
LLNL-CONF-510002

Critical Path-Based Thread
Placement for NUMA Systems

C. Y. Su, D. Li, D. S. Nikolopoulos, M. Grove, K.
Cameron, B. R. de Supinski

November 1, 2011

2nd International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing
Systems (PMBS11)
Seattle, WA, United States
November 13, 2011 through November 13, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Critical Path-Based Thread Placement for NUMA Systems

ChunYi Su
Virginia Tech

Blacksburg, VA, USA
sonicat@vt.edu

Dong Li
Oak Ridge National Lab

Oak Ridge, TN, USA
lid1@ornl.gov

Dimitrios S.
Nikolopoulos

∗

FORTH-ICS
Heraklion, Crete, GREECE

dsn@ics.forth.gr
Matthew Grove

Virginia Tech
Blacksburg, VA, USA

mat@vt.edu

Kirk Cameron
Virginia Tech

Blacksburg, VA, USA
cameron@vt.edu

Bronis R. de Supinski
LLNL

Livermore, CA, USA
bronis@llnl.gov

ABSTRACT
Multicore multiprocessors use a Non Uniform Memory Ar-
chitecture (NUMA) to improve their scalability. However,
NUMA introduces performance penalties due to remote
memory accesses. Without efficiently managing data layout
and thread mapping to cores, scientific applications, even
if they are optimized for NUMA, may suffer performance
loss. In this paper, we present algorithms and a runtime sys-
tem that optimize the execution of OpenMP applications on
NUMA architectures. By collecting information from hard-
ware counters, the runtime system directs thread placement
and reduces performance penalties by minimizing the crit-
ical path of OpenMP parallel regions. The runtime system
uses a scalable algorithm that derives placement decisions
with negligible overhead. We evaluate our algorithms and
runtime system with four NPB applications implemented in
OpenMP. On average the algorithms achieve between 8.13%
and 25.68% performance improvement compared to the de-
fault Linux thread placement scheme. The algorithms miss
the optimal thread placement in only 8.9% of the cases.

Categories and Subject Descriptors
D.4 [Operating Systems]: Thread Management Schedul-
ing

Keywords
Multicore processors, NUMA, Thread Placement, OpenMP,
Critical Path, Shared Resource Contention

1. INTRODUCTION
Many shared-memory multicore multiprocessors use a Non
Uniform Memory Architecture (NUMA) to dedicate differ-
ent memory lanes to different processors and to distribute

∗Also with the Department of Computer Science, University
of Crete, Heraklion, Crete, Greece.

system DRAM between processors. Compute nodes of high-
end systems such as the Cray XMT [9] and XE series, as
well as compute nodes based on leading multicore proces-
sors, such as the IBM Power 7 [13] and the Intel Single-
chip Cloud Computer (SCC) [7], use a NUMA organization
for off-chip DRAM. NUMA systems provide more memory
bandwidth per core compared to UMA systems. Therefore,
their scalability is superior to that of UMA systems.

Performance optimization for NUMA systems typically re-
lies on data localization, so that each thread accesses lo-
cal off-chip memory upon cache misses. Such localization
may be achieved either with NUMA-aware data placement
or with NUMA-aware thread placement. Typically, NUMA
systems use first-touch or round-robin page placement on
DRAM to achieve a reasonably balanced initial distribution
of memory accesses between nodes. However, maximizing
local data accesses can create contention on the node-level
cache hierarchy and memory controllers by placing too many
threads on the same memory node. Moving some data to a
remote memory node may alleviate contention on shared re-
sources and outperform a thread or data placement scheme
that enforces strict localization. NUMA performance limi-
tations due to either contention or remote memory accesses
may limit application scalability [12].

NUMA may also break performance and power optimiza-
tions, such as Dynamic Concurrency Throttling (DCT) [3,
5, 11]. DCT dynamically adjusts the number of threads be-
tween parallel regions, according to a performance predic-
tion that indicates the optimal concurrency configuration
(number and layout of cores to be used) of each parallel re-
gion. Theoretically, appropriately selecting the number and
placement of threads for each parallel region can achieve
optimal performance if the implicit overhead of DCT is ig-
nored. Unfortunately, applying DCT on a NUMA system
is challenging, because adjusting the number and placement
of threads between parallel regions can break any data lo-
calization and the balancing of memory accesses that may
have been performed initially in the application.

Conventional OS schedulers do not adequately address the
NUMA issue, because they emphasize other optimization
criteria, such as fairness, throughput and responsiveness.
OS schedulers often perform thread migrations that ignore

Figure 1. NUMA test platform.

P P P P

cache

memory

P P P P

cache

memory

 HyperTransport

Interconnect

P P P P

cache

memory

P P P P

cache

memory

Figure 1: NUMA test platform.

the implications of data locality. Existing work studies how
to co-locate data and threads on NUMA architectures [10,
12] and how to build NUMA-aware task schedulers. While
OS-level NUMA-aware task schedulers are transparent, they
ignore important application-specific information, such as
the existence of application execution phases with different
memory access intensity and memory access patterns, or the
criticality of threads in an application, i.e., the threads that
execute the critical path. By contrast, such information is
available in the runtime system of languages used to paral-
lelize applications. In this work, we leverage critical path
analysis to optimize the thread placement of OpenMP ap-
plications on NUMA systems.

In this paper we propose several algorithms to solve the
thread placement problem on NUMA systems and apply
these algorithms to OpenMP applications. Our algorithms
differentiate from prior work by using critical path analysis
and the properties of threads executing this path to guide
thread placement. When scheduling threads, our algorithms
consider data locality and avoid local resource contention.
The paper makes the following contributions:

• We propose a stable algorithm to address the criti-
cal path problem. This algorithm determines the best
thread mapping in linear time with low overhead. This
scalable algorithm is suitable for many-core systems.

• We develop a runtime system to predict optimal thread
mappings for applications written in OpenMP.

• We implement and evaluate a runtime system for op-
timizing thread placement in OpenMP programs. The
runtime system provides placement error-resilience for
threads that are poorly mapped initially.

On a set of NPB OpenMP applications, our runtime sys-
tem improves performance on average by 8.13% and up to
25.68% compared to the default Linux scheduler. The run-
time system mispredicts the optimal thread placement for
only 8.9% of the parallel execution phases.

2. BACKGROUND AND MOTIVATION
NUMA performance issues arise in two cases. First, modern
multicore processors often have multiple memory controllers

(MCs) distributed across the same chip. Access by a core
to the memory attached to the closest memory controller
on the chip has longer latency than access to the memory
attached to another memory controller. For example, the
48-core Intel Single-chip Cloud Computer processor has four
DDR3 memory controllers [12]. The four MCs are placed at
the four corners of the SCC 2D on-die mesh. This implies
non-uniform memory access latencies for cores within the
socket. Second, NUMA may impose remote accesses across
sockets. Latency is lower for accesses to memory attached
to the memory controller on the same socket as a core than
accesses to memory attached to another socket. Our test
platform, which Figure1 illustrates, exhibits this difference.
Our platform has four quad-core AMD Opteron 8350 pro-
cessors (16 cores in total), with an MC for each socket with
a memory nodes attached to each MC. Besides remote mem-
ory access latency, NUMA may reduce performance due to
congestion on the interconnect and bandwidth saturation
when accessing memory.

NUMA system performance is sensitive to the page place-
ment policy of the operating system (OS). Typically, the OS
uses a ”first touch” policy that places physical pages on the
node on which the thread that first touches the page exe-
cutes. Other page allocation policies, such as round robin
and interleaving are also used, as they produce balanced dis-
tribution of data between nodes. In this work, we assume
the data is always allocated with the first touch policy, which
is also the default setting in Linux.

The performance of an OpenMP parallel region is sensitive
to how OpenMP threads are mapped to processor cores.
Figure 2 shows the performance of the SP benchmark from
the NAS parallel benchmark suite (OpenMP version) with
85 possible mappings and with the system default scheduling
on our test platform. The first bar of each group shows the
performance difference with the best and the worst mapping
cases. The second bar of each group shows the performance
difference with the default OS scheduling and with the best
mapping. Performance with the default OS scheduling can
be as much as 16.85% (region 9) worse than the best case.
Therefore, relying on the system default thread mapping
without information on data location is far from enough to
achieve best performance. Motivated by this example, we
explore new algorithms for NUMA-aware thread placement.

We base our algorithms on the following assumptions:

• We assume that applications are iterative. The outer-
most iterations are executed sequentially and typically
correspond to simulation time steps. Within the outer-
most application loop, OpenMP directives parallelize
code regions. This assumption is valid for many scien-
tific applications [3, 5];

• We assume that application data is already touched
and thus memory locations are fixed across iterations
of the outermost application loop.

• We assume that static OpenMP loop scheduling.

• We assume that the OS NUMA-aware page placement
policy is first touch, which is the default setting in
Linux kernel.

Figure 2. The performance difference of 85 thread mappings of

13.07%

25.00%

3.77%

45.09%

18.31%

46.03%

30.69%

8.79%

12.30%
11.13%

16.71%

9.97%

6.96%

4.01%

8.99%
7.55%

13.88%

16.85%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

region1 region2 region3 region4 region5 region6 region7 region8 region9

Sp.A performance differences

8 threads, 85 kinds of mappings
cache

memory

P P P P

cache

memory

HyperTransport

Interconnect

P

cache

memory

P P P P

cache

memory

Figure 2: The performance difference of 85 thread
mappings of OpenMP parallel regions in NAS SP.

We use performance counters to collect memory access infor-
mation during the first few iterations of the application and
to direct thread mapping to cores. In particular, we monitor
the event CPU TO DRAM REQUESTS TO TARGET NODE X,
where X indicates the target memory node. This event
counts all DRAM read and write requests generated by cores
on the local node to the targeted node in the coherent fabric.
This event can be used to observe processor data affinity [1].
By monitoring this event, we can set up a thread-node ta-
ble (TNT) that records the number of memory references to
each memory node from each thread. TNT provides data
distribution information that we use to design our thread
mapping algorithms. Table 1 gives an example of a TNT.
The data is collected from the NPB MG benchmark using
8 OpenMP threads. We use this table as an example to
describe our algorithm in the following sections.

3. DESIGN
In this section, we present three algorithms that optimize
performance of OpenMP regions by appropriately assign-
ing threads to cores. The algorithms use the TNT to keep
snapshots of the distribution of memory references for each
OpenMP thread. Each element of the TNT table is repre-
sented by e(Ti, Dj). Table 2 shows our notation. The algo-
rithms attempt to maximize the total local memory accesses
(LMA) across all threads for an OpenMP region. With this
policy, the algorithms attempt to reduce remote memory
references, thus optimizing data access locality.

3.1 Algorithm 1
Algorithm 1, based on the memory reference information
collected in the TNT, enumerates all possible thread map-
pings and calculates the total number of LMA for each map-
ping. The algorithm then selects the mapping with the
highest LMA. This algorithm does not scale. Since it must
enumerate all possible mappings, the runtime overhead in-
creases quickly. For example, an OpenMP region executed
on 4 quad-core processors must enumerate (16!) / (4!4!4!4)
= 63,063,000 mappings. As the number of cores increases,
the overhead can easily offset any performance benefit.

Thread
#

Memory
Node
1

Memory
Node
2

Memory
Node
3

Memory
Node
4

1 1770108 1765296 1766348 1765584
2 1631249 1530389 1529758 1532284
3 1554151 1554991 1552323 1552409
4 331659 330097 330903 329727
5 984706 985755 987233 987138
6 985833 986215 985754 988217
7 988661 986670 989070 988749
8 984706 985755 987233 987138

Table 1: A TNT with 8 threads

Symbol Definition
N Number of threads
Nd Number of memory nodes, or sockets
NUMA factor The ratio of remote access latency to

local access latency
e(Ti, Dj) An element at ith row and jth column

on TNT table
e.Ti Thread ID of element e(Ti, Dj). The ith

row of TNT
e.Dj Memory node ID of element e(Ti, Dj).

The jth column of TNT
Vij NMemory requests of element e(Ti, Dj).
LMA Local memory accesses
RMA Remote memory accesses
IF(e(Ti, Dj)) The performance Impact Factor of the

thread Ti on memory node Dj toward
critical path

Table 2: Notations used in the paper.

3.2 Algorithm 2
Algorithm 2 also tries to find the optimal thread mapping
in terms of LMA. However, it uses a sorting algorithm that
significantly reduces runtime overhead. We discuss the time
complexity of the algorithms in Section 3.4. In this section,
we describe Algorithm 2 in detail. To find the maximal
LMA, Algorithm 2 first sorts all elements Vij in the TNT in
descending order and generates a linked list. The algorithm
then iteratively selects the element with the “max” value
from the list until all threads are selected. Each selection
iteration chooses an element e(Ti, Dj) to pin thread i to a
processor attached to memory node j. Algorithm 2 has two
additional properties. First, the assigned number of threads
per processor should not be higher than the available num-
ber of cores per processor. Otherwise, the processor will be
oversubscribed. Second, the algorithm considers contention
on the memory node when placing multiple threads on pro-
cessors attached to the same node. To avoid contention, the
algorithm does not always select the element with the max-
imum value at a specific iteration. Instead, it may choose
an element with a lower value that alleviates contention in
other memory nodes. The element with the maximum value
in the specific iteration is deferred to a later iteration.

We use the example in Table 1 to illustrate how Algorithm
2 avoids contention. In the example, the algorithm finds the
element e(1,1), has the maximum value (1770108) after sort-
ing, so it places thread 1 on processor 1, which is attached to

the memory node 1. Then the elements e(1,2), e(1,3), e(1,4)
are removed from the list, because the position of thread 1
has been decided. The algorithm then adds the memory ref-
erence count of e(1,1), 1770108, to the total number of local
memory references of node 1: LC [1] + = 1770108. Next, the
algorithm finds that element e(2,1) has the maximum value,
so it attempts to place thread 2 on the processor attached
to memory node 1 to maximize the local memory references
of thread 2. However, memory node 1 is already assigned
thread 1. Placing thread 2 close to memory node 1 will intro-
duce contention and load imbalance. In this situation, the
algorithm chooses pinning thread 2 close to another memory
node by considering the elements e(2,2), e(2,3) and e(2,4)).
In this situation, the algorithm sacrifices some locality to
reduce contention.

Selecting cases in which reduced locality is beneficial merits
further discussion. We use an example to explain this point
further. Assume the element e(Ti, Dj) has the maximum
value of local memory references in an iteration, but the al-
gorithm attempts to place thread i to remote memory node
k instead of the local node j to avoid contention. From the
TNT table, the algorithm finds that the number of memory
references to memory node k for thread i is T by check-
ing element e(Ti, Dk). Pinning thread i to memory node k
instead of memory node j is beneficial only if the remote
memory access time to memory node k is no less than the
local memory access time to memory node j :

T · RMA latency ≥MAX V ALUE · LMA latency (1)

Equation 1 implies that:

T ≥ MAX V ALUE

(RMA latency)/(LMA latency)
=

MAX V ALUE

NUMA Factor
(2)

In Equation 2, the NUMA Factor is the ratio of the remote
memory access latency to the local memory access latency.
It usually varies between 1.5 and 2, depending on the in-
terconnect design [8]. In our test platform we set NUMA
Factor=1.5. Threshold T is used to decide whether sacri-
ficing locality is beneficial. The memory references to the
remote memory node k should be above T for the algorithm
to decide to sacrifice locality. In other words, the algorithm
reduces local memory accesses by no more than:

MAX V ALUE − MAX V ALUE

NUMAFactor

= MAX V ALUE · (1− 1

NUMAFactor
) (3)

In our example, since e(2,1) has the largest value in the sec-
ond iteration, T is calculated as 1631249/1.5=1087500 for
the element e(2,1). The elements e(2,2), e(2,3), e(2,4) are
above T. Further, the algorithm finds that e(3,2), e(3,3),
and e(3,4) are more eligible than e(2,2), e(2,3), e(2,4) be-
cause they have more local memory references. The algo-
rithm eventually chooses e(3,2) because it has most local
memory references. The elements e(3,1), e(3,3), and e(3,4)
are removed. The algorithm maps thread 3 to the processor
attached to memory node 2, instead of mapping thread 2 to
the processor attached to memory node 1. Eventually, the
algorithm adds the value of e(3,3), to the total local memory
references of node 2: LC [2] + = 1554991, and finishes the

Algorithm 2 Maximize total LMA in all threads.

Input: A TNT Table T
Output: Map M MaxLocal //A mapping with maximum lo-

cal memory references
1: LC[Nd]= 0; //Local memory reference counts
2: ElementList SortedList = SortTable(T);
3: while sizeof (M MaxLocal) 6= N do
4: element emax(Ti, Dj)=getNextMax(SortedList);
5: M MaxLocal.Insert(emax(Ti, Dj));
6: removeElementsWithThread(SortedList, e.Ti);
7: Return M MaxLocal;
8: end while

9: getNextMax(List l)
Input: a sorted element List l;
Output: an element edecide with smallest local contention;
10: element emax = getFistMaxElement(l)
11: List lc= findAllPossibleCandidateElements(emax);
12: edecide= findLowestLocalContentionElement(lc);
13: RemoveThreadFromList(edecide.Ti);
14: AppendLocalContention(edecide.Dj ,edecide.Vij);
15: Return edecide;

second iteration. The algorithm keeps e(2,1) in the sorted
list and waits for next selection iteration. The pseudo-code
of Algorithm 2 is listed above.

In essence, Algorithm 2 attempts to improve the perfor-
mance of each thread by maximizing LMA. However, it is
not aware of the critical path and thus cannot ensure the
critical thread has higher priority for performance optimiza-
tion. We solve this problem in Algorithm 3.

3.3 Algorithm 3
Ideally, computation and data are evenly assigned to each
thread and thus all threads have the same execution time. In
practice, however, the execution time of threads may vary.
The computation time of a thread may be longer than that
of the other threads. This thread is then on the critical path.
Changes in the memory access latency of threads may also
change the critical path.

The critical path problem, while easy to understand, can
be hard to analyze, because the memory reference time is
influenced by many factors, such as last level cache (LLC)
misses, resource contention on memory controllers and mem-
ory links from other memory operations, prefetching, cache
coherence protocol and even page faults. Previous work [2,
14] uses LLC misses as a simple metric to compare the per-
formance of threads. However, LLC misses is insufficient to
estimate memory performance. Instead, we use the event
CPU TO DRAM REQUESTS TO TARGET NODE X to
estimate the memory performance of threads. This event
not only measures accesses to the LLC but also all DRAM
access requests, including resent requests due to resource
contention on shared resources and data prefetch requests.

Algorithm 3 is a NUMA-aware and critical path aware algo-
rithm. Estimating the real execution time of the thread in
the critical path is generally difficult. The algorithm avoids
directly estimating the real time of the critical path; as an

Algorithm 3 Find a map with minimal cirtical path.

Input: A TNT Table T
Output: Map M MinCp

1: Map M MinCp = Φ
2: CPImpact[Nd]= 0; //Impacting Extent on each domain
3: ElementList SortedList= SortElementInTable(T);
4: while sizeof(M MinCp) 6= N do
5: e(Ti, Dj)=getMinCritcalPathElement(SortedList);
6: M MinCp.Add(e(Ti, Dj));
7: end while
8: Return M MinCp

9: getMinCritcalPathElement(Listl)
Input: a sorted element List l;
Output: an element e with smallest impacting to critical

path;
10: element emax = getFistMaxElement(l);
11: List lc=findAllPossibleCandiateElements(emax);
12: edecide=findLowestCPElement(CPImpact,lc);
13: RemoveThreadFromList(edecide.Ti);
14: AppendCirticalPathImact(CPImpact,IF(edecide));
15: Return edecide

16: findLowestCPElement(CPImpact[], Listl)
Input: a sorted element List l;
Output: an element e with smallest impact on critical path;
17: minV al=UINT64 MAX; element edecide = Φ
18: for any element e in l do
19: if (IF (e) + CPImpact[e.Dj]) < minV al then
20: minV al=IF (e) + CPImpact[e.Dj]);edecide = e;
21: end if
22: end for

alternative, the algorithm uses Impact Factor (IF) to rep-
resent memory reference effects on performance:

IF (Ti, Dj) = number of local requests +

NUMA Factor · Σ(number of remote requests) (4)

IF represents the effects of memory references on the mem-
ory system, including both local and remote memory refer-
ences. A thread with a large IF value has high tendency to
be on the critical path. Table 3 provides an example using
the data from Table 1. Algorithm 3 sorts the TNT then
picks the element with the maximum value and the rest of
the candidates in other nodes, similarly to Algorithm 2. Al-
gorithm 3 uses an array, CPImpact of size Nd to record the
IF on each domain.

Table 3 illustrates the main idea of Algorithm 3. Assume the
algorithm has already selected e(1,1) and pinned thread 1 to
memory node 1. It then assigns CPImpact[1]+= IF(1,1) to
record the IF from placing thread 1 on memory node 1. In
the next iteration, the algorithm chooses the next element
with maximum local references, e(2,1) and three other can-
didates e(3,2), e(3,3) and e(3,4) on the other three memory
nodes. Then the algorithm selects one with the lowest value
by computing IF (e.Ti, e.Dj) + CPImpact[e.Dj].

According to Table 3, the algorithm will select e(3,2), and
add IF(3,2) to CPImpact[2], (i.e., CPImpact[2]+= IF(3,2)).

element IF (e.Ti, e. Dj) CPImpact[e.Dj] IF (e.Ti, e. Dj)+
CPImpact[e.Dj]

e(2,1) 4592431 9715950 14308381
e(3,2) 4659723 0 4658883
e(3,3) 4661551 0 4661551
e(3,4) 4661465 0 4661465

Table 3: IF (e.Ti, e. Dj) + CPImpact[e.Dj] comparison
among elements

Algorithm 3 improves upon Algorithm 2 by considering ad-
ditional remote memory contention while estimating the IF,
while Algorithm 2 only uses local memory contention. The
pseudo code of Algorithm 3 is given to the left.

3.4 Time Complexity Analysis
Algorithm 1 uses a brute-force method to find all possible
thread mappings. Therefore it is cumbersome, slow and im-
practical. The time complexity of Algorithm 1 is O(N!).
Since there are many redundant thread combinations, we
can select some “good” mappings by avoiding the check of
symmetric cases. “Good” here means load balanced and
symmetric [4]. The time complexity of Algorithm 2 and
3 is determined by the sorting algorithm and the iterative
selection process. The process of iterative selection can be
done in linear time: O (k ·N ·Nd), where k is a constant,
N ·Nd is the total number of elements in the TNT.

Our implementation uses parallel radix sort as our sorting
method. Theoretically, we can achieve a constant time com-
plexity for parallel radix sort. The time complexity of the
parallel radix sort is O(1

p
· k ·N ·Nd), where k is a constant,

p is the level of parallelism, N · Nd is the total number of
elements in the TNT. When we use p = N , the time com-
plexity becomes a constant, O(k · Nd). Since Algorithms 2
and 3 use parallel radix sort, their time complexity is dom-
inated by the linear iterative selection process. This scales
only with N. Theoretically, if N = 16, Algorithm 2 and 3 can
be 12300 times faster than Algorithm 1. Algorithm 2 and 3
are thus more scalable and suitable for many-core systems.

4. PERFORMANCE
4.1 Experimental Environment
We used a system with four quad-core AMD Opteron 8350
HE processors (16 cores in total), each with private L1 and
L2 cache per core and a shared 2MB L3 cache. Each pro-
cessor has one memory controller. The machine has 64GB
of RAM. The inter-processor communication is enabled by
a HyperTransport interconnect. We tested OpenMP imple-
mentations of benchmarks from the NAS Parallel Bench-
marks Suite, version 3.1 using Intel C/C++ compilers and
Fortran compilers with “-O” optimization flag. The OS was
Linux version 2.6.32.

4.2 Results
Due to limited space we only discuss the performance results
of Algorithms 2 and 3. First, we demonstrate the ability of
Algorithm 2 to adapt to good thread mappings regardless of
the initial thread mapping. Figure 3 shows a histogram gen-
erated from 100 runs of the SP and BT benchmarks. The
experimente is conducted as follows: First, we randomly

4.2 Results

Figure 7. Performance comparison between the Algorithm 2 and the random mapping

X-Axis: Execution time under the Algorithm 2 divided by the execution time under the random mapping

0

2

4

6

8

10

7
2

.0
0

%

7
4

.0
0

%

7
6

.0
0

%

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

Algorithm 2, SP.C (16 threads)

0

2

4

6

8

10

12

14

Algorithm 2, BT.C (16 threads)

8
2

.0
0

%

8
3

.0
0

%

8
4

.0
0

%

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

Algorithm 2, SP.C (16 threads) Algorithm 2, BT.C (16 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

(8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 3: Performance comparison between Algorithm 2 and random mapping. X-Axis: Execution time
under Algorithm 2 divided by execution time under random mapping

Figure 8. Performance comparison between the Algorithm 2 and the system default mapping

0

10

20

30

40

50

60

70

80

90

8
2

.0
0

%

8
3

.0
0

%

8
4

.0
0

%

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

Algorithm 2, SP.C (16 threads)

0

10

20

30

40

50

60

Algorithm 2, BT.C (16 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

(8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 4: Performance comparison between Algorithm 2 and the system default mapping. X-Axis: Execution
time under Algorithm 2 divided by execution time under the system default mapping

Figure 9. Performance comparison between the Algorithm 3 and the system default mapping

65 94.22% 29 94.37% 86 96.24% 83 92.00%

2 103.25% 42 104.10% 1 103.21% 8 106.35%

61 95.43% 81 91.95% 96 90.74% 95 84.21%

12 03.88% 4 103.08% 0 100.00% 2 105.79%

0

5

10

15

20

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

0

2

4

6

8

10

12

14

16

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

Algorithm 3, MG. B (8 threads)

0

5

10

15

20

25

Algorithm 3, MG. B (12 threads)

0

10

20

30

40

50

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

Algorithm 3, MG.B (16 threads)

0

2

4

6

8

10

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

1
0

6
.0

0
%

1
0

8
.0

0
%

1
1

0
.0

0
%

1
1

2
.0

0
%

1
1

4
.0

0
%

1
1

6
.0

0
%

Algorithm 3, SP.C (4 threads)

0

1

2

3

4

5

6

7

8

6
4

.0
0

%

6
6

.0
0

%

6
8

.0
0

%

7
0

.0
0

%

7
2

.0
0

%

7
4

.0
0

%

7
6

.0
0

%

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

1
0

6
.0

0
%

Algorithm 3, FT.B (8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 5: Performance comparison between Algorithm 3 and the system default mapping X-Axis: Execution
time under Algorithm 3 divided by the execution time under the system default mapping

Statistical results of NPB bench-
marks

MG FT BT SP

Test
counts

average Test
counts

average Test
counts

average Test
counts

average

thread num=4 correct 65 94.22% 29 94.37% 86 96.24% 83 92.00%
wrong 2 103.25% 42 104.10% 1 103.21% 8 106.35%
same as sys-
tem default

33 100.00% 29 100.00% 13 100.00% 9 100.00%

thread num=8 correct 61 95.43% 81 91.95% 96 90.74% 95 84.21%
wrong 12 103.88% 4 103.08% 0 100.00% 2 105.79%
same as sys-
tem default

27 100.00% 15 100.00% 4 100.00% 3 100.00%

Table 4: Statistical results of NPB benchmarks

map 16 threads on cores using a balanced mapping (one
thread per core) and measure total execution time of itera-
tions 1 through 20 (we do not measure iteration 0 to avoid
warm-up effects). Then, we use 4 more iterations to collect
snapshots of memory behavior in the TNT, apply Algorithm
2, make a prediction of the new mapping and measure the
execution time of the next 20 iterations, from 25 to 44. The
wesults in Figure 3 show the ratio of execution time (iter-
ations 25–44) after prediction to the execution time before
prediction (iterations 1–20) with random balanced mapping
(less than 100% means better). In most cases, Algorithm 2
improves performance. The algorithm outperforms the ran-
dom mapping by up to 28%, therefore it is robust and adapts
effectively regardless of the initial mapping.

Figure 4 shows the histogram of execution time compared
to the system default (Linux with first-touch policy) after
applying Algorithm 2. Due to ignorance of the critical path,
Algorithm 2 cannot outperform the system default. In most
cases, the performance of the predicted mapping is the same
as the system default.

We test Algorithm 3 under the following scenario: We first
assign a random number of threads to run from iteration 1 to
20, then we change the number of threads to a specfic num-
ber (i.e., 4, 8, 12 or 16) to run the next 20 iterations (21–40),
using the system default scheduler. We use iterations 41–44
to collect snapshots of memory behavior in the TNT, then
we apply Algorithm 3 and measure the execution time of the
next 20 iterations (45–64). Figure 5 shows this histogram
of MG, SP, and FT using Algorithm 3 with 4, 8, 12, and
16 threads in iterations 20 to 64. We find that Algorithm 3
performs well with 4, 8, or 12 threads. With 16 threads, in
most cases, the performance of Algorithm 3 is the same as
the system default. In executions with fewer threads Algo-
rithm 3 is better because the system default scheduler tends
to select an imbalanced thread mapping after the number of
threads changes. These mappings lengthen the critical path.

To validate the accuracy of the derived mappings (in terms
of whether the algorithms find the optimal mapping), we
exhaustively ran each benchmark 100 times with 4 and 8
threads, for a total of 800 runs. We categorized the thread
mappings as “correct predictions”, “wrong predictions” and
“same as system defaul”according to the differences between
predictions and the system default. We classify a perfor-
mance rate under 99% of the system default as “correct”,

larger than 101% compared to the system default as“wrong”
and between 99% and 101% of the system default as “same
as system default”. Table 4 shows the statistical results
and average ratio of execution time compared to the sys-
tem default of four NPB benchmarks. We found that only
8.9% of the predictions are wrong. These predictions incur a
4.27% weighted performance loss. 74.50% of the predictions
are correct and achieve 8.13% weighted performance gain.
16.63% of the predictions are the same as system default.
When the system default has a suboptimal mapping, Algo-
rithm 3 can improve performance by up to 27.29%, 35.09%,
17.08% and 23.26% for MG, FT, SP and BT respectively.

5. RELATED WORK
Terboven et al. [12] proposed a data placement policy, “next
touch”, to migrate pages with heavy remote accesses dynam-
ically. Ribeiro et al. [10] used different data access patterns
to guide the memory placement policy on NUMA systems.
Both attempted to improve performance by changing data
placement. However, they must guarantee that the benefit
surpasses the penalty of migrating data.

Majo et al. [6] proposed a NUMA-aware task scheduler by
measuring LLC pressure and NUMA penalty. Their algo-
rithm requires application parameters that must be obtained
offline, which prevents dynamic adjustments to improve per-
formance. Zhuravlev et al. [2, 14] argue that LLC misses are
not the only factor that causes performance degradation and
that the memory controller and prefetch mechanism are also
important. They propose an online task scheduler but they
still use LLC miss rate as a metric to measure the extent
of local contention. McCurdy et al. [8] argue that NUMA
problems can be identified by the help of hardware coun-
ters that track remote memory references. These crossbar
events can now be counted in modern AMD and Intel archi-
tectures. We find that LLC misses are not the only factor of
performance degradation and use the memory request event
mentioned by Blagodurov et al. [2] as the metric to capture
NUMA performance degradation.

Curtis-Maury et al. [3] proposed the concept of DCT to ad-
just the number of threads in different OpenMP regions dy-
namically to improve performance. Li et al. [5], extended the
concept of DCT and built a power-aware prediction model to
save energy with Hybrid MPI/OpenMP programs. We ex-
tend their work with algorithms that optimize thread place-
ment on NUMA systems.

6. CONCLUSIONS
NUMA architectures raise significant performance issues due
to mismatches between data and thread placement. We pre-
sented NUMA-aware, thread placement algorithms that con-
sider the critical path to address NUMA issues in OpenMP
programs. To the best of our knowledge, these algorithms
are the first to use prediction and critical path analysis to
derive nearly optimal thread mappings. In the future, we
plan to validate the performance of our tool on non-NUMA
optimized benchmarks, such as Parsec and Sequoia bench-
marks. We also plan to release a beta-version of the tool.

7. ACKNOWLEDGMENTS
This work is partially supported by a Marie Curie Interna-
tional Reintegration Fellowship, through the I-Cores project
(Grant ID FP7-MCF-IRG-224759). Partly performed under
the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344.

8. REFERENCES
[1] AMD. BIOS and Kernel DeveloperŠs Guide (BKDG)

For AMD Family 10h Processors. AMD, 2010.

[2] Blagodurov, S., Zhuravlev, S., Fedorova, A.,
and Kamali, A. A Case for NUMA-Aware
Contention Management on Multicore Systems. In
Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques
(New York, NY, USA, 2010), PACT ’10, ACM,
pp. 557–558.

[3] Curtis-Maury, M., Shah, A., Blagojevic, F.,
Nikolopoulos, D. S., de Supinski, B. R., and
Schulz, M. Prediction Models for Multi-dimensional
Power-Performance Optimization on Many Cores. In
Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques
(New York, NY, USA, 2008), PACT ’08, ACM,
pp. 250–259.

[4] Klug, T., Ott, M., Weidendorfer, J., Trinitis,
C., and Mu”nchen, T. U. autopin – Automated
Optimization of Thread-to-Core Pinning on Multicore
Systems.

[5] Li, D., de Supinski, B., Schulz, M., Cameron, K.,
and Nikolopoulos, D. Hybrid MPI/OpenMP
Power-Aware Computing. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International
Symposium on (April 2010), pp. 1 –12.

[6] Majo, Z., and Gross, T. R. Memory Management
in NUMA Multicore Systems: Trapped between Cache
Contention and Interconnect Overhead. In Proceedings
of the International Symposium on Memory
Management (New York, NY, USA, 2011), ISMM ’11,
ACM, pp. 11–20.

[7] Mattson, T. G., Riepen, M., Lehnig, T., Brett,
P., Haas, W., Kennedy, P., Howard, J., Vangal,
S., Borkar, N., Ruhl, G., and Dighe, S. The
48-Core SCC Processor: The Programmer’s View. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (Washington, DC,
USA, 2010), SC ’10, IEEE Computer Society,
pp. 1–11.

[8] Mccurdy, C., and Vetter, J. Memphis: Finding
and Fixing NUMA-Related Performance Problems on
Multi-core Platforms. In Proceedings of the
International Symposium on Performance Analysis of
Systems and Software (ISPASS) (2010).

[9] Mizell, D., and Maschhoff, K. Early Experiences
with Large-Scale Cray XMT Systems. In Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on (may 2009), pp. 1 –9.

[10] Ribeiro, C., Mehaut, J.-F., Carissimi, A.,
Castro, M., and Fernandes, L. Memory Affinity
for Hierarchical Shared Memory Multiprocessors. In
Computer Architecture and High Performance
Computing, 2009. SBAC-PAD ’09. 21st International
Symposium on (Oct. 2009), pp. 59 –66.

[11] Singh, K., Curtis-Maury, M., McKee, S. A.,
Blagojević, F., Nikolopoulos, D. S.,
de Supinski, B. R., and Schulz, M. Comparing
Scalability Prediction Strategies on an SMP of CMPs.
In Proceedings of the 16th International Euro-Par
Conference on Parallel Processing: Part I.

[12] Terboven, C., an Mey, D., Schmidl, D., Jin, H.,
and Reichstein, T. Data and Thread Affinity in
OpenMP Programs. In Proceedings of the 2008
Workshop on Memory Access on Future Processors: A
Solved Problem? (New York, NY, USA, 2008), MAW
’08, ACM, pp. 377–384.

[13] Ware, M., Rajamani, K., Floyd, M., Brock, B.,
Rubio, J., Rawson, F., and Carter, J.
Architecting for Power Management: The IBM
POWER7 Approach. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on (Jan. 2010), pp. 1 –11.

[14] Zhuravlev, S., Blagodurov, S., and Fedorova,
A. Addressing Shared Resource Contention in
Multicore Processors via Scheduling. In Proceedings of
the Fifteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2010),
ASPLOS ’10, ACM, pp. 129–142.

