTs) and sea ice amounts are prescribed to match 

observations over recent years (1993-2004; the first two years of output are 

omitted from our analysis to avoid spin-up artifacts). By construction, such “AMIP” 

simulations exclude substantial changes in the global climate, but they provide a 

useful assessment of climate model behavior (Gates et al. 1999). In the context of 

climate UQ, comparison of AMIP simulations with real-world observations provides 
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an important measure of model accuracy as a function of the assumptions embodied 

in the model.

Expanding the number of variable input parameters entails different 

scientific and computational strategies. Different approaches are needed because a 

naïve search of the space of possible model configurations grows exponentially with

the number of parameters that are varied. Studies that vary only a few parameters 

can be undertaken with methods that would not work for studies that vary more 

parameters. Sanderson (2011) varied four of CAM’s input parameters among high, 

medium, and low discrete values (with medium values chosen to match the model’s 

default input parameter settings) and ran the model for every one of the resulting 34

= 81 possible combinations. Jackson et al. (2008) varied six of CAM’s input 

parameters and ran the model 518 times to study how climate model development 

efforts might  calibrate input parameters to arrive at a simulation in best agreement 

with observations. For the studies discussed below, we varied 21 – 28 CAM input 

parameters listed in Table 1.

These are only a fraction of all of CAM’s uncertain input parameters. As in 

previous work, we selected the parameters to vary and chose their limits of 

variation in consultation with the respective climate process experts. We also 

ensured that similar CAM input parameters considered by Jackson et al. (2008) and 

Sanderson (2011) were included in our studies. (A precise superset could not be 

constructed because we used newer and slightly different versions of CAM.) As in

previous work, our list is focused on subgrid-scale parameterizations of clouds and 

precipitation, convection, and the turbulent near-surface planetary boundary layer 



8

(PBL)—processes long recognized as the most challenging for weather and climate 

models to represent. Table 1 notes that the first 25 of our 28 chosen input 

parameters appear in CAM’s modules parameterizing cloud fraction, cloud optics, 

cloud particle sedimentation, cloud water in its different phases, the PBL and 

shallow convection (Hack parameterization), and deep convection (Zhang-

McFarlane parmeterization). See Collins et al. (2006) and Gent et al. (2009) for 

summaries of these parameterizations. The remaining three parameters involve the 

turbulent transfer of water mass, energy, and momentum between the surface and 

the atmosphere.

As noted in Table 2, we used CAM Version 3.6 in our initial studies, later 

switching to the publicly released Version 4.0 when it became available. Jackson et 

al. (2008) used Version 3.1 and Sanderson (2011) used Version 3.5. All of our 

simulations used the finite-volume dynamical core with a horizontal resolution of

1.9° x 2.5° latitude x longitude resolution, and 26 vertical levels. This formulation is 

identical to Sanderson’s and similar to Jackson et al.’s spectral T42 resolution           

(~ 2.8° x 2.8° latitude x longitude). Little difference exists in subgrid-scale 

parameterizations between Versions 3 – 4 of CAM compared with the difference 

between Versions 3 – 4 and Version 5 (Neale et al. 2010). We ran each AMIP 

simulation for 12 years and analyzed output from the final 10 years.

For most of our CAM runs, input parameter values were selected with equal 

probability from the ranges defined by the high and low values shown in Table 1. In 

the context of Bayesian statistics, our uncertain input parameters were described 

using flat or non-informative priors. We explored input parameter space by the
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random-walk MOAT method (Morris 1991) and by Latin hypercube selection (e.g., 

Section 7.8.1 of Press et al. 2007). For initial benchmark simulations, we also varied

each parameter individually with all other parameters set to default values (one-at-

a-time or OAT method). In the MOAT method, the input parameter space is 

partitioned into a lattice, a random point on the lattice is chosen for an initial 

simulation, and then additional simulations are performed by taking large steps

through the lattice, one direction at a time. The result is a “MOAT path,” a random 

walk in the input parameter space. The chief advantage of the MOAT method is that 

its computational cost scales linearly with the number of uncertain input 

parameters. Ten to twenty different MOAT paths are typically sufficient to 

characterize sensitivities over the global parameter space (i.e., 220-440 simulations 

for 21 uncertain parameters). 

As shown in Table 2, we performed a total of 2,894 AMIP runs for a 

cumulative period of 34,728 simulated years. We also ran 88 simulations with 

different initial conditions as well as different input parameter values, but a first 

look at these suggests that varying the internal input parameters has far more 

influence on climate, as expected (see Fig. 4 below). Archiving the standard 

monthly-mean output from these runs produced a database exceeding 42 Terabytes 

in volume. It is the most extensive set of AMIP PPE output from CAM. Even so, our 

simulations cover an extremely small fraction of the enormous uncertainty space 

implied by Table 1. To illustrate, if we were to divide each of our parameter ranges 

into three bins (e.g., low, medium and high), more than ten billion simulations (321) 

would be needed to evaluate all of the possible combinations for 21 parameters. 
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This number grows exponentially with the number of dimensions, and of course 

more than three values of each parameter are needed to fully characterize the 

model’s response. Potentially an infinite number of choices could be made for each 

input parameter. These mathematical facts of life—sometimes called “the curse of 

dimensionality”—make both raw computational power and sophisticated

computational methods mandatory in climate UQ.

To achieve the requisite computational power, the CPDN project has 

employed a volunteer network of desktop computers located around the world: 

“cloud computing.” In contrast, our project currently makes semi-dedicated use of

LLNL’s Atlas machine, a high-performance AMD Opteron cluster with about 8,000 

computing cores. Such machines are ideal for running an ensemble of many 

simulations in parallel, including those that require inter-core communication (e.g.,

runs at high resolution) and those that do not (e.g., Monte Carlo). We completed ~

35,000 simulated years in a single calendar year.

Although enumeration of our computational methods (either present or 

planned) is beyond the scope of this article, we briefly note our use of the LLNL UQ

Pipeline. The UQ Pipeline is an end-to-end workflow software system providing an 

interface to multi-dimension, multi-physics simulation programs like CAM. It stages, 

executes, and potentially monitors concurrent ensemble simulations, permitting 

“adaptive sampling refinement” (ASR) in which automated output analysis can 

guide the varying of input parameters. It includes algorithms to sample high-

dimensional input parameter spaces, to construct surrogate models (see below), to 

generate statistical inferences from ensemble output, and to incorporate 
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observational data in order to constrain input parameters and determine their PDFs

(see Fig. 7 below). In addition to enabling the production and analysis of climate 

simulations discussed in this paper, the UQ Pipeline has been applied to the design 

of LLNL’s laser-fusion project, the National Ignition Facility (Spears et al. 2009, 

2010).

RESULTS. Figure 1 maps the Western Hemisphere surface air temperature response 

in CAM3 to changes in an input parameter varied within a multi-dimensional space 

as part of our MOAT study: the timescale tau for the consumption of convective 

available potential energy (CAPE) in the Zhang-McFarlane deep convection module 

zm_conv. This input parameter strongly influences a variety of output fields (see Fig. 

3 below) and exhibits both expected and surprising features. Figure 1 shows that 

surface air temperature responds least over ocean areas, where AMIP boundary 

conditions fix SST, and most over the Amazon basin, the land region where deep 

convection is most prominent in the hemisphere. (Land-use distributions are fixed 

in this version of CAM, so effects of deforestation are not considered our 

simulations.) Surprisingly, Central America exhibits less sensitivity to tau than the 

“Southwestern monsoon” region of the USA, and the Central American response is 

widely spread over adjacent downwind ocean areas.

An important near-term goal of our work is to assess the relative sensitivity 

of CAM output to different input parameters. If some are much less influential than 

others on the output, they could be omitted from future work. Even slightly reducing 

the number of input parameters would greatly reduce the computational effort and 
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complexity of a PPE analysis (due to the “curse of dimensionality” discussed above). 

Figures 2 and 3 show how the MOAT method can be used for this purpose. In Fig. 2,

the effects upon global- and annual-mean Outgoing Longwave Radiation (OLR) of 

varying the 21 input parameters in our CAM3 simulations are represented by points 

on a two-dimensional plot. The horizontal coordinate is the mean magnitude of OLR 

changes per fractional change of the input parameters, averaged over 20 MOAT 

paths. The vertical coordinate is the corresponding standard deviation. Region (i) of 

the plot identifies input parameters that generate relatively small mean-magnitude 

changes (< 0.4 W m-2). These input parameters are relatively unimportant for 

determining global- and annual-mean OLR. Regions (ii) and (iii) identify input 

parameters that generate larger mean-magnitude changes. Input parameters in 

Region (iii) also generate larger standard deviations. Thus, the effect of each Region 

(iii) parameter on OLR depends strongly on the location in parameter space. These 

input parameters exhibit relatively important nonlinear interactions either with

themselves or with other input parameters.

Ranking the parameter sensitivities by the mean magnitude changes (i.e., the 

horizontal axis in Fig. 2) indicates the most-to-least important parameters for a 

given output.  By performing the ranking for many outputs of interest, we can use 

MOAT to start to identify important sets parameters throughout CAM. Figure 3

shows a MOAT ranking analysis of the 21 input parameters varied in CAM3. For this 

analysis, we create sensitivity maps of 10 different output fields (e.g., as in Fig. 1), 

perform area-weighted averaging of the maps, and rank the resulting sensitivities

The output fields include near-surface air temperature TREFHT, precipitation rate 
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PRECT, and several types of energy flux at the surface and the top of the 

atmosphere. For example, FLUT is the Flux of Longwave Upward radiation at the 

Top, also called outgoing longwave radiation or OLR elsewhere in this paper. The 

output shown in Fig. 3 also includes both Longwave and Shortwave Cloud Forcing at 

the top of the atmosphere: LWCF and SWCF respectively. We have extended the 

ranking analysis to other fields (see Lucas et al. 2011), including most of those

proposed by Gleckler et al. (2008, Table 2) for objective metrics of climate model 

performance, and those used by Jackson et al. (2008) as observational constraints 

on their CAM PPE.

All output fields in Fig. 3 are relatively sensitive to deep convection 

parameter zmconv_tau, cloud fraction parameter cldfrc_rhminl, and cloud water 

parameter cldwat_icritc. Other input parameters from the cloud-water module exert

relatively weak influence on all output fields, as does cloud optics parameter 

cldopt_rliqice. It is also noteworthy that different output fields are most strongly 

affected by different sets of input parameters. Thus, before dropping any

parameters from further study, we are exploring other aspects of the simulated 

present-day climate (e.g., clouds) and also considering global climate changes that 

AMIP boundary conditions may suppress.

As noted above, we have devoted about 100 model runs to assessing the 

effect of different initial conditions on model output. We varied initial conditions in 

the traditional way, choosing different initial conditions from a present-day climate 

simulation. Our initial-condition experiments included 16 different sets of the CAM3 

input parameters from previous ensemble simulations. Figure 4 compares the effect 
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of varying initial conditions (colored lines) with the effect of varying input

parameters (gray lines). For the two global- and annual-mean output variables 

shown, initial-condition effects are about 10% of input parameter effects. For 

surface air temperature the range produced by varying input parameters is about 2 

K (rather surprising since AMIP boundary conditions prescribe SST) but the range 

produced by varying initial conditions is about 0.1 K. Note, however, that the 

ensemble spread displayed in Fig. 4 does not consider real-world observations. By 

calculating the likelihood that the ensemble members agree with observations, the 

output spread would be appreciably narrowed.

One particularly important climate observable is planetary albedo  , the 

ratio at the top of the atmosphere of global-mean upward solar energy flux to 

global-mean downward solar energy flux. Planetary albedo is a fundamental

ingredient of energy balance at the top of the atmosphere. The equation asserting

exact balance is (S / 4)(1 )  F , where F  global-mean OLR, and S  the so-called 

solar constant (so that a2S / 4a2  S / 4  global-mean downward solar energy 

flux). Figure 5 plots the residual global mean net downward energy flux at the top of 

the model (i.e., the difference between the left- and right-hand sides of the balance 

equation) as a function of  for 895 CAM4 simulations in which 27 input 

parameters are varied. The actual residual is nonzero because the climate system is 

not in perfect equilibrium. Observations (mainly of ocean heat content) imply that 

present-day incoming energy flux at the top of the atmosphere exceeds outgoing by 

~ 1 W m-2 or less (Hansen et al. 2005, 2011; Lyman et a. 2010; Trenberth and 

Fasullo 2010). AMIP simulations in general give somewhat larger residuals than 
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seen in the real world because SSTs are not allowed to adjust, even by slight 

amounts (consistent with observational uncertainty) that could adjust top-of-

atmosphere fluxes by ~ 1 W m-2. For example, CAM3 and CAM4 with default input 

parameter values give net downward energy fluxes of about +4 and +2 W m-2

respectively.

It is clear from Fig. 5, however, that most of our PPE egregiously exceeds 

observed limits on top-of-atmosphere fluxes. More than two-thirds of the 

simulations fall outside a generous 95% confidence range from modern satellite 

observations (Loeb et al. 2009, Trenberth et al. 2009) despite expert opinion 

providing the range of variation for each input parameter. Simulations that fall far 

outside observed limits receive very low likelihood scores in our statistical analysis.

Most of our PPE members that fail a top-of-atmosphere flux test do so with 

excessively large  . This corresponds to excessive reflected solar energy and a net

upward energy flux at the top of the atmosphere > 10 W m-2 for most of the PPE. The 

points in Fig. 5 fall close to a straight line (correlation  r  0.96 with slope 

m  280 W m-2.; repeating the exercise for 757 later CAM4 simulations varying 28 

input parameters gives r  0.95 and m  290 W m-2 ) with slope magnitude less 

than the value S / 4  340 W m-2 that would occur if F were constant. In our results F 

is negatively, albeit rather weakly, correlated with  ( r  0.57 and 0.48 in the 27-

and 28-parameter studies respectively). Apparently more cloudiness in our PPE

entails not only a higher planetary albedo, but also more high altitude clouds, which 

produce OLR at cooler temperatures. This counteracts to some extent the direct

effect of  upon net energy input to the climate system. Nevertheless, it is clear 
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from Fig. 5 that  is the primary controlling factor in our AMIP simulations. This 

result confirms a longstanding principle of atmospheric model development that

reserves planetary albedo for “final tuning” of the model’s energy budget (e.g.,

Section 2.5.1 of CCSP 2008).

Preliminary work suggests that filtering by the single global-mean constraint 

0.275  0.320 , as suggested by Fig. 5, improves the simulation of energy flow 

through the climate system not only globally but also as a function of latitude and 

season (not shown). There is no guarantee, however, that it will select results that 

prove satisfactory in aspects other than energy flow through the climate system. 

Therefore we are applying additional constraints based on a subset of the 

observables listed in Table 2 of Gleckler et al. (2008). We are also quantifying the 

input parameter values responsible for the most satisfactory simulations. For each 

of our fields, we crudely estimate observational uncertainty by taking the difference 

between two datasets, e.g., ERBE vs. CERES for top-of-atmosphere energy fluxes and 

ERA-40 vs. ERA-Interim for most other fields. To efficiently search the large input 

parameter space, we construct surrogate models (a.k.a. response surfaces or

statistical emulators) in which the output of CAM as a function of input parameters 

is approximated at drastically reduced computational cost. We have tested several

different methods for surrogate model construction and here show preliminary 

results from two of them: Gaussian process (Sacks et al. 1989, Levy and Steinberg 

2010) and multivariate adaptive regression splines (or MARS; see Friedman 1991).

Figure 6 is a square matrix of plots illustrating some results of our Bayesian 

statistical analysis. We constructed Gaussian process surrogate models for the 
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global means of five quantities discussed above—OLR (a.k.a. FLUT), FSUTOA [

 (S / 4)( )], LWCF, SWCF, and PRECT—together with humidity and temperature at

the 850 hPa level, and geopotential height at 500 hPa. For each of these eight 

quantities, we considered two seasonal means (December-January-February and 

June-July-August) as well as the annual means, for a total of 38 24 response 

surfaces. We applied observational constraints to a subset of five quantities (OLR, 

LWCF, SWCF, PRECT, 500-hPa geopotential height) for a total of 35 15

observational constraints. Figure 6 shows prior and posterior distributions of seven 

of the 24 outputs. The posterior input-parameter distributions (not shown) are 

essentially the likelihood that the parameter sets produce agreement with 

observations.

Diagonal elements in Fig. 6 give the marginal distributions for each of the 

selected output variables. Off-diagonal elements are density plots giving the joint 

distributions for each pair of the output variables. In the off-diagonal plots that pair 

different seasonal averages of the same variable, the points fall very close to straight 

lines, indicating a strong correlation between the different seasons. The different 

quantities LWCF and OLR also exhibit a strong correlation. These results are of 

course expected, and they reduce the effective number of independent observations. 

Principal component analysis of all observed fields employed in this exercise finds 

that the first four components explain 99.9% of the variance. In order to more 

effectively constrain the input-parameter space, future work will involve additional 

metrics. These will include spatial as well as seasonal variations. Nevertheless, Fig. 6

indicates that Gaussian process surrogate models can be used to find input 
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parameters that produce model output in simultaneous agreement with a variety of 

observations, given reasonable observational error bars. 

Figure 7 presents a sample result from the alternate MARS technique of 

surrogate modeling, but using the same observational constraints and model output. 

The left side of the figure shows the resulting prior and posterior distributions of

one input parameter, cltwat_icritc. This parameter is among the most influential on 

model output fields shown in Fig. 3. Its prior in Fig. 7 is a uniform distribution 

across the full range of variation, corresponding to our initial assumption that all 

values of uncertain input parameters are equally likely within the ranges specified 

by expert opinion. The uniform prior distribution gives way to a broad posterior 

with a maximum somewhat less than the model’s default value, in agreement with 

analogous results from the Gaussian process technique (not shown). The lack of a 

sharp maximum hints at the difficulty of tightly constraining input parameters using 

our trial set of observational constraints, a difficulty evident in prior work with PPEs 

from both CAM (Jackson et al. 2008) and other models (e.g., Neelin et al. 2010). This 

problem, however, may be lessened by omitting parameters with little influence on

model output and incorporating additional observational constraints.

The right side of Fig. 7 shows corresponding results for the output variable 

FSUTOA, the global mean upward solar energy flux at the top of the atmosphere. In 

agreement with Fig. 5, the prior distribution indicates that too much solar energy is 

reflected back to space in most of our PPE simulations. The posterior distribution

shows that this problem is largely corrected by MARS filtering—even though
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FSUTOA is not directly used as an observational constraint. The constraint occurs 

through SWCF, which is highly correlated with FSUTOA.

CONCLUSION. The first three-dimensional climate models were run on 1970s 

“supercomputers.” Due to their limited power, a typical study focused on a single 

model with one set of initial conditions and with internal input parameters 

assuming one set of values chosen to optimize output in some way. Comparing 

different simulations from different research groups led to multi-model ensembles,

beginning with the 1979 Charney report on potential global warming due to 

increasing atmospheric carbon dioxide. The most prominent MMEs today are the 

CMIP3 / IPCC AR4 database of climate model output (Meehl et al. 2007b) and its 

nascent successor, the CMIP5 / IPCC AR5 database of climate model output (see 

http://cmip-pcmdi.llnl.gov/cmip5).

Increasingly more powerful computers allowed climate model simulations to 

be run as an ensemble with different initial conditions (a procedure that has now 

become routine, e.g., Huebener et al. 2007) and later with many different settings of 

internal input parameter values (Murphy et al. 2004; Piani et al. 2005). The latter 

method, perturbed-parameter analysis, is complementary to multi-model analysis. 

PPE creation may be regarded as “de-tuning” a model from its designed

configuration, but it is necessary in order to fully assess the effects of uncertain 

assumptions on model predictions.

The first step of our climate UQ project at the Lawrence Livermore National 

Laboratory has built on prior work (Jackson et al. 2008; Sanderson 2011) to create

http://cmip-pcmdi.llnl.gov/cmip5
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the most extensive PPE of AMIP simulations from the Community Atmosphere 

Model. Archived storage volume exceeds that of the current CMIP3 / IPCC AR4 

database, which has been used by thousands of researchers around the world to 

produce hundreds of scientific papers (Meehl et al. 2007b). To benefit climate 

science research, we intend to make our PPE output available after completing

further analyses. We believe that in addition to traditional climate model evaluation, 

other methods from mathematics, statistics, and machine learning (e.g. Gerber et al. 

2010) are required to comprehensively survey our PPE output.

Our initial work focused on AMIP simulations, which prescribe surface 

boundary conditions to match present-day observations. We are now entraining

both simple (“slab”) and complex (three-dimensional) representations of the ocean 

together with interactive sea ice. The resulting coupled ocean-atmosphere models

can simulate climate changes such as global warming. We believe our work and its 

archived output will provide useful information on model behavior and its 

implications for real-world climate change.
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FIGURE CAPTIONS

Fig. 1. Mean magnitude of the sensitivity of CAM3 near-surface temperature to the 

timescale parameter for deep convection, zmconv_tau, using the MOAT method 

to vary 21 input parameters. Units are degrees Celsius because zmconv_tau is 

normalized and non-dimensionalized.

Fig. 2. Mean magnitude and standard deviation of the sensitivity of Outgoing 

Longwave Radiation to 21 parameters varied using the MOAT method and 

CAM3. Units on both axes are W m-2 because all input parameters are 

normalized and non-dimensionalized. Number labels correspond to parameters 

in Table 1. Regions (i), (ii), and (iii) divide the parameters into areas that have (i) 

little influence on OLR, (ii) moderate influence, primarily by direct effects of the 

parameter’s variation, and (iii) strong influence, primarily by nonlinear 

interactions with itself or with other parameters.

Fig. 3. Ranking of grid-point output sensitivity to 21 parameters varied using the 

MOAT method and CAM3. Rows give input parameters (see Table 1) and 

columns give output fields (see text).

Fig. 4. Time series of two global- and annual-mean output fields in CAM3 

experiments using the same initial conditions but varying 21 input parameters 

(gray lines), and in 10 additional perturbed input parameter experiments, each 
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using different initial conditions (colored bands).

Fig. 5. Filtering of model output by comparison with observed planetary albedo in 

CAM4 experiments varying 27 input parameters. The green line is the least-

squares fit to the data. The observed range is a 95% confidence interval inferred 

from satellite observations between 2000 and 2005.

Fig. 6. Filtering of model output parameter likelihood by Gaussian process 

surrogates and comparison with observations, in CAM4 experiments varying  28 

input parameters. The diagonal shows the marginal prior (gray) and posterior 

(black) distributions of three selected output parameters: outgoing longwave 

radiation (FLUT) and both longwave and shortwave cloud forcing (LWCF and 

SWCF respectively), all in units of W m-2. The cloud forcings are shown as 

annual means (ANN), December-January-February means (DJF), and June-July-

August means (JJA). Outgoing longwave radiation is shown only as ANN. The red 

points and lines in the diagonal graphics show observed ± 2σ values. The off-

diagonals show prior realizations (gray dots) and posterior realizations (black 

dots) from the bivariate distributions, with red crosses showing observed ± 2σ 

values.

Fig. 7. Filtering of (left) model input parameter likelihood and (right) model output 

by MARS surrogates and comparison with observations, in CAM4 experiments 

varying 28 input parameters. The marginal posterior distribution of one selected 
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input parameter and one global- and annual-mean output field are shown. The 

shaded 95% Confidence Interval corresponds to the observed range of planetary 

albedo in Fig. 6.
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Table 1. CAM input parameters varied in perturbed-parameter AMIP experiments. Parameters 1-21 were varied in CAM3. In 
addition, Parameters 22-27 were varied in subsequent runs using CAM4 (green color). In a final set of runs using CAM4, 
Parameter 28 was also varied (pink color).
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Low Default High
1 rhminh 0.65 0.80 0.85 Threshold RH for fraction of high stable clouds cldfrc_
2 rhminl 0.80 0.91 0.99 Threshold RH for fraction of low stable clouds cldfrc_
3 rliqice 8.4 14.0 19.6 Effective radius of liquid cloud droplets over sea ice cldopt_
4 rliqland 4.8 8.0 11.2 Effective radius of liquid cloud droplets over land cldopt_
5 rliqocean 8.4 14.0 19.6 Effective radius of liquid cloud droplets over ocean cldopt_
6 ice_stokes_fac 0.25 0.50 1.00 Scaling factor applied to ice fall velocity cldsed_
7 capnc 30.0 150.0 155.0 Cloud particle number density over cold land/ocean cldwat_
8 capnsi 10.0 75.0 100.0 Cloud particle number density over sea ice cldwat_
9 capnw 150.0 400.0 500.0 Cloud particle number density over warm land cldwat_

10 conke 2.0e-6 5.0e-6 10.0e-6 Evaporation efficiency of stratiform precipitation cldwat_
11 icritc 2.0e-6 9.5e-6 18.0e-6 Threshold for autoconversion of cold ice cldwat_
12 icritw 1.0e-4 2.0e-4 10.0e-4 Threshold for autoconversion of warm ice cldwat_
13 r3lcrit 5.0e-6 10.0e-6 14.0e-6 Critical radius at which autoconversion becomes ef ficient cldwat_
14 ricr 0.1 0.3 1.0 Critical Richardson number for boundary layer hbdiff_
15 c0 0.3e-4 1.0e-4 2.0e-4 Shallow convection precipitation ef ficiency hkconv_
16 cmftau 900.0 1800.0 14400.0 Time scale for consumption rate of shallow CAPE hkconv_
17 alfa 0.05 0.10 0.60 Initial cloud downdraft mass flux zmconv_
18 c0 1.0e-3 3.5e-3 6.0e-3 Deep convection precipitation ef ficiency zmconv_
19 dmpdz -2.0e-3 -1.0e-3 -0.2e-3 Parcel fractional mass entrainment rate zmconv_
20 ke 0.5e-6 1.0e-6 10.0e-6 Environmental air entrainment rate zmconv_
21 tau 1800.0 3600.0 28800.0 Time scale for consumption rate of deep CAPE zmconv_
22 fac 10.0 100.0 200.0 ustar parameter in PBL height diagnosis hbdiff_
23 fak 4.25 8.50 17.00 Constant in surface temperature excess hbdiff_
24 betamn 0.02 0.10 0.30 Minimum overshoot parameter hkconv_
25 capelmt 20.0 70.0 200.0 Threshold value for CAPE for deep convection zmconv_
26 cdn_scal_fac 0.8 1.0 1.2 Ocean roughness scaling factor (drv_in)
27 z0m_scal_fac 0.8 1.0 1.2 Moisture & heat resistance to vegetation scaling factor (lnd_in)
28 sgh_scal_fac 0.8 1.0 1.2 Land roughness scaling factor physpkg_

Param
Name

Param
#

Range
Description Namelist 

Prefix
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Table 2. Summary of CAM 12-year AMIP simulations.

Study
#

Study
Name

CAM
Version

# UQ
Params

Study
Runs

Sim
Yrs

Stored
Size (TB)

1 moat1 3.6 21 220 2,640 3.4

2 oat4 3.6 21 43 516 0.7

3 moat2 3.6 21 220 2,640 3.2

4 lhs01 3.6 21 110 1,320 1.6

5 vbd01 3.6 21 121 1,452 1.7

6 nond01 3.6 21 440 5,280 6.6

7 ics01 3.6 21 88 1,056 1.5

8 oat6 4.0 27 55 660 0.8

9 moat3 4.0 27 280 3,360 4.3

10 nond02 4.0 27 560 6,720 8.3

11 oat7 4.0 28 57 684 0.8

12 nond03 4.0 28 140 1,680 1.9

13 nond04 4.0 28 280 3,360 3.8

14 nond05 4.0 28 280 3,360 3.8

Totals => 2,894 34,728 42.2
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Fig. 1. Mean magnitude of the sensitivity of CAM3 near-surface temperature to the 
timescale parameter for deep convection, zmconv_tau, using the MOAT method to
vary 21 input parameters. Units are degrees Celsius because zmconv_tau is 
normalized and non-dimensionalized.
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Fig. 2. Mean magnitude and standard deviation of the sensitivity of Outgoing 
Longwave Radiation to 21 parameters varied using the MOAT method and CAM3. 
Units on both axes are W m-2 because all input parameters are normalized and non-
dimensionalized. Number labels correspond to parameters in Table 1. Regions (i), 
(ii), and (iii) divide the parameters into areas that have (i) little influence on OLR, 
(ii) moderate influence, primarily by direct effects of the parameter’s variation, and 
(iii) strong influence, primarily by nonlinear interactions with itself or with other 
parameters.
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Fig. 3. Ranking of grid-point output sensitivity to 21 parameters varied using the 
MOAT method and CAM3. Rows give input parameters (see Table 1) and columns 
give output fields (see text). 
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Fig. 4. Time series of two global- and annual-mean output fields in CAM3 
experiments using the same initial conditions but varying 21 input parameters (gray 
lines), and in 10 additional perturbed input parameter experiments, each using 
different initial conditions (colored bands).
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Fig. 5. Filtering of model output by comparison with observed planetary albedo in 
CAM4 experiments varying 27 input parameters. The green line is the least-squares 
fit to the data. The observed range is a 95% confidence interval inferred from 
satellite observations between 2000 and 2005.
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Fig. 6. Filtering of model output parameter likelihood by Gaussian process 
surrogates and comparison with observations, in CAM4 experiments varying 28 
input parameters. The diagonal shows the marginal prior (gray) and posterior
(black) distributions of three selected output parameters: outgoing longwave 
radiation (FLUT) and both longwave and shortwave cloud forcing (LWCF and SWCF 
respectively), all in units of W m-2. The cloud forcings are shown as annual means
(ANN), December-January-February means (DJF), and June-July-August means (JJA). 
Outgoing longwave radiation is shown only as ANN. The red points and lines in the 
diagonal graphics show observed  2 values. The off-diagonals show prior 
realizations (gray dots) and posterior realizations (black dots) from the bivariate 
distributions, with red crosses showing observed  2 values.
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Fig. 7. Filtering of (left) model input parameter likelihood and (right) model output 
by MARS surrogates and comparison with observations, in CAM4 experiments 
varying 28 input parameters. The marginal posterior distribution of one selected 
input parameter and one global- and annual-mean output field are shown. The 
shaded 95% Confidence Interval corresponds to the observed range of planetary 
albedo in Fig. 6.


