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In modeling magnetic confinement, astrophysics, and plasma propulsion, 
representing the entire physical domain is often difficult or impossible, and 
artificial, or “open” boundaries are appropriate. A novel open boundary 
condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is 
presented. LOBC, based on the idea of lacuna-based truncation originally 
presented by V.S. Ryaben’kii and S.V. Tsynkov [1], provide truncation with 
low numerical noise and minimal reflections. For hyperbolic systems, 
characteristic-based BC (CBC) exist for separating the solution into outgoing 
and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such 
separation is not possible, and CBC are numerically unstable. LOBC are 
applied in dissipative MHD test problems including a translating FRC, and 
coaxial-electrode plasma acceleration. Solution quality is compared to 
solutions using CBC and zero-normal derivative BC. LOBC are a promising new 
open BC option for dissipative MHD. 

[1] V.S. Ryabenkii et al., J. Comput. Phys., 174 (2001) 712 
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Motivation 

• To model infinite (or very large) domains, open boundaries 
are often needed to limit the computational domain size 
without influencing the solution in the domain of interest. 

• Dissipative MHD (a mixed hyperbolic-parabolic equation 
system) presents special challenges for open BC, including 

– high thermal and magnetic diffusion 

– flows and waves oblique to open boundaries 

• Hyperbolic-based BC have proven inadequate.  A general 
open BC is needed. 
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Outline 

• Description of Lacuna-based open BC (LOBC)* 

• Alternative open BCs 

– Approximate Riemann open BC (ARBC) 

– Thompson open BC (TBC) 

– Zero normal derivative (ZND) 

• Test problems and results 

– Pressure pulse 

– FRC translation 

– Plasma acceleration 

• Conclusions 

* LOBC have been developed for single wave-speed hyperbolic systems by Ryaben’kii, Tsynkov 
et al.  See V.S. Ryaben’kii, S.V. Tsynkov, V.I. Turchaninov, J. Comp. Phys. 174 (2001) 712. 



Lacuna-based open BC 

(LOBC) 



Lacunae are still regions behind waves in hyperbolic 
systems 

Lacuna behind wave 

traveling wave 

• Lacunae are easily observed in 
the 1D scalar wave equation. 

 

 

 

 

• Huygens (1629-1695) used the 
concept of discrete propagation 
of individual wavelets to explain 
diffraction. 
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A transition region is used to generate sources for an 
auxiliary problem 

• Interior problem 

 
• Auxiliary problem 

 
• To determine W, substitute q 

for w and solve. 
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Auxiliary problem is reintegrated; “lagging” source 
contributions are truncated 

• Transition sources drive auxiliary 
problem solution to match interior 
solution at interior/exterior interface. 

• Problem is reintegrated as required to 
prevent transition source terms from 
generating waves that reach the 
auxiliary problem boundary. 

Store solution 

Reintegrate 

Integrate 
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Reintegration damps hyperbolic features; parabolic 
physics is bounded by conventional BC 

1: Right-propagating 

wave is initialized. 

2-3: Source terms drive auxiliary solution 

to match the main solution. 

4-6: Solution is damped in exterior region as source terms 

are eliminated from the reintegration. 

1 2 3 

4 5 6 

black =   wave   

green =   auxiliary solution  open boundary: 

blue   =   trans. source  
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LOBC provide perfect non-reflection only under 
certain circumstances 

• True lacunae are present only in systems with odd 
dimensionality (1D / 3D)*. 

• True lacunae are present only if the system is purely 
hyperbolic. 

• To capture lacunae when multiple wave speeds are present, 
the slowest wave must exit the transition region. 

* R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume II, Wiley, 
New York, 1962 
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Alternative open BCs 



LOBC is compared to alternative techniques 

• Approximate Riemann BC (ARBC) 

– Incoming flux (     ) and outgoing flux (     ) are found via 
characteristic analysis. 

– Prescribe exterior conditions to specify incoming flux. 

 

• Thompson open BC (TBC) 

– Variations of incoming flux (          ) and outgoing flux (          ) are 
found via characteristic analysis. 

– Set variation of incoming flux to zero. 

 

• Zero normal derivative BC (ZND) 

– Simply enforce zero normal derivative for all quantities. 
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Test problems and results 



• In each of the problems presented, reference cases are 
computed using domains large enough to eliminate 
boundary effects. 

• L∞-norm of pressure error (i.e., the maximum error) is 
normalized by the maximum pressure in the reference 
simulation. 

Error evaluation: L ∞-norm of pressure error is found 
based on reference solution 



Pressure pulse problems explore LOBC performance 
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Linterior=1 Lexterior 
(variable size) 

transition 

region 
=1 

=0 

+x  

+y  

p0=1 

r0=1 

v0=0 

pmax= pmax+d 

rmax=rmax+d 

• 2D domain is shown; 1D domain 
is the restriction of the problem 
to the x-axis. 

• Large and small perturbation 
sizes (d=10-3 and d=0.5) test 
(non-dissipative) linear and 
(dissipative) non-linear cases. 
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1D results: 

(linear) (nonlinear) 

2D results: 
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FRC translation challenges open BC with high 
parallel thermal conduction 
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Cyclic plasma acceleration drives highly nonlinear 
current sheets through open BC 
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Conclusions 
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• Several open BC possibilities for dissipative MHD are explored; 
LOBC are found to be effective where alternatives fail. 

• In 1D LOBC applications, if dissipative scales are not matched to 
the buffer region size, reflections are minimal. 

• In 2D LOBC applications, true lacunae are not present; 
increasing the buffer region size helps minimize reflections due 
to the lack of true lacunae. 

• Further optimization of the LOBC implementation is possible; 
for details, see upcoming publication*. 

Conclusions 

* E.T. Meier, A.H. Glasser, V.S. Lukin, U. Shumlak, Modeling open boundaries in dissipative 
MHD simulation, J. Comput. Phys., 2012  (submitted). 




