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Abstract

A comparison of explicit integrators for real-time proptiga of the time-dependent Kohn-Sham equations is pre-
sented. Four algorithms are implemented and assessed tfostability and accuracy within a plane-wave pseu-
dopotential framework, employing the adiabatic approtiorato the exchange-correlation functional. Simulation
results of a single sodium atom and a sodium atom embeddedkriMgO are presented. Both the first-order Euler
scheme and the second-order finit&atience scheme are found to be unstable, but it is shown th&btinth-order
Runge-Kutta scheme is conditionally stable and accuratémithis framework. Finally, excellent parallel scalétyil

is demonstrated in a system of hundreds of electrons.

Keywords: time-dependent density functional theory, real-time pigation, plane-wave basis

1. Introduction

Accurately describing the quantum dynamics of electronsumerical simulations is crucial for addressing a
number of important problems in materials physics. For epapdetailed understanding of the electron transfer
mechanism across material interfaces is important for @avipg photovoltaic cells [1]. While analytical models of-
ten work reliably for describing electron transport pheeoiin simple and homogeneous systems (such as organic
molecules or bulk solids), quantitative simulations areassary to accurately describe the dynamitfalots of elec-
trons in complex environments. The proper treatment of kbetrn dynamics is also necessary for describing highly
non-equilibrium many-body electron-ion processes suthegdiation damages in materials. A variety of numerical
simulations, semi-empirical [2] arab initio, however, lacks the essential component: the response @idictrons
to a large perturbation of the atomic coordinates. This éahbse the aforementioned approaches rely on the adiabatic
Born-Oppenheimer approximation, i.e., on the assumptian the electrons adjust instantaneously to moving ions
(e.g. by remaining in the ground state). The adiabatic Boppenheimer approximation can be overcome for instance
by Ehrenfest dynamics or the surface-hopping approach feor@ sophisticated treatment of the electron dynamics
[3].

Time-dependent density functional theory (TDDFT) is areative approach for describing quantum dynamics of
electrons in materials because of its well-balanced acgwaad dficiency. TDDFT, as a formal extension of ground-
state DFT for the treatment of time-dependent Hamiltoniaas been applied to various problems in martiedent
areas ranging from materials science to biochemistry (speRef. [4] and references therein). The popularity of
TDDFT in various fields has led to a number of recent develogmm the formal theory itself as well as in the
practical aspect of implementing the theory for numeriedtalations [5, 6, 7].

While the majority of applications currently exploits thiedar-response formulation of TDDFT [8] to investigate
the excitation of electrons based on the ground state salofithe Kohn-Sham (KS) equations, the so-called real-time
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TDDFT (RT-TDDFT) aims at explicitly obtaining the time-depdence of electronic states through the time-dependent
KS Hamiltonian. Using RT-TDDFT, it is possible to computedatonic excitation spectra from the dynamics itself,
in addition to investigating the quantum dynamics of el@ttrin real time. The RT-TDDFT approach is gaining
increasing popularity as many time-dependent phenomanéegoming an important focus of modern materials
research.

In this work, we numerically assess a number of explicitgna¢ors for the time-dependent Kohn-Sham (TDKS)
equations, a set of coupled non-linear partidfedential equations, in TDDFT. We have built our RT-TDDFT im-
plementation upon the Qbox code [9, 10], a highly scalabld B&de based on the plane wave pseudopotential
formalism. The excellent scalability of underlying compats in the code allows us to immediately apply the new
method to the large heterogeneous systems needed to expldern applications. At the same time, the plane wave
basis will ensure broad applicability to a diverse set oferiats as numerical convergence can be rigorously tested
by systematically increasing the basis size.

The paper is structured as follows: In Sec. 2 the theoreftiaedework is outlined and computational details are
discussed. In particular, the conservation of the energyesented as a criterion to assess the numerical stalitity a
accuracy of the propagators that are introduced in Sec. gelffollowing, these integrators are applied to two test
systems: (i) an isolated Na atom (Sec. 4) and (ii) a 64-atqmersell containing a Na atom embedded in bulk MgO
(Sec. 5). Finally, Sec. 6 summarizes the findings of this work

2. Theoretical framework and numerical treatment

2.1. Time-dependent Kohn-Sham equations

TDDFT is based on the one-to-one correspondence betwedtinizgedependent) one-particle dengity, t) and
the (time-dependent) one-particle potentigl(r,t) acting on a fictitious system of non-interacting particl@his
correspondence s established by the Runge-Gross thebigmltjich formally extends the Hohenberg-Kohntheorem
[12]) to the time-dependent case. As a consequence of thgeRGnoss theorem, it is possible to also generalize the
fictitious system of non-interacting KS particles [13] untlee influence of anféective KS potential to the time-
dependent case. These TDKS equations read

. d - PN ~
=161 = AOMNIGO) = {T + Veu(®) + VesxcInl}141(t). (1)
In Eq. (1), T is the kinetic energy operator aMixc[n](r.t) = [ 'l‘r(['r’?dr’ + (anrxg) is the sum of the Hartree (H)

potential and the exchange-correlation (XC) potentialicilis derived from a universal XC functionBkc[n]. The
electron density follows from the occupied KS states (labeled by the indeccording tan(r,t) = 3 [¢i(r, t)[2.
RT-TDDFT aims at obtaining the (time-dependent) solutiortie non-linear TDKS equations (1) for given initial
conditions forg;. It is assumed that the so-called adiabatic functional@gpration [14] (in which the XC functional
depends only on the electron density at the instantaneme s fulfilled, i.e.,Vuxc[n](r,t) = Vﬁ@‘(‘g*{n(t)](r) =

"dEnF('f)c [n(t)]. In addition, the external potential4: studied in this work are not explicitly time dependent sitivey
arise exclusively from the Coulomb attraction of the elecsto the ions at thefixedpositions.

In order to solve the TDKS equations, Eq. (1), a set of ing@iditions for the wave functions is necessary; in this
work, they are represented by the perturbed ground-state fuactions. They are obtained by applying an additional

perturbation (see below) to the solutions of the time-iradefent KS Hamiltonian.

2.2. Energy conservation during the propagation

The TDKS equations [cf. Eq. (1)] reduce to the KS equatiorikéncase that the time dependence is factored out.
In addition, within the adiabatic approximation they have property to conserve the total enekfy),

EQ = Y @OTH0) + [ nE.OVex(r. O + Enccln(d) @



which is a generalization of the time-independent KS engl§y. For the case of HXC potentials that only depend
on the instantaneous density, i.e. the adiabatic fundtapyaroximation, the conservation of the energy [16] can be
seen from the total time derivative of Eq. (2),

& =Z{<¢i<t>|f1§¢i<t>>+c.c_}
+ Z {<¢i(t)

+ S Eccln(0]

The last term requires some attention:
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Inserting Eq. (4) into Eq. (3) and collecting terms to regdie KS Hamiltonian we obtain:
%E(t) = Z {<¢i(t)’H[n(t)]'%¢i(t)> + c.c.} + f n(r, t)""VLtE”) )

Using the equations of motion, Eq. (1), it becomes clear fhé} the sum of the first terms in Eq. (5) is zero.
The last term also vanishes if the external potential do¢slepend on the timg as it is the case for the systems
considered here. Energy conservation is an important piyppethe TDKS equations since it can be used as a test of
both stability and numerical accuracy of the numericalgragion of the TDKS equations.

2.3. Plane-wave expansion of the wave functions

For the numerical treatment of the TDKS equations the KStaldineed to be expanded in a finite number of
basis functions. In this work, a supercell approach withqukc boundary conditions is used and, hence, the Bloch
theorem [17] can be exploited, leading to the expression

1 .
$i(r,1) = yn(r,1) = @ék'unk(r,t) (6)
for the wave functions, wheng(r, t) is a lattice-periodic function an@ is the volume of the supercell. The indices
nandk label the eigenstates and theectors in the Brillouin zone, respectively. Expandingwes/e functions into
plane waves as

Yrk(r,t) = % Z C(G, t)gk+C)r -
G

has been quite successful in terms of numerical accuracyecgence, and computational scalability. This basis
set is orthonormal and provides an unbiased and spatialtyogeneous expansion that converges numerically by

systematically increasing merely a single parameter, titaffeenergyEcy: = GE“‘. Ecut corresponds to the maximum
kinetic energy of all plane waves in the calculation.

Since the basis itself is time independent, all the time ddpace is carried by the plane-wave ffméentsC(G)
of the expansion. This implies that the spatial partial\dgives of the wave functions are readily available in the
reciprocal space. It is also useful to note that the planeewave independent of the nuclei positions, which makes
the framework convenient for first principles molecular dgrics approaches, thanks to the absence of basis set
superposition errors and spurious Pulay forces [18].




2.4. Computational details

Treating the singularity of the Coulomb potential in thesgovicinity of the nuclei is computationally expen-
sive in a plane-wave basis since a very large number of basiibns is needed for converged calculations. The
pseudopotential approach is used to circumvent this isgueflacing the core electrons with non-locéleetive
potentials, which are derived by inverting the atomic KSatipn (see e.g. Ref. [19]). In the present work, Hamann-
Schluter-Chiang norm-conserving pseudopotentials withodification by D. Vanderbilt [20] are used within the
Kleinman-Bylander approach [21].

The local-density approximation as parametrized by Peat@hiZunger [22] is used within the adiabatic approx-
imation for the exchange-correlation potential in the gkdtions. Due to the size of the supercells in this work it is
suficient to use only th& point to sample the Brillouin zone even though the impleragon is capable of taking
points into account.

3. Propagation schemes

3.1. General considerations

For a non-interacting time-dependent Schrodinger equngfiDSE) there exists a plethora of numerical propaga-
tors to choose from. Their key properties such as (semigraoin conservation and (semiexact) energy conservation
as well as other numerical properties includinfetient conditions of stability (with respect to the tiisace dis-
cretization) are well known [23]. For the case of the TDKS @&tpns, Eqg. (1), in combination with a plane-wave
expansion of the wave functions, the situation is compdiddty several factors:

First, unlike the TDSE, the TDKS equations are non-linead the inverse of the KS operator is not available
explicitly. Thus, all methods are semi-implicit at best, jimplicit with respect to the linear part of the operatolyo

Second, within the plane-wave framework implicit and sémplicit methods are not feasible due to the dimen-
sion of the linear operator (number of plane waves squanediXtze practical inability to invert such a large matrix
explicitly. The number of plane waves in the present catoata is over 33000, and is routinely much larger for other
applications. Therefore, the (semi-implicit) Crank-Niatéon scheme, even though it has been successfully used in
reduced basis set local-orbital methods (e.g. [6, 24])ptsarviable option for a plane-wave implementation.

Third, conditional or unconditional stability of a time gagation algorithm in the case of the TDSE is not a
guarantee of stability for the TDKS case; due to the selfsgiant nature of the TDKS, there are feedback mechanisms
that can worsen the stability criterion, or even make a ntktimnpletely unstable when applied to the TDKS. This is
a well-known phenomenon observed in studies of the noratiagtensions of the Schrodinger equation [25, 26] and
will be discussed for the second-order finitéfeliences scheme below.

Fourth, within the plane-wave formalism it is tempting t@@pproximations to the linear time-evolution operator
instead of approximating theftirential equation by finite fierences. Moreover, split-operator Trotter-like expan-
sions exploit the fact that the kinetic energy (the locakpditll) part of the Hamiltonian is diagonal in reciproca&idl)
space. Since these techniques can potentially benefit femynlarge time steps [5, 27], they have been traditionally
favored in the community [4]. However, these approachesatlpe implemented straightforwardly without further
algorithmic considerations because one needs to deallvéthdn-local part of the pseudopotential [27]. Furthermore
the Hamiltonian operator is not a constant and not knavgmiori, since it depends on the electronic states at later
times (see e.g. the Magnus expansion [28] and the railwafiaddt]). Hence, in this work we restrict ourselves to
finite-difference approximations which have a controlled order in tia.e

Note also that all propagators investigated in this work gl the application of the entire Hamiltonian to the
wave function and on updating the Hamiltonian correspagigliriherefore, no particular structure of the Hamiltonian
is assumed or exploited for the propagation. Consequéotlthe integration of the TDKS equations we can directly
take advantage of some of the existing DFT architecture pkeimented in the Qbox code. This code is optimized for
scalability and features highly-optimized routines fdvstg the regular KS equations on a large number of processor
[29].



3.2. First-order Euler scheme
The Euler approach is the simplest propagation scheme ichvthé wave functions at the tinhe At are obtained
from the one at timé¢ according to

lp(t + AD) = lp(t)) — i AtH[N] (1)) 8)
For this scheme, only the static Hamiltoniart at 0 (i.e. H[n(t = 0) = ng]) is considered in this work, instead of
the self-consistent (density-dependent) Hamiltoniaris Thdue to the numerical instability issues that we obsgrve
for this scheme and discuss below. The computational loadc&ted with solving Eg. (8) arises from a single
application of the Hamiltonian to the wave functions. Theein this scheme i®(At), i.e., first-order inAt.

3.3. Second-order finite fierences
Within the second-order finite-fierence scheme (hereafter called the SOD scheme) more iiomthan in the
Euler scheme is used to calculate the wave functiohs-att from the ones at bothandt — At according to

lp(t + At)) = |¢(t — At)) — 21 AtH[Nn] (1)) . )

SOD is slightly more sophisticated than the Euler approant,the error i€)(At?). As in the case of the Euler
scheme, the Hamiltonian has to be applied only once for éahstep, but two copies of the wave functionst(and
t — At) need to be stored in memory for the calculation of the newefamctions.

For the propagation according to Eg. (9), thre@edent levels of the self-consistency of the Hamiltonian @
compared. In the fully self-consistent approach (sc-S@BHamiltonian is updated at each time step (cf. Eq. 9). For
further assessing numerical stability and accuracy aatastivith the non-linearity, we consider two additionalesas
(i) Within the non-self-consistent propagation (nsc-S@) Hamiltonian is kept fixed &i[no], as described for the
Euler scheme above. (ii) In the semi-self-consistent pgapan (sc100-SOD) the Hamiltonian is updated every 100
time steps, i.e., self-consistency is recovered every fid}iss

3.4. Second-order Runge-Kutta scheme
Another second-order approach tested in this work is therskorder Runge-Kutta [30] scheme (called RK2 in
the following). In this case, the wave functiong at At are computed according to

lke) = —i At H[ngg] 6(1))
ko) = —i At H[Ngy+05k,] [¢(t) + 0.5 ky), (10)
lp(t + A)) = |p(t) + ko) .

As with the SOD scheme, the integration error scale9(@s¢?). The higher sophistication of this approach with
respect to the Euler scheme is achieved by invoking mulépétuations of the Hamiltonian and deriving the updated
wave functions from these intermediate steps [30]. Whiig tirethod allows for larger time steps for the integration
of the TDKS equations, it also comes with higher computaticost due to the additional updates of the Hamiltonian
and its application to the respective wave functions.

3.5. Fourth-order Runge-Kutta scheme
The fourth-order Runge-Kutta scheme (RK4) is a step beybadriK2 method, further improved by including
more intermediate evaluations of the Hamiltonian [30].His tase, the propagation is done according to

lke) = —i At H[nge] (1)) ,

lko) = —i At H[Ng+05k] [6(t) + 0.5 ke,
lks) = —i At H[Ny:05k] I6(t) + 0.5 ko),
lka) = =i At H[Ny(4k5] 6(t) + k) ,

1 1 1 1
|p(t + Ab)) = |o(t) + ékl + §k2 + ékg + 6k4>'

(11)
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Figure 1: (Color online) Cubic unit cell containing a sinla atom (small black circle). To prepare a non-equilibriumtial condition, the Na 8
wave function (represented by the yellow isosurface) has lsaifted by (0.32, 0.32, 0.32) A.

The RK4 scheme clearly shows the highest computational asst requires four evaluations and updates of the
Hamiltonian. On the other hand, the time step can be choseh fatger because the integration error only scales as
O(AtY).

4, Test casel: theisolated Na atom

As a test of the propagators introduced in Sec. 3, the tinodsgon of a single Na atom in a cubic supercell
(a=7.94 A) is studied (cf. Fig. 1). The size of this superced, ithe distance between mirror images of the Na atom,
has been chosen such that the total energy does not changehmar55 meV upon a further increase of the cell
size. The plane-wave cufenergy was chosen to be 70 Ry which ensures that the totajyeisezonverged to about
20 meV. For this system the ground-state density is caledlatthin DFT and, subsequently, the ®ave function
is shifted by (0.32, 0.32, 0.32) A in real space in order tgppre a non-equilibrium initial condition for the time
propagation. Note that the orthogonality among the wavetfans is no longer preserved after this shift which we
purposely introduce for the aim of testing thédrent integrators.

4.1. Numerical stability and conservation of energy

The numerical stability is one of the most important craesihen solving the TDKS equations with the explicit
integrators introduced above. Since the total energy isna@wed quantity, as discussed in Sec. 2.2, it is used as a
measure of the stability of the propagation.

In Fig. 2 the time evolution of the total energy is shown foe tifferent schemes introduced in the previous
section. A time step okt = (0.069 as) is used for all schemes except for the RK4 one; in #se a ten times larger
time step was used.

From Fig. 2(a) it can be seen that the Euler scheme, even lthibbegHamiltonian is kept fixed during the prop-
agation, is highly unstable. The total energy diverges prigkly after a decrease from its original value. In the
same figure, the results obtained using the RK2 propagatdnagreement with the RK4 propagator and it is found
that they conserve the total energy within 2.72 meV for a pgapion time of up to 11 fs. Even though both of the
two propagation schemes appear to fulfill the numericalilgglihe RK2 scheme eventually becomes unstable for a
longer propagation as discussed below. For the RK4 appratsththe conservation of the norm of the unshifted wave
functions was checked and found to be conserved up to witifiduring the propagation o= 13.8 fs. In addition,
Fig. 2(a) shows that the sc100-SOD scheme is able to maithtaistability to a certain point: Up unti 8.5 fs the
total energy is conserved fairly well and is only slightlyaar than the initial value. However, beyond that point the
deviation grows very quickly and the total energy again adjes.

For comparison, the fierent levels of self-consistency in the SOD scheme as shotigi 2(b) are analyzed. The
figure clearly shows that the sc-SOD scheme is numericaliyalote even for a propagation time of less than 0.1 fs.
Keeping the Hamiltonian fixed for some number of integrasiteps (e.g. 100 in this work) improves the numerical
stability of the algorithm, leading to a stable propagatmra much longer time [cf. Fig. 2(a)]. The nsc-SOD scheme
is found to be conditionally stable, however, keeping theniftanian fixed is unphysical for practical applications
within RT-TDDFT. Therefore, the SOD schemes are an exanf@a explicit method that is well-behaved in the non-
self-consistent case (nsc-SOD or, for instance, the liBehrodinger equation) but becomes unconditionally Unhsta
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Figure 2: (Color online) Total energ§ (in eV) of the Na atom (at = 0 fs the 3s wave function was shifted by (0.32, 0.32, 0.32) A from its
equilibrium position in real space) as a function of tilmgn fs). In (a) the Euler scheme (black solid lingt = 0.069 as) and the sc100-SOD
second-order finite-éierence scheme (red solid ling = 0.069 as) are compared to the Runge-Kutta propagators (bligelise). The second-
order (At = 0.069 as) and the fourth-ordett = 0.691 as) Runge-Kutta scheme yield the same trajectory fdirtres shown in (a). In (b) the fully
self-consistent second-order finitefdrence method (green solid line) is compared to the sc1(D-B& solid line) and the non-self-consistent
(red dotted line) one foAt = 0.069 as.

for the integration of the self-consistent TDKS. This itiages the diiculty of having to deal with the non-linear
Hamiltonian of the TDKS formalism when the time propagai®performed.

For investigating further details, Fig. 3 shows the nunaritability of the RK2 (the sc100-SOD second-order)
propagation schemes up to 35 fs (11 fs) as calculated udifggetit time stepat. For both propagators, the propaga-
tion becomes expeditiously more stable when smaller timgssare used. In addition, from comparing Fig. 3(a) and
(b) it is found that the (fully self-consistent) RK2 schersenuch more stable than the sc100-SOD when the same
time step is chosen. The total energy deviations in theestagime are also much smaller for the RK2 case.

As mentioned earlier, the nsc-SOD and the RK4 propagatdparel to be conditionally stable in this work, i.e.,
they can be used for propagation of arbitrary duration ag &sthe time stept is chosen to be small enough. Plotting
the critical time step (for which the propagation is numalficfound to remain stable) versus the plane-wave f€uto
energyEcy in Fig. 4 indicates an inverse proportionality &f andE¢.. Furthermore, it can be seen that the critical
time step used in the RK4 scheme can be roughly three timesgesds the one used in the nsc-SOD for a giigi
We emphasize, however, that the nsc-SOD scheme is not pllysizeaningful for propagating the TDKS equation
even though it is numerically robust.

4.2. Evolution of the system

In order to illustrate the evolution of the system during firepagation, the total energy, being a conserved
quantity, does not provide helpful insights. Instead, i sf the expectation valuey, <¢i (t) |Fl[n] | i (t)>, as shown
in Fig. 5 is used as a time dependent quantity that provideditgtive information of the energy spectrum of the
wave functions. As expected, the results from the Eulerrsehare not useful due to the immediate instability of
this propagation scheme. Foup to~ 13 fs it can be seen in Fig. 5(a) that the RK2 and RK4 propagat@gree
with each other exactly (therefore only RK4 is shown) evesutih they are calculated usingffidrentAt. They
show pronounced oscillations with a period of approximalfeb fs. Additionally, contributions from other higher
frequencies become visible from the fine structure of th@esr These features derive from the fact that the wave
function that was shifted at= 0 starts to oscillate around the (fixed) position of the nus]@s expected. Also other
wave functions start to oscillate through the self-comesispotential (which depends on all occupied wave funcjions
in the TDKS Hamiltonian.

We note that test calculations have shown that varying theepivave cutd energy between 50 Ry and 80 Ry
does not significantly impact the time evolution of the systeith the change in the sum of the expectation values
remaining smaller than 8 meV.
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the Runge-Kutta propagators (blue solid line). The seamder At = 0.069 as) and the fourth-ordeat{ = 0.691 as) Runge-Kutta scheme yield
the same trajectory for the times shown in (a). In (b) the/failf-consistent second-order finitefdrence method (green solid line) is compared
to the sc100-SOD (red solid line) and the non-self-consigied dotted line) one fokt = 0.069 as.
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Figure 6: (Color online) Total energ§ (in eV) of the Na atom (at = O fs the 3s wave function was shifted by (0.32, 0.32, 0.32) A from its
equilibrium position in real space) as a function of titr(en fs). The results have been obtained using the RK4 prapagadAt = 0.691 as.

Comparing the results of the two Runge-Kutta propagatdisHig. 5(a)] to the behavior obtained using the
sc100-SOD propagation scheme shows a close similaritynfiatlgimest. However, this agreement becomes worse
for larger times, i.e., when the sc100-SOD becomes inarghsunstable. In accordance with the discussion of the
total energy, Fig. 5(b) points out that the sc-SOD becomesabie and, hence, does not yield meaningful results
for the expectation-value sum for> 0.1 fs. Even though the nsc-SOD is conditionally stable, F{§) Shows that
the expectation-value sum does not change during the patipagecause of the non-self-consistent nature of the
propagation.

Figure 6 shows the long-term stability of the propagatidngithe RK4 scheme; the total energy for the Na atom
is plotted for a total propagation time of 2.2 ps. It can bensémat the total energy is well conserved during the
propagation with a deviation of less than 30 meV during ti2ep. As discussed above, the integration error in the
RK4 scheme scales é¥At*). More specifically, it has been found numerically that thaltenergy conservation (per
unit time) can be improved by a factor of 27.8 when the timp seeduced by a half.

5. Test casell: Na atom embedded in MgO

Having established that the RK4 method is suitable for oyplémentation of RT-TDDFT within a plane-wave
pseudopotential formalism, we now show that the schemeitabde for investigating large, complex systems. We
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Figure 7: (Color online) The 64-atom unit cell of MgO (Mg atemed circles, O atoms blue circles) containing a single Megblack circle) on
an oxygen lattice position.
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Figure 8: (Color online) Sum of the expectation vaIQﬁ{q&i(t) |I:|[n]| ¢i(t)> (in eV) of all valence wave functions in the Na:MgO 64-atorpexcell

(att = 0 fs the Na-induced level within the MgO gap was shifted b9, 0.032, 0.032) A from its equilibrium position in reabsg) as a function
of timet (in fs). The sc100-SOD second-order finitéfeience scheme (red solid lingt = 0.069 as) is compared to the second-order (green solid
line, At = 0.069 as) and the fourth-order (blue solid ling,= 0.691 as) Runge-Kutta scheme.

applied our implementation to a bulk system, consisting 6fiaatom supercell of crystalline MgO with one of the
O atoms replaced by a Na atom. This corresponds to 32 Mg afiln®,atoms, and 1 Na atom with a total of 449
electrons in the calculation (cf. Fig. 7). After obtainirgetground state of the system, thev@ave function of the
Na atom is shifted by (0.032, 0.032, 0.032) A in real spacebtain a non-equilibrium initial condition for the time
propagation.

The evolution of the Na:MgO system is shown in Fig. 8 usingirmglae sum of the expectation values as an
example for a quantity of interest. The sc100-SOD and the &2lso shown for comparison to the RK4 propagation
scheme. The intrinsic inaccuracy of the sc100-SOD schemédent in the figure as this propagator is applied to a
complex system such as Na:MgO: the oscillations are muclatge and the long time stability is worse, as discussed
earlier.

To test the long-term stability of the RK4 propagation alsiothis complex system, we plotted the total energy for
a total propagation time of 118 fs in Fig. 9. The total eneggwell-conserved during the propagation; the deviation
remains on the order of 2.7 eV during 118 fs. Note that thisrezorresponds to merely 0.006 % of the total energy
of the system, hence, the magnitude of the deviation petreteés on the same order as in the case of a single Na
atom. Furthermore, as discussed above it can be reducedibioa 6f~ 28 by using a half of the time step size.

5.1. Parallel scaling

Finally, itis important to analyze the scaling of the RT-TBDimplementation presented in this work with respect
to the number of processor cores the calculation is run oRign10 the time required to perform one step of steepest
descent (SD), which is a typical method for obtaining solusito the ground-state Hamiltonian, is compared to the
time required to perform one step of real time propagatianguthe RK4 method. The RK4 method requires four
updates of the Hamiltonian and four evaluationle:i(xh¢(t)] |¢(t)) per time step. The SD method requires one evaluation
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Figure 9: (Color online) Total energg;: (in eV) of the Na:MgO 64-atom supercell (at 0 fs the Na-induced level within the MgO gap was
shifted by (0.032, 0.032, 0.032) A from its equilibrium psi in real space) as a function of tiraéin fs). The results have been obtained using
the fourth-order Runge-Kutta propagator axtd= 0.691 as.
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Figure 10: (Color online) The number of steps that can beopaidd within one second wall time is plotted versus the nurobprocessing cores
used in the calculation for the Na:MgO 64-atom supercelk $teepest descent algorithm (black curve) is comparec:tRIit# propagation (red
curve).
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of the Hamiltonian per step as well as the re-orthogonadinatf the states. For that reason, the SD scheme is roughly
a factor of four faster when the calculation is run on one coilg.

However, the orthogonalization of the wave functions doatsseale well with the number of processing cores.
This becomes obvious in Fig. 10 for more than 200 cores, wterescalability of the SD scheme is significantly
reduced. In contrast, the RK4 propagator scales very wklsécto linearly) up to at least 1536 cores (1 &¢p
benefiting directly from the highly parallelized routinesihe Qbox code that are exploited for this explicit-inteigma
scheme.

6. Conclusions

We find that the 4th order Runge-Kutta scheme is a conditipatble and well-balanced general purpose propa-
gator for the TDKS equations when implemented within theelwave pseudopotential formalism. Several other in-
tegrators such as Euler scheme, the second-order filfiexatices scheme, and the second-order Runge-Kutta scheme
were also studied in this work. The Euler scheme was foune toighly unstable. Relaxing the self-consistency re-
qguirement of the non-linear Hamiltonian in the TDKS imprevke stability of the the second-order finit&feiences
scheme. This observation indicates that the integratatstie designed for time-dependent Schrodinger equaiens
not necessarily suitable for integrating TDKS equationdirhited instances, the second-order Runge-Kutta scheme
can be an ficient alternative propagator (with smaller computati@xgense than the fourth-order version) for cases
where the time step needs to be very small and the total padipagime required is not long. This can be the case for
certain applications involving very fast external peratibns where the physics of the problem requires a very fine
time resolution.

The explicit propagators allow for a better scalabilitylwiespect to the number of computing cores compared to
typical ground-state or Born-Oppenheimer methods. Thedrement results from the fact that the time-propagation
schemes do not require the orthogonalization of the prdpdggave functions, which is a known bottleneck for the
scalability [9]. Furthermore, these explicit integratadis not assume a particular form of the potential (including
the pseudopotential and exchange-correlation poterarad)they can directly benefit from existing highly parallel
routines developed for the Born-Oppenheimer calculations

The present implementation of real-time TDDFT in the plaraae pseudopotential formalism using the explicit
integrators provides an ideal framework for further worlttie context of first principles molecular dynamics simula-
tions where the Born-Oppenheimer approximation is a keitdition.
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