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ABSTRACT
We present ROSE, a high-fidelity, pluggable framework for binary
analysis. ROSE has the unique capability of executing a program
concretely or abstractly, starting from any offset. Thus, ROSE can
analyze program fragments or functions in third-party binaries. The
challenge inherent to starting from any offset is handling the initial
lack of state. To overcome this challenge, ROSE accurately models
each non-floating-point x86 instruction and how it operates on the
heap, stack, and register file. This model and ROSE’s support for
system calls guarantee that no external, unanalyzable functions exist
to limit or disrupt ROSE’s analysis. ROSE supports execution
over any abstract domain. Finally, ROSE integrates a disassembler
and simulator: on behalf of the disassembler, the simulator resolves
indirect jumps; in turn, the disassembler informs the simulator where
valid instructions start. This synergism improves the state-of-the-art
in detecting indirect jumps and functions.

To test ROSE, we compared its concrete interpretation against na-
tive execution, instruction by instruction, for programs in POSIX.1-
2008. For system calls, including threading, ROSE marshals a
program’s interpreted state to and from native, concrete state; this
mechanism passes the Linux Test Project. ROSE is easy to use: To
incorporate a new abstract domain, one need only define a small set
of functions. ROSE can simultaneously support multiple abstract
domains and allow the user to determine which function it currently
interprets. We use case studies to demonstrate its extensive feature
set. ROSE is licensed under the MIT license and available for
download at <anonymized url>.

1. INTRODUCTION
Binary analysis frameworks are essential. Many third-party ap-

plications and libraries are distributed without their source code.
In addition, every program depends on external binaries, like the
operating system and the source language’s standard library and
runtime system. Binary analysis is needed to thoroughly analyze
such programs. Even when source code is available, due to compiler
errors and optimizations, it is still desirable to analyze the executable
code that actually runs on a system [2].

The loss of types and its simpler execution model distinguishes
binary from source analysis. Existing binary analysis tools use
approximations to recapture these abstractions. For instance, dis-
assemblers are generally stateless and, as a result, can inaccurately
guess how to parse object code into instructions. Most symbolic
execution engines tether themselves to a concrete execution to re-
solve indirect jumps. A semantics-faithful simulation of a binary
program, however, must precisely model the operation of each ma-
chine instruction on registers, stack and heap. We surveyed existing
binary analysis tools and frameworks. Table 1 summarizes the most
notable ones and their supported and missing features w.r.t. a careful
selection of important desired functionalities.

1.1 Novel Combination of Features
Recognizing the important missing features from existing tools,

our goal is to design and implement a binary analysis framework
that can analyze a binary concretely, symbolically or abstractly from
any offset and is equipped with a high-fidelity abstract model of
storage. Our tool, ROSE, achieves its analytic power through its
novel combination of features. Table 1 highlights the breadth and
power of the features that ROSE possesses.

VM and Disassembler Integration All of the tools referenced
in Table 1 are virtual machines, with the exception of CodeSurfer,
which, at its core, is a disassembler1 that builds a system dependence
graph (SDG), the basis of many interesting static analyses, from its
input. Like CodeSurfer, ROSE is also a disassembler and extracts
control- and data-dependency from its input (although it does not
yet build a SDG). ROSE is unique in integrating a virtual machine
with a disassembler to improve the accuracy of both. The simulator
resolves indirect jumps for the disassembler while the disassembler
informs the simulator where valid instructions start.

High-Fidelity Abstract Storage Model One of ROSE’s most
distinguishing features is its high-fidelity abstract storage model.
The model is critical for precise symbolic or abstract interpretation
of binaries where concrete program states are often unavailable. One
challenge that we have to overcome is the handling of system calls.
ROSE computes values at various abstract storage locations through
its various modes of execution. A high-fidelity storage model allows
more concrete values to be computed for abstract storage locations.
In essence, these concrete values shadow the operating systems
values and obviate the slow and expensive simulation of the entire
operating system. For system calls whose parameters are drawn
from this subset, ROSE marshals their values into their native format
needed for a system call’s parameters, makes the native call, then
unmarshals the result back into our abstract state. ROSE exits when
it cannot concretize all of a system call’s parameters. Users are free
to define their own behavior here via ROSE’s API.

Interpretation from Arbitrary Offsets In addition to improving the
accuracy of our analyses, ROSE’s rich and detailed storage model
enables ROSE to analyze binary fragments from any offset. The
key challenge to overcome to realize this feature is the lack of initial
state. Concretely interpreting a program fragment using random
values segfaults very quickly because generating a valid stack, heap
and register file is highly improbable. Symbolic execution could
be used to solve this problem, but it still requires either initializing
symbolic state from a trace, which defeats the goal of starting from
an arbitrary offset, or implementing symbolic storage, which treats
registers, stack and heap locations as symbolic variables. The fact
that ROSE can analyze binaries from any offset allows it to nicely

1It is built on top of IDA Pro [15].
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Tools Virtual Disassembler PDG Symbolic Abstract Pluggable High-fidelity Arbitrary
Machine Execution Interpretation Framework Storage Model Offset

Bochs Yes No No No No No No No
BitBlaze Yes No No Tethered No Yes No No

CodeSurfer No Yes Yes No No Yes No No
SAGE No No No Trace No ? No No

QEMU Yes No No No No No No No
S2E Yes No No Yes No Yes No No

Valgrind Yes No No No No Yes No No
ROSE Yes Yes Partial Yes Yes Yes Yes Yes

Table 1: Feature comparison of binary analysis tools.

complement a source-level analysis like KLEE [7], which, instead
of abandoning an execution path upon encountering an external
function, could hand off the analysis to ROSE.

Mixed Interpretation In concrete execution, each variable has a
single value drawn from its value domain. Concrete execution along
a particular control-flow path yields a set of concrete variable-value
bindings that drive program execution along that path. In symbolic
execution, each variable assumes a subset of its value domain. Sym-
bolic execution along a control-flow path maintains symbolic states
(i.e. all possible values) of each program variable along that path; it
therefore supports universally quantified reasoning about a path’s
state. Symbolic execution is not a panacea, however. It suffers
from the typical path explosion problem (i.e. the fact that it may
have to track states whose number can increase exponentially in
the number of control points in the analyzed program) and theorem
prover limitations (i.e. the fact that theorem provers, such as satis-
fiability modulo theorem (SMT) solvers, have difficulty reasoning
about complex constraints). When symbolic execution is infeasible,
concrete execution can be used to help make progress, at the cost of
information loss. It is for this reason that ROSE, like its predeces-
sors BitBlaze [27], S2E [10] and SAGE [13], supports both concrete
and symbolic execution.

Pluggable Abstract Interpretation Abstract interpretation is a
powerful framework for static program analysis [11]. An abstract
interpreter evaluates a program in an abstract domain; a well-chosen
abstract domain is critical to obtain a precise and tractable anal-
ysis. ROSE is alone in supporting the abstract interpretation of
binaries. Designing a good abstract domain is beyond the scope of
this paper. That said, ROSE makes it convenient to implement ab-
stract interpretation-based binary analyses: a programmer need only
define at most a dozen functions that make the necessary changes
to the semantics of the 100 x86 instruction that ROSE supports2.
ROSE’s abstract interpretation is tunable: it can abstractly interpret
a program as much or little as desired, which is itself a function of
how much the analyst knows about the program. A common tactic
is to capture partial knowledge of how a program works in an ab-
stract domain. ROSE can abstractly interpret a program in multiple
domains at the same time. Finally, ROSE allows a programmer to
add translators that can convert states between domains.

ROSE’s extensible support for abstract domains is just one part
of its general extensibility (Section 3.7). ROSE allows its user to
change the semantics of an instruction, or a sequence of instructions,
via adapters and callbacks. Its user can also change semantics of
system calls, and she can change semantics of reading and writing
memory. All these contribute to ROSE’s ease of use for implement-

2These 110 instructions, approximately 17% of the x86 instruction
set, are that subset of the x86 instructions necessary to support a
subset of the POSIX.1-2008 [21] system utilities, chosen to exercise
a wide variety of system calls, and the large programs, such as vim,
that we have simulated with ROSE.

ing binary analyses.

1.2 Contributions
This paper makes the following contributions:

1. The design and implementation of ROSE, an extensible bi-
nary analysis framework that features a high-fidelity abstract
storage model and supports mixed (i.e. concrete, symbolic,
and abstract) analysis of binary fragments from arbitrary off-
sets.

2. Empirical evaluation that shows the engineering quality of
ROSE, including evaluating the correctness of its various
components (such as instruction simulation and system call
marshaling), its performance, and its capability for analyzing
a binary from any offset.

3. Usage scenarios that illustrate ROSE’s utility, including how
to implement an analysis that can operate from any offset and
how to use ROSE to aid debugging.

The rest of this paper is organized as follows. Section 2 uses
a simple, classic example of abstract interpretation to illustrate
ROSE’s unique features and its ease of use. Section 3 presents
ROSE’s design and implementation, highlighting the important
design choices and decisions. Section 4 first evaluates ROSE quan-
titatively to demonstrate its its quality and performance and then
describes usage scenarios to illustrate its capabilities. Finally, we
position ROSE against related work in the literature (Section 5) and
conclude (Section 6).

2. ILLUSTRATIVE EXAMPLE
ROSE has a unique feature: it is capable of mixed interpretation,

which allows a simulator to shift among or even simultaneously
interpret a binary concretely, symbolically or abstractly. This section
demonstrates ROSE’s mixed interpretation and how ROSE is able
to abstractly execute a code fragment, from an arbitrary offset,
without resorting to a trace.

Binaries contain less information than source code — they lack
types and have a low-level execution model, where, for example, a
single program variable may be mapped into heap, stack or a register
and that mapping can vary during a single run. Analyzing binaries
for which one lacks source presents the challenge of handling this
abstraction loss. When a compiler creates a binary, for example,
it targets a particular machine when compiling the original source.
Simulation attempts to interpret the binary as the targeted machine
would, which can help recover some of the abstraction loss.

Each of ROSE’s interpretation modes has different strengths.
Concrete execution shines when a concrete memory state or trace is
available. Loading, linking, and initializing (i.e. resources allocation
such as libc initialization) a binary are three canonical examples.
Concrete execution, however, cannot interpret code fragments from
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1 class Analysis: public RSIM_Callbacks::InsnCallback {
2
3 virtual bool operator()(bool enabled, const Args &args) {
4 if (args.insn−>get_address()==simhalt_addr) {
5 SymbolicSemantics::Policy symbolic_policy;
6 X86InstructionSemantics<
7 SymbolicSemantics::Policy, SymbolicSemantics::ValueType
8 > symbolic_semantics(symbolic_policy);
9

10 SignAnalysisExample::Policy sign_policy;
11 X86InstructionSemantics<
12 SignAnalysisExample::Policy,
13 SignAnalysisExample::ValueType
14 > sign_semantics(sign_policy);
15
16 symbolic_policy.writeIP(
17 SymbolicSemantics::ValueType<32>(analysis_addr)
18 );
19 while (symbolic_policy.readIP().is_known()) {
20 uint64_t va = symbolic_policy.readIP().known_value();
21 SgAsmx86Instruction *insn =
22 args.thread−>get_process()−>get_instruction(va);
23 symbolic_semantics.processInstruction(insn);
24 sign_semantics.processInstruction(insn);
25 }
26 }
27 return enabled;
28 }};
29
30 int main(){
31 ...
32 proj_addr_t main_addr =
33 RSIM_Tools::FunctionFinder().address(project, "main");
34 proj_addr_t ranfunc_addr =
35 RSIM_Tools::FunctionFinder().address(project, "ranfunc");
36 ...
37 analysis analysis(main_addr, ranfunc_addr);
38 sim.install_callback(&analysis);
39 ...
40 }

Listing 1: Sign analysis in ROSE.

an arbitrary offset. Symbolic execution is particularly well-suited for
interpreting code fragments with little or no state, or reasoning about
all possible values of a particular variable. It is, however, inefficient
and, in practice, is unable to analyze large program symbolically due
to loops. Abstract interpretation enables reasoning about a subset
of the properties of a program’s state and, because it scales better
than symbolic interpretation, can permit some analyses that would
otherwise be infeasible.

Listing 1 shows a mixed analysis in ROSE that concretely inter-
prets its input until the entry point of main where the simulation
halts. The analysis resumes, in symbolic execution mode, at a speci-
fied arbitrary offset. The abstract sign analysis, a classic example of
abstract interpretation [11], rides on top of the symbolic execution.
Table 2 shows the abstract domain we use for sign analysis.

When a simulator only models program variables, the instruction
pointer is concrete. ROSE completely models storage, which allows
reasoning about variables in whatever storage, but complicates the
handling of the instruction pointer. A naïve implementation of sign
analysis in ROSE would abstract the instruction pointer into the
sign domain and leave the simulator unable to determine the next
instruction. Thus, Listing 1 again makes use of mix interpretation
and runs its sign analysis on top of symbolic execution. By building
the abstract analysis on top of a symbolic analysis, ROSE separates
the concerns of discovering which instruction comes next into a
concurrent symbolic analysis. Other than that they are decoupled;

Abstract Value Semantic Interpretation

<+−0> unknown (commonly denoted by >)
<+−> nonzero
<+0> nonnegative
<−0> nonpositive

<+> positive
<−> negative
<0> zero

<> undefined (commonly denoted by ⊥)
Table 2: Abstract domain for sign analysis (with the natural or-
dering). Note that it is more fine-grained than the classic domain
{>,+,−,0,⊥}.

1 int ranfunc(int seed) {
2 seed += (seed << 3);
3 seed ^= seed >> 11;
4 seed += (seed << 15);
5 return seed;
6 }

Listing 2: Input to the sign analysis.

ROSE is performing two analyses simulatiously in two distinct
memories.

The example above first disassembles the program in order to
find functions. On lines 25–26 we use the ROSE API to locate the
starting addresses of two functions in the disassembled program, viz.
the main function, at whose entry ROSE halts, and ranfunc where the
analysis restarts. The class Analysis monitors the CPU instruction
pointer. When it reaches the value of main, after dynamic linking
has finished and the initial state is ready, it halts the simulation (line
4) and sets up the symbolic analysis to drive the sign analysis (lines
5–6). The symbolic analysis has its own heap, registers and stack,
which associate a symbolic expression with each location. Since
the desired domain is the sign domain, the analysis creates another
memory and machine in the sign domain (lines 8–9).

The symbolic execution restarts at an arbitrary offset, here the
address of ranfunc (lines 11–12). It continues to the next instruction
from this starting address until the next instruction is not unique
(lines 13–19). Lines 14–19 perform the sign analysis on each in-
struction, where the symbolic analysis informs the analysis which
instruction to execute next (line 18).

To perform sign analysis on ranfunc in Listing 2, one issues
the command signanalysis ./ranfunc. Symbolic execution ends when
ROSE cannot find a unique next instruction. The output lists all
register and memory locations and their abstract values at the end
of the analysis: i.e. ax = <+−0> (i.e. unknown), zf = <0> (i.e. zf is
zero), sf = <+0> (i.e. nonnegative) and mem[+] = <+−0> (i.e. positive
memory locations have unknown sign).

3. DESIGN AND REALIZATION
Our goal is to build a powerful, extensible, mixed interpretation

binary analysis framework. There are many ways to tackle this
ambitious goal. This section layouts the principal design choices
and our design decisions, illustrated with examples drawn from our
implementation.

ROSE is a simulator framework for 32-bit, Intel x86 [16] and
AMD [1] Linux programs, and runs on 32 or 64-bit Linux. ROSE
integrates the Yices SMT solver to reason about symbolic expres-
sions [12]. Figure 1a depicts ROSE’s architecture. This section
discusses each of the components in the figure. The two core com-
ponents we discuss first are cross-cutting concerns not explicitly
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(a) The architecture of ROSE. (b) The VM design space.

Figure 1: Overall design of ROSE.

present in the figure: ROSE’s VM, which touches all the compo-
nents, and ROSE’s abstract storage model, which unites the register
file and memory. Two core principles guided our design: 1) ease of
use and 2) mix and match customizability.

A machine mediates the interaction of instructions and storage, as
shown in Figure 1b. When using a VM to tackle binary analysis, one
must decide how powerful and heavyweight to make the VM (Sec-
tion 3.2), how to implement storage (Section 3.3) and whether and
to what extent to allow manipulation of instructions (Section 3.4).
To bootstrap interpretation, one needs a loader to read the specimen
and its dependencies, like libraries, from disk and translate it into a
form a VM can execute (Section 3.5). ROSE uses its disassembler
to fetch instructions; Section 3.6 introduces it. ROSE is an exten-
sible framework whose behavior can be modified in four ways: 1)
instruction (re)definition, 2) system call (re)definition, 3) callbacks,
and 4) adapters. Section 3.4 discusses instruction (re)definition;
Section 3.7 discusses the last three mechanisms.

3.1 Terminology
The specimen is the program executing inside the simulator. We

abbreviate operating system to OS and intermediate representation
to IR. The host OS is the system for which ROSE was compiled
and on which the simulator is running. The guest OS is the envi-
ronment (system calls, signals, etc.) provided by the simulator to
the specimen. Following convention, we use VM to denote virtual
machine. We use functor to mean a C++ functor, or function object,
not category-theoretic functor. We use storage to compactly refer to
a machine’s heap, stack and register file.

3.2 Virtual Machine
A VM must balance the performance of the specimen under emu-

lation against the power of the analyses that it provides. Intuitively,
there is a sliding scale from native execution to a complex abstract
interpretation of a program. The core design decision the implemen-
tor faces, then, is to decide how to make this trade-off. Typically,
VMs monitor program state and separate the specimen’s state within
the VM from the host OS. Recompilation-based VMs like Valgrind
add the capability to manipulate instructions before executing them
natively. Valgrind demonstrated how disassembling, instrument-
ing and recompiling super-blocks enabled more powerful analyses.
Tools that find bugs in how a program manipulates memory are the
most well-known applications of this capability.

In designing ROSE’s VM, we embraced power, maximizing
ROSE’s ability to monitor and modify the specimen’s behavior. In
particular, ROSE is unique in abstracting storage. It is precisely
this heavy-weight abstraction, described in Section 3.3 next, that,
surprisingly, allows ROSE to reclaim performance. Essentially,
abstract storage allows ROSE to lazily and abstractly define storage

as determined by the needs of the instructions it is interpreting and
therefore to begin interpretation from an arbitrary offset. Addition-
ally, ROSE’s support for abstract storage allows its user to inspect
a specimen’s entire storage state at any point in the simulation to
determine, for instance, when to apply an expensive analysis, such
as alias analysis. No other framework is capable of interpreting code
fragments with little or no program state. An example application
of this capability is unit testing for 3rd party proprietary libraries.

A direct consequence of this design decision is that ROSE sim-
ulates each instruction. For example, the X86InstructionSemantics
class defines what basic operations must be performed by each x86
instruction; the Project_SemanticPolicy class defines the operations
themselves. These classes cooperate to simulate the input specimen.

To illustrate the power of ROSE’s feature set, we consider its per-
instruction simulation in isolation. Simulating each instruction has a
number of advantages over recompilation (e.g. Valgrind) or concrete
interpretation. First, the specimen can be for a different architecture
(guest) than that on which the simulator is running (host). Second,
the simulator can handle privileged and normal instructions in a uni-
form way. Third, it is easy to modify the simulator to do something
special for certain instructions. Fourth, it allows the simulator to
keep the specimen in a separate address space that does not overlap
with the simulator’s own address space. Fifth, it provides a way
for ROSE developers to gain confidence that ROSE’s instruction
semantics is working properly. The same instruction semantics is
used for a wide variety of analyses within the ROSE library and
in other tools. A bug in the implementation would likely cause the
simulation to fail.

3.3 Abstract Storage
Storage systems and the instructions that operate on them must

match: the instructions must read and write entities that the storage
can contain; to turn it around, storage must contain entities on which
instructions can operate. Achieving this match is the core design
problem that abstract storage presents. To simplify this problem
and to facilitate supporting many concrete ISAs, ROSE realizes its
abstract storage in terms of its IR.

All existing VMs implement instruction semantics that operates
on concrete program states. Unfortunately, concrete program states
are sometimes unavailable. ROSE implements abstract storage
to handle this case. When a concrete state is unavailable, ROSE
can interpret instructions abstractly. This design decision means
that ROSE is the machine, which obviates recompilation. Abstract
storage contains the effect of an instruction’s operation upon storage.
Concrete memory maps virtual addresses to bytes. Symbolic or
abstract memory must be defined in conjunction with symbolic or
abstract instruction semantics in order to store sensible values and
handle cases, such as unknown addresses or values.
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1 template<size_t Len>
2 ValueType<Len> add(
3 const ValueType<Len> &a, const ValueType<Len> &b
4 ) const {
5 if (a.sign==ZERO && b.sign==ZERO)
6 return ValueType<Len>(ZERO);
7 if (0==(a.sign & NEGATIVE) && 0==(b.sign & NEGATIVE))
8 return ValueType<Len>(POSITIVE);
9 if (0==(a.sign & POSITIVE) && 0==(b.sign & POSITIVE))

10 return ValueType<Len>(NEGATIVE);
11 return ValueType<Len>();
12 }

Listing 3: Redefinition of add for the sign domain.

1 case x86_lea: {
2 if (operands.size()!=2)
3 throw Exception("instruction must have two operands", insn);
4 write32(operands[0], readEffectiveAddress(operands[1]));
5 break;
6 }

Listing 4: Translating lea to internal IR.

To create a user-defined domain, a programmer need only redefine
at most a dozen functions, not all the instructions in ROSE’s IR. In
ROSE’s abstract storage, values are expression trees.

A domain is represented by a Policy class. Because each policy
has its own distinct instance of memory, multiple policies can be
used concurrently. To achieve this isolation, ROSE separates the
specimen’s address space from ROSE’s. We see this in action in the
illustrating example in Section 2 where three different memories are
used concurrently; the program is interpreted concretely until the
entrypoint of main where we initiate a symbolic interpretation of a
code fragement. A sign analysis in the sign domain rides above the
symbolic interpretation.

3.4 Instructions
The core problem one confronts when defining extensible instruc-

tion semantics is the other side of the matching problem that abstract
storage presents: any tool that interprets program semantics must
accurately model how instructions operate upon the program state.
To support ROSE’s rich and extensible abstract storage, ROSE’s
instruction semantics must operate upon abstract storage, of which
concrete memory is a degenerate case, to support analyses of code
fragments at an arbitrary offset. Consonant with our core design
principle that ROSE be extensible, ROSE allows a developer to
change or manipulate instruction semantics at two stages: the devel-
oper can change either 1) how an interpreted instruction is translated
into our RISC-like instruction set or 2) how ROSE interprets an
instruction in its IR, as, for instance, redefining the domain that
instruction operates upon. Listing 3 shows the redefinition of the
add instruction to support sign analysis.

Most VMs or emulators choose to translate between the inter-
preted instruction set (e.g. x86) and an IR in a RISC-like instruction
set to simplify manipulating instruction semantics and reduce the
chance of implementation bugs. ROSE is no exception to this rule.
Listing 4 shows how compactly translates an emulated instruction
into its IR: a simple instruction has a simple translation.

ROSE currently supports 110 instructions3, about 17% of the
total in the x86 instruction set [30]; it treats unsupported instruc-
tions as no-ops, since this allows ROSE to ignore instructions that
provide inessential functionality. Broadly, ROSE does not support

3Section 4 explains how these 110 instructions were chosen.

the following categories of instructions: MML, 64-bit, floating-
point, MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, SSE5, AVX FMA,
and AES. ROSE also does not, in general, simulate instructions
that manipulate control registers (CR0-4 and CR8), debug regis-
ters (DR0-3 and DR6-7), test registers (TR3-7), descriptor registers
(GDTR, LDTR, IDTR), task register (TR), or model-specific regis-
ters (MSRs). ROSE actually does simulate a handful of instructions
from these classes, such as the MOVD, MOVQ and two MMX in-
structions, but only those required by the dynamic linker and glibc.

With the exception of instructions listed in one of the above cate-
gories, such as x686 instructions, ROSE does simulate all integer
instructions in x86 up to the 386 instruction set.

3.5 Loader
A loader reads a specimen and its dependencies, like libraries,

from disk and translates it into a form a VM can execute. BinaryLoader
implements ROSE’s loader; it defines the public interface and pro-
vides generic implementations for loading — parsing, linking, map-
ping, and relocating — a static or dynamic object. Parsing reads a
binary file and parses its container format (ELF, PE, COFF, Dwarf,
etc.) to produce an abstract syntax tree (AST); it does not parse
the machine instructions, viz. disassembly is not part of loading.
Linking recursively parses all shared object dependencies. Mapping
chooses virtual addresses for parts of the binary file as if ROSE
were creating a new OS process. For instance, mapping an ELF
file causes ROSE to choose virtual addresses for all ELF segments.
Relocation applies relocation fixups to patch pointers and offsets in
various parts of the virtual address space.

ROSE’s loader was designed to load a binary into memory as
an operating system would, supporting both static and dynamic
executables. It is cross-platform, supporting a variety of binary
container formats (ELF, PE, etc.) and loaders (Linux and Windows).
To ROSE’s linking to emulate linking of one operating system while
Project is running in another operating system, the linker can control
the locations of shared object dependencies without affecting how
Project itself is loaded. ROSE’s linker can partially load an object
and thereby handle the case that not all libraries are available. As
with ROSE’s other components, its loader is user-extensible: user
can register their own loader or change the behavior of a loader at
runtime

3.6 Disassembler
The Disassembler is a modular and extensible API providing all

non-architecture-specific functionality for recursively disassembling
instructions and grouping them into basic blocks. The disassembler
currently supports the x86, ARM and PowerPC architectures. Bi-
nary executables are often dynamically linked, wherein the main
binary contains only stubs for dynamic functions and those func-
tions’ text and data are loaded into process memory and linked at run
time. Unlike most disassemblers, ROSE’s disassembler performs
these steps when disassembling, and can therefore disassemble the
dynamic libraries. The disassembler can be used in conjunction
with or separately from the simulator. It is user-extensible; the user
has only to define its architecture-specific components to support a
new architecture.

ROSE’s uses disassembly to fetch one instruction at a time,
caching the instruction as it receives them. Users can add ana-
lyzes to the simulator that use the disassembler. For instance, the
disassembler can extract extra information by performing a control
flow analysis of the function that is currently executing.

The simulator can control which memory the disassembler reads
and disassembles. Unpackers are a classic example: ROSE can
simulate the unpacker and, when the unpacker is about to jump
into the newly unpacked instructions, invoke the disassembler. The
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simulator can also provide the disassembler with a linked version of
a program for disassembly.

3.7 Customization
The challenge is to provide customization in a principled fash-

ion. The issues any solution to this challenge must consider include
thread-safety, how much customization to allow (should a subset
of the simulator’s behavior be inviolate?), how do customization
compose/interact and whether to support dynamic customization.
ROSE is relentlessly customizable; it is thread-safe; it supports
compositional and dynamic customization. ROSE provides four
mechanisms to realize customization with these features — instruc-
tion (re)definition, system call (re)definition, callbacks, and adapters.
Instruction definition is discussed above in Section 3.4. Below, we
discuss how ROSE’s system call mechanism, although required by
abstract storage, doubles as a customization mechanism that allows
a user to augment or replace system calls, by adjusting ROSE’s sys-
tem call table. Many of the events that occur during the simulation
can be tied to user-defined callbacks invoked before and/or after
the action. The callbacks augment, replace, or skip the normal pro-
cessing depending on the situation. For instance, a pre-instruction
callback can check for unsupported instructions and skip them, or a
pre-system-call callback can count the total number of system calls
executed per thread. Adapters modify the behavior of the simulator.
For instance, if you need a simulator that prints hex dumps of all
data transfered over a TCP network connection, you would attach
an Project_Adapter::TraceTcpIO adapter to the simulator.

System Call Marshaling
ROSE’s abstract storage necessitates special-handling of system
calls. The problem is translation from a specimen’s internal, arbitrar-
ily abstract state running under ROSE into the concrete parameters
that a system call requires. To solve this problem, ROSE marshals
the state necessary to perform a system call to and from a speci-
men’s abstract storage. Currently, ROSE only performs a system
call if enough state exists in a specimen’s abstract storage to provide
the native system call with its arguments and exits otherwise, since
system calls are almost always essential. If enough state does not
exist, the user must either treat the system call as a no-op or provide
an alternate mechanism for constructing the necessary state.

ROSE is designed to simulate a specimen such that its abstract
storage is equivalent to the same abstraction applied to the con-
crete memory the specimen produces when running natively. The
fidelity of ROSE’s marshaling enables the specimen to interact with
the host OS and programs running natively through system calls.
ROSE handles the following categories of system calls: file system,
inter-process communication, memory management, memory maps,
process properties (e.g., getuid, setpgid, setrlimit ), signals, socket
calls, standard I/O, threading and time.

Listing 5 shows how to redefine sys_chown (#182) to return the
"not implemented" error. To completely remove a system call im-
plementation and cause the simulator to dump the specimen’s core
if it tries to invoke that system call, one has only to remove all enter,
body, and leave callbacks for that system call. In Listing 6, we
undefine sys_fork (#2).

Callbacks
A callback is a user-supplied objects whose operator() is invoked at
particular points during a simulation. Callback points are associated
with threads, processes, or the simulator as a whole. ROSE’s call-
backs are a convenience mechanism focused on easing the writing of
analyses. For instance, a disassembler can be invoked to look-ahead
at future instructions before they are actually executed.

Callbacks are organized into lists. When the simulator reaches

1 class NoOp: public RSIM_Simulator::SystemCall::Callback {
2 public:
3 bool operator()(bool b, const Args &args) {
4 args.thread−>tracing(TRACE_SYSCALL)−>more(
5 "[NOOP]"
6 );
7 args.thread−>syscall_return(−ENOSYS);
8 return b;
9 }

10 } syscall_noop;
11
12 RSIM_Simulator *simulator = ...;
13 simulator−>syscall_implementation(182)−>body.clear().append(
14 &syscall_noop
15 );

Listing 5: Redefining a system call

1 RSIM_Linux32 *simulator = ...;
2
3 RSIM_Simulator::SystemCall *sc_fork =

simulator−>syscall_implementation(2);
4 sc_fork−>enter.clear();
5 sc_fork−>body.clear();
6 sc_fork−>leave.clear();

Listing 6: Undefining a system call

a callback point, it invokes all the callbacks present in that point’s
list. When a new thread is created, its callbacks are initialized
from the process; when a new process is created, its callbacks are
initialized from the simulator. Removal of all callbacks from the list
at a callback point does not delete that point. The arguments for a
callback depend on the category of its callback point, but always
include a boolean value, which is the return value of the previous
callback on the list (or related list), or true for the first callback.
Callback are thread-safe.

Listing 7 shows the definition of a callback that prints “[FIRST
CALL]” the first time a particular system call executes, then removes
itself on line 10. To bind this callback to system calls 3 and 4, the
programmer writes

1 RSIM_Linux32 *simulator = ...;
2 NotifyOnce notifier;
3 simulator−>syscall_implementation(3)−>enter.append(&notifier);
4 simulator−>syscall_implementation(4)−>enter.append(&notifier);

Listing 8 shows a callback that implements instruction granular
traces. In ROSE’s AST, the function that contains an instruction is
the instruction’s grandparent; the callback leverages this fact. The
developer attaches this callback to the simulator with

sim.get_callbacks().add_insn_callback(
RSIM_Callbacks::BEFORE, new ShowFunction );

and a snippet of its output is

28129:1 0x0805e7c0[256]: in function "__uname"
28129:1 0x0805e7cd[260]: uname[122](0xbfffddb6) = 0
...
28129:1 0x0804c375[348]: in function "__libc_setup_tls "
28129:1 0x0805f5c8[376]: in function "__sbrk"
28129:1 0x080871f0[387]: in function "brk"
28129:1 0x080871fe[393]: brk[45](0) = 0x080d5000

The "28129:1" means the main thread of process 28129. The hex-
adecimal number is the address of the executed instruction followed
by the value of the instruction counter in square brackets. The "in
function" output includes the system call along with its arguments
and return value.
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1 class NotifyOnce :
2 public RSIM_Simulator::SystemCall::Callback {
3 public:
4 bool operator()(bool b, const Args &args) {
5 args.thread−>tracing(TRACE_SYSCALL)−>more(
6 "[FIRST CALL]"
7 );
8 RSIM_Simulator *sim =
9 args.thread−>get_process()−>get_simulator();

10 sim−>syscall_implementation(args.callno)−>enter.erase(this);
11 return b;
12 }};

Listing 7: Callback that prints first use of a system call.

1 class ShowFunction: public RSIM_Callbacks::InsnCallback {
2 public:
3 virtual bool operator()(bool prev, const Args &args) {
4 SgAsmBlock *basic_block =
5 isSgAsmBlock(args.insn−>get_parent());
6 SgAsmFunctionDeclaration *func =
7 basic_block ?
8 SageInterface::getEnclosingNode<
9 SgAsmFunctionDeclaration

10 >(basic_block) : NULL;
11 if (func && func−>get_name()!=name) {
12 name = func−>get_name();
13 args.thread−>tracing(TRACE_MISC)−>mesg(
14 "in function \"%s\"", name.c_str()
15 );
16 }
17 return prev;
18 }
19 private:
20 std::string name;
21 };

Listing 8: Instruction granular tracing.

Adapters
An adapter is an object that changes a simulator’s behavior. For
instance, adapters can be used to change the semantics of instruc-
tions or system calls. Adapters can be attached, even stacked, and
detached to restore the simulator to its original behavior. ROSE’s
adapters are thread-safe. TraceFileIO is an example adapter that mon-
itors data transfers on specified file descriptors and reports them
using the tracing facility. To accomplish its task, TraceFileIO regis-
ters additional callbacks on the relevant system calls. Users could
manually augment system calls, but using an adapter is a good way
for the user to ensure that all system calls relevant to a certain kind
of analysis are properly augmented. Listing 9 shows how to use
TraceFileIO.

4. EVALUATION
We evaluate ROSE along two dimensions. First, we evaluate the

correctness of its implementation of instruction semantics and its sys-
tem call marshaling mechanism, then present ROSE’s performance
when used merely as a concrete simulator. Second, we describe how
to use ROSE to jump to an arbitrary offset, then present a collection
of debugging scenarios. The arbitrary offset scenario shows how,
especially for a large program like vim, ROSE’s support for inter-
preting from an arbitrary offset mitigates its simulation overhead.
The evaluations described herein ran on a 12-core Intel Xeon X5680
3.33GHz with 48GB per core running Linux 2.6.32-5-amd64.

4.1 Correctness and Performance

1 Project_Linux32 simulator;
2 Project_Adapter::TraceFileIO tracer;
3
4 tracer.trace_fd(0); // standard input
5 tracer.trace_fd(1); // standard output
6 tracer.trace_fd(2); // standard error
7
8 tracer.attach(&simulator);
9 ...

10 tracer.detach(&simulator);

Listing 9: Adaptor example.

Total Simulator Disassembler

System calls 293 110 –
Instructions 663 115 663

Table 3: Number of system calls and instructions whose semantics
under ROSE’s simulator and disassembler were verified.

Table 4 shows how many of the total system calls and instructions
we have implemented. System calls do not make sense for the
disassembler as interrupts trigger them. In this section, we focus
on verifying the simulator, since verifying the semantics of the
disassembler consists solely in matching its output against the table
of opcodes documented in architecture specifications.

ROSE implements all integer instructions that operate on integer
registers in the 386 architecture, except those instructions introduced
in 386 that operate on control and debug registers, such as dr0 or
dr1. POSIX.1−2008 [21] specifies 161 system utilities, and is part of
the Single UNIX Specification (SUS). These utilities can be found
on most UNIX-like operating systems. These utilities interact with
and change system state using system calls, and are likely to exhibit
more complex system call behavior than most programs. Because of
this we decided to implement the necessary functionality to support
these utilities one-by-one. We currently support 59 of these utilities.
The 110 instructions ROSE current supports as precisely those
needed to run these 59 utilities. We believe the instruction usage
patterns of these utilities to be representative and that ROSE can
already support wide variety of applications. Development of ROSE
is ongoing; support for additional instructions is added as needed.

Verifying ROSE’s Interpretation of Instructions A simulator
must correctly implement instruction semantics, which are strange,
complicated creatures. The core idea is to run ROSE in parallel
with a native execution of the executable ROSE is analyzing and
compare the input-output results of each executed instruction. The
specimen is run under a very simple network-based debugger which,
in turn, runs under ROSE.

To ease this task, we implemented a semantic analyzer. This tool
seeks to verify ROSE’s interpretation of an instruction’s semantics
accurately reflects how the instruction executes on real hardware.
The semantic analyzer queries the debugger for value of every regis-
ter and memory read operation and stores the result.

ROSE parses the executable and obtains the addresses of all
executable segments. It then sets breakpoints for all addresses in
those segments and asks the debugger to continue execution. When
a breakpoint is reached, ROSE looks up the SgAsmInstruction at
that address. ROSE queries the debugger for the instruction, then
submits it to the semantic analyzer. ROSE asks the debugger to
single step and then compares writes, from previous step, with
values queried from the debugger. ROSE and the debugger then
advance to the next breakpoint and repeat the process.

This evaluation methodology is conservative. First, the verifier
does not handle interrupts. Therefore, instructions like “INT” will
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Total Errors
Verified Reported Actual CI

diff 454822 490 0 22.84
grep 470688 1728 0 23.35
gzip 235550 298 0 7.54

ls 454760 614 0 22.99
patch 475613 1048 0 23.22

Table 4: Verification of instruction semantics: Confidence level is
set to 99% and except for gzip the sample size is 30. For gzip we
analyzed every single reported error. 50% percentage was used to
calculate the confidence interval.

execute in the natively-running version (under the debugger) but not
in the ROSE’s simulator. Therefore, one should expect the state
after interrupts to be different. Second, instructions that interact
with the environment, like RDTSC (read timestamp counter) return
different values in different executions, such as native and simulated
runs.

Since the goal of evaluation is instruction coverage, not specimen
path coverage, so we use a minimal input. For instance, the gzip test
is executed as:

echo > gzip.input
gzip < gzip.input >/dev/null

We began our evaluation by manually inspecting every discrep-
ancy between the native and simulated output reported by the seman-
tic analyzer for gzip. There were 498 such failures, 183 of which are
due to system calls. The verifier does not handle system calls, so
state always mismatches and generates a failure after an “INT 0x80”
(183 calls). Likewise, there are 17 failures due to SYSENTER. After
eliminating these two sources of failure, 298, the number reported
in Table 4, remain. In addition to the system call and SYSENTER
errors themselves, the instruction that follows them also generates
an error, resulting in 200 errors. For those cases (approximately
50) we inspected, the only difference in state is the “ORIG_EAX”
pseudo-register not accounted for by our semantic analyzer. This is
expected, and we can ignore this failure. Of the remaining 98 errors,
48 failures are in the simulation of the MOV instruction. The EIP
register had a simulated value of 0x40000ff7 after the instruction,
but the debugger reported 0x40000ff0. In this case, the debugger is
wrong because the instruction was at 0x40000ff0, so the EIP point
to an address after it. The final 50 failures occur because the verifier
currently does not support discovering the base address for the GS
register. Basically, a memory reference is something like GS:[offset],
where GS is a segment register and "offset" is a memory address,
like 0x08040123. Segment shadow registers are internal to the x86
CPU — they are not externally accessible.

After our thorough manual inspection of one program, we then
manually inspected 30 reported failures, chosen uniformly at ran-
dom, to verify the instructions of the remaining programs. Table 4
reports the resulting interval into which the actual error falls with
99% confidence.

System Calls The Linux Test Project (LTP) [18] has the goal to
deliver test suites to the open source community that validate the
reliability, robustness, and stability of Linux. The LTP test suite
contains a collection of tools for testing the Linux kernel and related
features. LTP tests both passing and failing system call behavior.
ROSE uses LTP to test its system call marshaling; thus, ROSE uses,
and passes, exactly the same test suite used to test the system call
implementation of the Linux kernel itself. To ensure that ROSE
stays conformant, we use continuous integration to enforce that all
versions of ROSE pass these unit tests.

For threading, we used the pthread conformance tests in the POSIX
Test Suite to perform conformance, functional, and stress testing of
the IEEE 1003.1-2001 System Interfaces specification in a manner
that is agnostic to any given implementation. We apply the unit tests
of all 104 pthread routines.

Table 5 reports 9 pthread unit test failures. One of the tests,
thread_create.10−1.c, exhibited nondeterministic behavior both na-
tively and under ROSE. Four pthread_mutexattr tests did not compile,
generating undeclared variables errors. The pthread_once test had
no main function. Three tests fail when run natively, outside the
simulator, within 2 minutes.

There are 293 system calls in Linux Kernel 2.6.7; we currently
support 110 of those system calls via marshaling. IBM has con-
tributed a system call test suite to the Linux Test Project with 339
test programs with units tests that test the 110 system calls we sup-
port. In those 339 files the total number of passing test conditions is
421 and total number of failing test conditions is 1295.

The sys_gettimeofday test sometimes fails both natively and under
ROSE because the kernel has a bug in the way it interacts with the
RTC that causes the clock to go backward by small amounts every
so often4. The single test of sys_fchown16 does not deterministically
pass natively on some systems and we should therefore not expect
it to pass under ROSE either. Four tests of sys_ipc and two tests of
sys_fcntl64 fail because our implementation of the futex() system call
is incomplete.

Performance Table 6 compares ROSE when concretely simulating
the selected programs without jumping to an arbitrary offset. The
completion times are real, elapsed time. The ROSE simulator was
an optimized version, compiled using “−O3 −fomit−frame−pointer”.
The specimens are all dynamically linked, 32-bit x86 ELF binaries.

Table 6 reports the total number of system calls to demonstrate the
fidelity of ROSE’s simulation. Since there is no equivalent tool to
ROSE, we have evaluated it against Valgrind, a powerful, publicly
available binary analysis tool. We do not report the system calls
Valgrind executes because Valgrind is not natively aware of system
calls. Currently, ROSE shares its standard out with its specimen.
As a result, ROSE does not allow a specimen to close stdout. Some
programs respond by retrying to close stdout. Another source of
discrepancy is when a program calls execve to start; ROSE ignores
execve because when ROSE is running, its specimen has already
started. ROSE does not support floating-point, which affected the
patch program. In spite of this fact, ROSE’s simulation produced
correct output. The unique system call column reports the number
of unique system calls made during the run. We did not report
this number for Valgrind, again because Valgrind does not natively
support collecting such data. Table 6 similarly reports the total
number of instructions executed, which number in the millions, as
well as the unique instructions whose repeated execution generated
that total.

Table 6 shows that ROSE is slower than Valgrind, when fully
simulating a program. This is not surprising given its greater power.
There are three reasons for this slowdown. The first source of slow-
down is that ROSE disassembler is used to build an intermediate
representation of each instruction before the instruction can be sim-
ulated. Disassembly at some level is necessary in order to simulate
instructions, and the level of disassembly that the simulator uses
is the same as that which ROSE uses for all other binary analy-
ses. The second source of slowdown is that dynamic linking in the
specimen is resolved as a side-effect of simulation. The simulator
loads the specimen’s executable into an address space (MemoryMap)
just as the host OS would, and then begins simulation. If the main

4http://www.gossamer-threads.com/lists/linux/
kernel/813344.
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Total Number Number Supported Number of Tests Tests passing natively Tests passing Tests failing

System calls 293 110 339 337 331 8
pthread routines 104 104 417 408 408 9

Table 5: Statistics about instructions and system calls supported by ROSE.

completion System Calls Instructions
time total unique total unique

gzip
native 4ms 203 17 5.7m –
Valgrind 0.4s – – 5.7m –
ROSE 9.4s 203 15 5.7m 73

diff
native 3ms 260 21 2.3m –
Valgrind 0.5s – – 2.3m –
ROSE 4.1s 264 21 2.3m 78

patch
native 4ms 361 26 4.6m –
Valgrind 0.5s – – 4.6m –
ROSE 8.0s 356 25 4.6m 85

grep
native 3ms 205 14 1.0m –
Valgrind 0.5s – – 1.0m –
ROSE 1.8s 208 14 1.0m 73

sed
native 5ms 265 15 12.9m –
Valgrind 0.5s – – 12.9m –
ROSE 22.1s 266 14 12.9m 77

ls
native 3ms 338 26 0.9m –
Valgrind 0.5s – – 0.9m –
ROSE 1.6s 338 24 0.9m 73

Table 6: ROSE full simulation performance results.

executable has an interpreter, then the interpreter is also loaded and
simulation starts in the interpreter. In this way, the simulator is able
to simulate dynamically linked executables; it simulates the linker
itself (i.e., it simulates the ld−linux.so interpreter). The third source
of slowdown is that the specimen system calls is intercepted by
hooking the “INT 0x80” or SYSENTER instructions. In either case,
the instruction is intercepted and the simulator processes the system
call, either by invoking a real system call on the specimen’s behalf,
or by adjusting the specimen’s state to emulate the system call.

4.2 Usage Scenarios
We describe two sets of usage scenarios to evaluate ROSE’s

utility and range. First, we describe in detail how a programmer
can define an analysis that jumps to an arbitrary offset, then we
describe three debugging tactics (which could be turned into tools)
that ROSE enables.

4.2.1 Arbitrary Offset
ROSE’s power comes at a cost: it is a heavy-weight simulator.

Here we show how its ability to begin execution at an arbitrary
offset reclaims lost performance. In particular, we show how quickly
ROSE can jump to and analyze a function (strcmp, strchr, and updcrc)
without inputs in three programs (grep, gzip and vim) as compared
to reaching that same function from the program’s start under native
or simulated execution with concrete inputs.

To begin from an arbitrary offset, ROSE must concretely execute
the specimen up to a certain point to resolve dynamic linking. Thus,
it parses the ELF file to find the address of main and stops when it
is reached. By executing to main, ROSE allows the dynamic linker
to run, giving us more information about the executable.

After reaching main, ROSE jumps to updcrc’s offset in gzip begins
symbolic execution. This function takes a pointer to a buffer and the
buffer’s size and computes the CRC of the buffer. Since the function
has an if statement and a loop, we provide a concrete value for the

1 unsigned long updcrc(const unsigned char *s, unsigned n)
2 {
3 unsigned long crc_32_tab[256];
4 register unsigned long c;
5 unsigned long crc = (unsigned long)0xffffffffL;
6 ...
7 // huge assignment to crc_32_tab
8 ...
9 if (s==NULL) {

10 c = 0xffffffffL;
11 } else {
12 c = crc;
13 if (n) do {
14 c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
15 } while (−−n);
16 }
17 crc = c;
18 return c ^ 0xffffffffL;
19 }
20
21 /* The simulation stops here. */
22 int main() { return 0; }

Listing 10: Input used to evaluate arbitrary offset.

grep − glibc gzip vim − glibc
strcmp strchr updcrc strcmp

Native 0.003 0.003 0.004 1.09
Simulator 1.809 1.811 3.601 67.00

Offset 1.809 1.808 9.400 6.09
Table 7: Arbitrary offset: time (seconds) to execute the target library
call in the given executable; for instance, strcmp from glibc in gzip.

second argument. This causes the else (the more interesting of the
two branches) to be taken and the loop to execute a fixed number of
times. We also provide a concrete value for the buffer address, but
not the buffer contents.

We confirm ROSE’s interpretation of functions by comparing the
result of the simulation to the result of a concrete run of the same
code. Listing 10 shows the salient features of the updcrc function that
gzip uses. To evaluate updcrc, we converted crc and crc_32_tab from
globals to locals, because ROSE does not currently handle static
initializers. To evaluate ROSE’s capability to concretely analyze
updcrc and provide memory values on the fly, we ran the specimen
until it reached main, then allocated memory, initialized it with a
string, and analyzed updcrc() to obtain an output value. For instance,
when updcrc() is given "hello world!" as input, it produces the CRC
"0xbfbe9f4f", the expected value.

Table 7 shows the results of this evaluation. The vim experiment
highlights the potential for performance savings that ROSE’s ability
to begin symbolic execution at an arbitrary offset provides. Guided
by Yices, we explored all feasible paths within the function. We
also verified that when Yices, our SMT solver, asserted that a path
was feasible that its path condition was indeed satisfiable and that
when Yices asserted that a path was infeasible that its path condition
was indeed unsatisfiable. Yices was able to solve the constraints we
fed it in this evaluation.
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1 struct Demo : public RSIM_Callbacks::InsnCallback {
2 virtual bool operator()(bool enabled, const Args &args) {
3 SgAsmFunctionDeclaration *func =
4 SageInterface::getEnclosingNode<
5 SgAsmFunctionDeclaration
6 >(args.insn);
7 if (enabled && func!=NULL
8 && 0 == ( func−>get_reason() &
9 SgAsmFunctionDeclaration::FUNC_LEFTOVERS

10 )
11 && !func−>get_name().empty())
12 args.thread−>tracing(TRACE_MISC)−>mesg(
13 "in function %s", func−>get_name().c_str()
14 );
15 return enabled;
16 }
17 };
18
19 int main(){
20 ...
21 RSIM_Linux32 sim;
22 int n = sim.configure(argc, argv, envp);
23 sim.install_callback(new Demo);
24 sim.install_callback(new RSIM_Tools::UnhandledInstruction);
25 sim.exec(argc−n, argv+n);
26 SgAsmBlock *top = sim.get_process()−>disassemble();
27 ...
28 }

Listing 11: Finding the function in which an instruction is executing.

4.2.2 Debugging with ROSE
ROSE offers a promising foundation for new debugging tools.

Here, we describe three debugging tactics ROSE makes possible.
We begin with a description of how to discover in which function
a particular instruction is executing. Then we show how ROSE’s
complete representation of a specimen’s storage enables two useful
debugging tactics — checking whether a value is present in memory
and watching memory accesses.

Which Function Is Mine? When a bug occurs during simulation,
it is often convenient to know which function is executing. This ex-
ample demonstrates how to find the function in which an instruction
is executing. In Listing 11, we register a callback that registers the
custom analysis function (lines 2–17) to the ROSE simulator on
line 23. Since the program might contain instructions that are not
handled by ROSE yet, we register a callback to handle those on line
24. After setting up the analysis, we load the executable on line 25
and initiate disassembly of that memory on line 26.

The task of finding an instruction’s function has three stages.
ROSE provides tool support for each. First, you must disassem-
ble the instructions (with ROSE’s Disassembler class) and partition
them into basic blocks and functions (with ROSE’s Partitioner class).
RSIM_Process::disassemble() is a convenience method that does both
and caches the result in an RSIM_Process object. Another way to
accomplish this task is to use RSIM_Tools::MemoryDisassembler; it
triggers RSIM_Process::disassemble() when a specified instruction is
hit. If you do not run the disassembler over all of a process’ mem-
ory, the instruction returned will lack basic block and function
information: processing a process’ entire memory space is required
to build an accurate and complete map of basic blocks and func-
tions. Second, one must acquire a pointer to the instruction. In
this example, we write an instruction callback that is invoked for
every simulated instruction that takes a SgAsmInstruction pointer as
one of its arguments. Finally, once the instruction pointer is ob-
tained, you just walk the AST upward from the instruction to find

its SgAsmFunctionDeclaration node.

Is a Particular Value in Memory? To check whether spec-
imen memory matches a known value, one need only attach a
MemoryChecker callback to the simulator. The MemoryChecker in-
struction callback reads from the specified memory area and verifies
that the contents of memory at that location match the expected
value. If not, a message is printed and the callback is disabled.
Here’s an example of how to use this callback:

1 uint8_t valid_mem =
2 {0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0xef,
3 0x67, 0x00, 0x00, 0x00, 0x7f, 0x00, 0x00, 0x03};
4 MemoryChecker mcheck(
5 0x7c402740, sizeof valid_mem, valid_mem, true
6 );
7 simulator.install_callback(&mcheck);

What Writes a Memory Region? ROSE supports the construction
of tools that provide capabilities beyond those of gdb. For instance,
gdb can watch memory locations, but ROSE can watch memory
regions. This can be particularly useful when trying to discover
which code modifies a particular memory region.

The MemoryAccessWatcher callback watches for access to speci-
fied memory locations and prints a message to the specified facility
when such an access occurs. An access need not change the value
of the memory location in order to be reported. This callback is
triggered if the bit vector that describes an instruction specifies a
memory operation and the watched memory region’s protection bits
match at least one of the specified req_perms bits.

We ourselves used ROSE’s ability to watch a memory region
while working on extending ROSE to simulate Windows programs
using WINE. At one point a bug made it so that a memory region was
incorrectly modified after simulating about a million instructions
under WINE. Using MemoryAccessWatcher, we quickly isolated the
“POP \%ESP” and discovered that ROSE was incorrectly simulating
it. The fix was to swap two lines of code. Without ROSE’s memory
debugging capabilities, this bug would have been difficult to isolate
and fix.

MemoryAccessWatcher can watch arbitrarily large memory regions,
since it does not allocate any backing store, but rather just monitors
the memory addresses. Also, the addresses to watch do not need to
be mapped to the process yet — the memory access watcher can
detect access to addresses that would cause a segmentation fault.

An example of how to use a memory watcher to monitor reads
and writes to the first page of memory, which are indicative of
dereferencing a null pointer, follows:

1 RSIM_Linux32 sim;
2 unsigned operations = MemoryMap::MM_PROT_READ
3 | MemoryMap::MM_PROT_WRITE;
4 unsigned req_perms =
5 MemoryMap::MM_PROT_ANY; //read, write, or execute
6 RTS_Message mesg(stdout, NULL)
7 sim.install_callback(new MemoryAccessWatcher(
8 0, 4096, operations, req_perms, &mesg
9 ));

Here, we have an example of how to use a memory watcher to
detect when instructions are executed on the stack, which might
indicate a buffer overflow:

1 RSIM_Linux32 sim;
2 unsigned operations = MemoryMap::MM_PROT_READ;
3 unsigned req_perms = MemoryMap::MM_PROT_EXEC;
4 proj_addr_t stack_base = 0xbffeb000;
5 proj_addr_t stack_size = 0x00015000;
6 sim.install_callback(new MemoryAccessWatcher(
7 stack_base, stack_size, operations, req_perms
8 ));
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5. RELATED WORK
To our knowledge, ROSE is the only mixed analysis frame-

work that supports the analysis of binary fragments from any offset.
Mixed interpretation allows ROSE to simultaneously execute mul-
tiple, interacting analyses; ROSE’s high-fidelity abstract storage
model is also unique and enables ROSE to begin execution starting
at arbitrary offsets. The rest of this section surveys related work,
which we classify into the following categories.

Virtual Machine ROSE is an extensible virtual machine. There
is a wide array of existing virtual machines that support concrete
interpretation of binaries. Examples are Bochs [17], Embra [31],
QEMU [5], SPIM [28] and PTLsim [32]. However, they all operate
on concrete storage, while ROSE operates on abstract storage and
supports concrete, symbolic, and abstract interpretations.

Binary Instrumentation Pin [20], Strata [25, 29], DynInst [23]
and Valgrind [19] are runtime instrumentation tools that inject in-
structions into the instruction stream to perform binary analysis.
They are tethered to a concrete execution trace although approaches
exist that can perturb the program state along the trace to explore
more of the program’s state space. PinOS [6] can instrument oper-
ating systems and unify user/kernel-mode tracers. It is built upon
Xen [4] and provides similar functionality as Valgrind. In compar-
ison to these tools, ROSE is a virtual machine where a program
is interpreted. Runtime instrumentation approaches do not sup-
port abstract storage and thus cannot interpret binaries abstractly or
symbolically. Neither can these tools interpret code from arbitrary
offsets.

Symbolic Binary Analysis BitBlaze [27], built on top of Valgrind,
explores the program execution space around a trace. It is still
tethered to the trace and does not support binary analyses of code
fragments from arbitrary offsets. Instead, it extracts and changes the
program state from a trace to explore the program’s additional state
space. S2E [10] is similar to BitBlaze, but adds a more accurate
hardware model. S2E is the first tool that handles all aspects of
hardware communication which ROSE delegates to the host OS.
S2E translates between a concrete representation of a program in
QEMU and a symbolic representation in KLEE [8], whereas ROSE
directly supports symbolic execution of instructions. SAGE [13]
is a symbolic execution engine for binaries, developed and used
internally at Microsoft. Like BitBlaze, it is also tethered to and
operates over concrete traces.

Systematic path exploration techniques for source code, such
as DART [14], CUTE [26], SJPF [22] and EXE [9], provide the
foundation for the above tools. The basic idea is to synergistically
combine concrete and symbolic execution to improve test coverage.

Tools that symbolic execute source code either have to model the
services provided by system calls or invoke the system calls directly.
For instance, modeling the file system has enabled KLEE to test
UNIX utilities without invoking the real filesystem [8]. However,
creating models is a labor-intensive and error-prone process and
researchers has reported spending several person-years writing a
model for the kernel/driver interface of a modern OS [3]. Future
work will apply ROSE to the task of simulating a kernel; success
here would automatically generate models for external functions
including system calls. We currently only generate models for
external functions outside the kernel.

Static Binary Analysis As ROSE has a disassembler compo-
nent, it is also related to disassemblers and PDG-based tools that
enable the static analysis of binaries. Notable examples include
CodeSurferx86 [2, 24] and IDAPro [15]. However, these tools typi-
cally do not have a complete execution model and therefore do not
conveniently support semantic interpretation of binaries.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented ROSE, a pluggable, mixed binary

analysis framework. Its novel combination of features allows it to
start its analysis in different modes of execution from an arbitrary
offset. This capability opens the door to new application domains in
the binary analysis arena, such as unit testing of third-party binaries.
We believe that ROSE’s power, extensibility, and ease of use will
enable the design and development of novel and practical binary
analysis tools. ROSE is available under the MIT license and can be
downloaded from <anonymized url>.
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