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1 Introduction

In this report, we are primarily studying the effect of fast neutrons scattering between different liquid scin-
tillator cells. The reason why this study is important is that if a neutron scatters and deposits enough energy
in multiple liquid scintillator cells to record multiple counts, it will not only artificially increase the count
rate but also the numbers of two- and three-neutron correlations. It is well known that the masses of nuclear
materials undergoing fissions can be determined using 3He tubes measuring thermal neutrons. The method
used is based on moments of the random time gate count distributions, which are very sensitive to two-,
three- and higher order correlations. Because fast neutrons can scatter multiple times between detectors
and register counts artificially correlated, this moment method unfortunately fails for them. Using modified
expressions for the moment method to theoretically account for multiple scattering, we will show that the
calculated fractions of neutrons scattering multiple times can be used to apply corrections to the masses of
nuclear materials undergoing fission.

We propose a method to measure the fractions of neutrons multiple scattering from measuring the spec-
trum of energies deposited by fast neutrons.

Secondarily, this report also shows that the spectrum of energy deposited by fast neutrons reveals infor-
mation about the energy spectrum of the neutrons emitted by the source under investigation.

2 Theory

When a multipling object is placed in the center of a liquid scintillator array such as the one shown in Fig. 1,
one can experimentally measure the times of arrival of the neutrons in each of the liquid scintillator cells.
Randomly splitting the sequence of time tags into N segments of length T — where T is of the order of
nanoseconds to hundreds of microseconds — one can count how many neutrons arrive in the first segment,
how many in the second segment, in the third one, etc. allows one to build a distribution bn(T ) of the number
n of neutrons arriving in the segments of length T . By repeating this procedure for segments of different
lengths T , multiple count distributions bn(T ) can be obtained.

These count distributions bn(T ) can be used to determine the strength in units of spontaneous fissions per
second Fs of the spontaneous fission sources in the object, the efficiency ε of the liquid scintillator array and
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Figure 1: Multiplying object in the middle of a 77 liquid scintillator array.

the multiplication M of the multiplying object. This will be shown by way of the following three equations.
One can show theoretically that the first moment of the count distribution bn(T ) can be written as

C̄ (T ) = εq(M)Mν̄spFs (1+α)T (1)

where Fs is the strength of the spontaneous fission source, α is the ratio of neutrons emitted by sources
emitting single neutrons to neutrons emitted by sources emitting multiple neutrons simultaneously, and
q(M)M is usually referred to as the escape multiplication and is given by

q(M)M = M− (M−1)/ν̄ (2)

The symbols ν̄ and ν̄sp are the average numbers of neutrons emitted per induced and spontaneous fis-
sions, respectively. They can be written as

ν̄ =
8

∑
n=1

nCn (3)

and

ν̄sp =
8

∑
n=1

nCsp
n (4)

where Cn and Csp
n are the probabilities of emitting n neutrons per induced and spontaneous fissions, respec-

tively. The upper limit of 8 on the summation sign is the largest number of neutrons that known isotopes
produce per fission. In other words, Cn is zero for n greater than 8. It should be noted that the distribution
Cn depends on the energy of the neutron inducing fission.

The second moment of bn(T ) is

Y2F (T ) = εq(M)M
[

D2s

1+α
+(M−1)D2

](
1− 1− e−λT

λT

)
(5)
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where λ is a time constant related to the transport of the neutrons in both the measured object and the de-
tection system. D2s and D2 are combinatorial moments of spontaneous and induced fission neutron number
distributions. They depend on nuclear data, and are given by

D2s =
∑

8
n=2
(n

2

)
Csp

n

ν̄sp
(6)

and

D2 =
∑

8
n=2
(n

2

)
Cn

ν̄
(7)

Fig. 2 shows an example of Y2F (T ). The time constant λ−1 is 6 ns and the asymptotical value is 0.1174.
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Figure 2: Examples of Y2F (T ) and Y3F (T ).

The third moment of the count distribution bn(T ) is

Y3F = (εq(M)M)2[[
D3s

1+α
+(M−1)D3

](
1− 3−4e−λT + e−2λT

2λT

)
+
[

2(M−1)
D2sD2

1+α
+2(M−1)2 D2

2

](
1− 2− (2+λT )e−λT

λT

)]
(8)

where D3s and D3 are combinatorial moments of induced and spontaneous fission neutron number distibu-
tions, and are given by

D3s =
∑

8
n=3
(n

3

)
Csp

n

ν̄sp
(9)

and

D3 =
∑

8
n=3
(n

3

)
Cn

ν̄
(10)
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An example of Y3F (T ) is shown in Fig. 2. The two values R3F1 and R3F2 are the two components of Eq. 8:

R3F1 =
(εq(M)M)2

1+ fext

[
D3s

1+α
+(M−1)D3

]
(11)

R3F2 =
(εq(M)M)2

1+ fext

[
2(M−1)

D2sD2

1+α
+2(M−1)2 D2

2

]
(12)

so that Eq. 8 can be rewritten as

Y3F = R3F1

(
1− 3−4e−λT + e−2λT

2λT

)
+R3F2

(
1− 2− (2+λT )e−λT

λT

)
(13)

The slope of Eq. 1 and the asymptotes of Eqs. 5 and 8 for large time gate widths T can be written as
R1 = εq(M)Mν̄spFs (1+α)
R2F = εq(M)M

[ D2s
1+α

+(M−1)D2
]

R3F = (εq(M)M)2
[

D3s
1+α

+(M−1)D3 +2(M−1) D2sD2
1+α

+2(M−1)2 D2
2

] (14)

This system of 3 equations has 4 unknowns ε , M, Fs and α . In the absence of (α ,n) sources which emit
single neutrons at a time, the ratio α is equal to zero. In this case, the system of equations 14 reduces to

R1 = εq(M)Mν̄spFs

R2F = εq(M)M [D2s +(M−1)D2]

R3F = (εq(M)M)2
[
D3s +(M−1)D3 +2(M−1)D2sD2 +2(M−1)2 D2

2

] (15)

2.1 Detector corrections

These equations rely on the assumption that each neutron in the system can be detected only once. This is
certainly true for a detection system based on 3He tubes, because 3He captures the neutron and the neutron
disappears from the system. It is different in an array of liquid scintillator cells, because neutrons in such a
system deposit energy in cells by scattering with the atoms, and are not absorbed in these elastic and inelastic
scattering collisions. They keep traveling, and if they still have enough energy, they can potentially deposit
this energy in adjacent or even remote cells. If a neutron scatters multiple times between liquid scintillator
cells, Eqs. 1, 5 and 8 no longer hold. They can however be replaced by the count rate C̄ (T ) and the moments
Y2F (T ) and Y3F (T ) that account for the multiple scattering of neutrons (the derivation of these equations is
in appendix A, where α2 and α3 denote f2 and f3):

C̄ (T ) =
[
(1− f2− f3)+

(2
1

)
f2 +

(3
1

)
f3

]
R∗1T

Y2F (T ) = f2+3 f3
1+ f2+2 f3

+(1+ f2 +2 f3)εq(M)M
[ D2s

1+α
+(M−1)D2

](
1− 1−e−λT

λT

)
Y3F (T ) =

f3

1+ f2 +2 f3
+2( f2 +3 f3)εq(M)M

[
D2s

1+α
+(M−1)D2

](
1− 1− e−λT

λT

)
+(1+ f2 +2 f3)

2 (εq(M)M)2[[
D3s

1+α
+(M−1)D3

](
1− 3−4e−λT + e−2λT

2λT

)
+
[

2(M−1)
D2sD2

1+α
+2(M−1)2 D2

2

][
1− 2− (2+λT )e−λT

λT

]]
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(16)

where R∗1 is the true count rate. As opposed to the measured count rate R1 which includes 2 counts instead of
1 for each double scatter and 3 counts instead of 1 for each triple scatter, R∗1 is the rate of individual neutrons
detected by the liquid scintillator array. In other words, if a neutron multiple scatters between different liquid
scintillator cells, this neutron contributes only a single count towards R∗1. f2 is the ratio of the doubles rate
to the true count rate R∗1, f3 is the ratio of the triples rate to the true count rate R∗1. For multiple scatterring,
R1 is defined as

R1 = (1+ f2 +2 f3)R∗1T (17)

The first equation for C̄ (T ) in the system of equations 16 is the sum of three terms, all factors of R∗1T . The
first term is the fraction of single neutrons that are counted as such, the second term is

(2
1

)
times the fraction

of single neutrons that are counted twice, the third term is
(3

1

)
times the fraction of single neutrons that are

counted thrice. As a matter of consistency, let us assume the case where single neutrons always double
scatter but never triple scatter. In this case f2 is 1 and f3 is 0, so that the number of counted neutrons within
a time gate T is C̄ (T ) =

(2
1

)
R∗1T , which is twice the number of real single neutrons. The same could be said

for the case of neutrons always triple scattering. Equations 16 assume that not a single neutron registers
counts in more than 3 liquid scintillator cells. For a single neutron to deposit more than 1.2 MeV — which
is approximately the liquid scintillator threshold energy for detecting fast neutrons — in 4 different liquid
scintillator cells, it would theoretically only need to have an initial energy of 4.8 MeV. In reality however,
a neutron would need to have a much higher energy to record counts in 4 different liquid scintillator cells
with a reasonable probability. In Fig. 3, we show that the probably of a neutron registering 4 counts in
4 different liquid scintillator cells is negligible for any neutron below 10 MeV. Since the purpose here is
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Figure 3: Fraction of detected neutrons registering four counts in the liquid scintillator cells, as a function
of the source neutron energies.

to study fast neutrons with energies similar to the ones found in fission spectra, we can safely neglect any
multiple scattering greater than 3.

Once we know f2 and f3, and if we assume that α is zero, the system of equations 16 corrected for
multiple scattering can be solved for the three system parameters: the strength Fs of the spontaneous fission
source, the multiplication M of the object, and the efficiency ε of the detection system. Our goal is to deter-
mine whether the multiple scattering fractions f2 and f3 can be determined from measuring the spectrum of
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energies deposited by the fast neutrons from a single measurement, that is without any prior measurement.
If this were the case, we could easily use these fractions to determine the system parameters.
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3 Neutron energy sensitivity study

For this study, we considered the liquid scintillator array shown in Fig. 1. We assumed a point neutron
source is located in the middle of the array of liquid scintillators depicted in Fig. 1. Neutrons are emitted
one at a time from that point source. For 19 different mono-energetic neutron beams ranging from 1 MeV
to 10 MeV in increments of 0.5 MeV, we use the Monte Carlo radiation transport code MCNPX to transport
the neutrons from the point source in the middle of the array through the geometry consisting of the array
of liquid scintillator cells.
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Figure 4: Distributions of numbers of fast neutrons traversing the liquid scintillator cells as predicted by
MCNPX. The different colors refer to a subset of the initial neutron energies.

It is interesting to first take a peek at the ensemble of the energies of the neutrons as they traverse the
liquid scintillator cells, shown in Fig. 4. One notices than most neutrons have their full energy as they
traverse the liquid scintillator cells, but there is also a second relatively strong peak from the neutrons which
have been thermalized by the hydrogen in the liquid scintillator cells themselves. The spectrum of energies
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Figure 5: Distributions of numbers of fast neutrons as a function of the energy deposited in the liquid
scintillator cells as predicted by MCNPX. The different colors refer to a subset of the initial neutron energies.
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deposited by fast neutrons is shown in Fig. 5, where multiple scattering of neutrons is included. This figure
shows that source neutrons with different energies produce different responses, that is different spectra of
deposited energies in the liquid scintillator cells.

The last set of figures 6 shows the probability density functions for the energies deposited by the neutrons
in the liquid scintillator cells. To produce these distributions, each distribution in Fig. 5 was normalized, and
each bin of the normalized distribution was divided by the bin width. Integrated over the energy range, each
cumulative density function thus produced is equal to 1.
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Figure 6: Probability density functions for the energies deposited by mono-energetic source neutrons in the
liquid scintillator cells as predicted by MCNPX. The different colors refer to a subset of the initial neutron
energies.

3.1 First method to determine multiple scattering fractions

For these 19 energies between 1 MeV and 10 MeV, we computed the fractions of single source neutrons
registering counts in two and three liquid scintillator cells. The simulations were such that (a) the system
does not multiply neutrons, so that both M and q(M)M are equal to 1, and (b) neutrons are emitted one
at a time, so that both D2s and D3s are zero. In these conditions, many terms disappear in the system of
equations 16, and we can write the following equations that apply for non-multiplying sources emitting
single neutrons at a time:

C̄ (T ) = (1+ f2 +2 f3)R∗1T
Y2(T ) = ( f2 +3 f3)R∗1T
Y3(T ) = f3R∗1T

(18)

where Y2 (T ) and Y3 (T ) are equal to Y2F (T ) and Y3F (T ) multiplied by C̄ (T ). This system of 3 equations has
3 unknowns. The fractions of doubles f2 and triples f3 as well as the true count rate R∗1 can be determined
by taking the slopes of Eqs. 18.

These equations are better illustrated by looking at the quantities C̄ (T ), Y2 (T ), and Y3 (T ) for a simu-
lation of a weak 8 MeV-neutron source in the middle of the 77-cell liquid scintillator array. Fig. 7 shows
4 quadrants: the top left shows the count distribution of fast neutrons for a time gate of width 512 ns, the
top right is C̄ (T ), the bottom left and right are Y2 (T ) and Y3 (T ), respectively. The values for the moments
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come from 512 count distributions similar to the one shown in the top left quadrant of Fig. 7 for time gate
widths ranging from 16 to 512 ns. Blue is Monte-Carlo data, green is theoretical fits. The slopes of C̄ (T ) in
the top right quadrant, of Y2 (T ) and Y3 (T ) in the bottom quadrants of Fig. 7 are the factors of T in Eqs. 18.

Given the size of the liquid scintillator cells (10-cm-diameter), and the speed of ∼1.5 cm/ns of 1 MeV
neutrons, it would take a neutron at least 7 ns to register a count in a cell, register a count in a second cell
and travel 10 cm to get to a third cell. Even for 4 MeV neutrons traveling twice as fast, it would take 3.5 ns
for them to register counts in 3 different cells. From this follows that the slope of Y3 (T ) is not quite as steep
when T is close to 0. The same can be said for Y2 (T ). Because of this unmodeled latency — even though
short — the moments Y2 (T ) and Y3 (T ) in Fig. 7 are not fit by the linear functions 18, but by affine versions
of them with identical slopes:

C̄ (T ) = (1+ f2 +2 f3)R∗1T
Y2(T ) = ( f2 +3 f3)R∗1 (T −T o

2 )
Y3(T ) = f3R∗1 (T −T o

3 )

(19)

The values of f2, f3 and R∗1 can be determined by solving the system of equations 19. Interestingly, T o
2

and T o
3 give orders of magnitude for the times it takes for neutrons to register 2 and 3 liquid scintillator

counts, respectively. Fig. 7 reveals that 8-MeV neutrons take in average ∼6.6 ns to scatter from one liquid
scintillator cell to another one, while they take in average ∼12 ns to scatter from one liquid scintillator cell
to two other ones, consecutively. The reason why triple-scattering does not take twice as long as double-
scattering can be explained. When a neutron scatters and records counts in 2 cells, the energy of the neutron
between the first and second cells can be as low as 1.2 MeV (threshold for detection of fast neutrons). For a
neutron to scatter and record counts in 3 cells, the energy of the neutron between the first and second cells
has to be at least 2.4 MeV. Otherwise, the fast neutron — which needs to deposit at least 1.2 MeV in the
second cell to be counted, and would thus be left with at the most 1.2 MeV after the second cell — would
not have the required 1.2 MeV of energy to record a count in a third cell. Therefore, for three counts to be
recorded, the speed of the neutron between the first and the second cell has to be at least 1.4 times greater
than the speed of a neutron recording only two counts. Thus, we can conclude that the time it takes for a
neutron to record 3 counts in a liquid scintillator array will be less than twice the time it takes for a neutron
to record 2 counts in the same liquid scintillator array.
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The fractions f2 and f3 of neutrons scattering multiple times and registering two and three counts in the
liquid scintillator cells are shown in Fig. 8 for a range of source neutron energies. The fraction of neutrons
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Figure 8: Fractions f2 and f3 of detected neutrons registering two and three counts in the liquid scintillator
cells, as a function of the source neutron energies.

scattering multiple times and registering four counts in the liquid scintillator cells is shown in Fig. 3.
Because the count rate is artificially inflated by the neutrons registering multiple counts in the liquid

scintillator cells, the true count rate differs from the measured count rate as shown in Fig. 9. This figure
shows the true count rate R∗1 and measured count rates R1 as a function of the source neutron energies.
Note that the 3 plotted count rates are exactly matched up to 3 MeV, and are thus hidden behind each
other. Furthermore, the “Measured count rate R1” and “Count rate R1 determined by method 2” pretty much
exactly match all the way to 10 MeV.
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Figure 9: Comparison between the measured count rate R1, the count rate R∗1 predicted by the system of
equations 16 and the count rate predicted by the second method, as a function of the different initial neutron
energies. Neutron detection efficiency of liquid scintillator array, as a function of neutron energy.

The right graph in Fig. 9 shows the absolute neutron detection efficiency of the liquid scintillator ar-
ray. The detection efficiency is maximum for neutron energies around 3.5 MeV and 4 MeV, and decreases
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steadily as the neutron energy increases. Fast neutrons 1 MeV and lower are undetectable.
The fractions f2 and f3 of neutrons scattering multiple times are listed in table 1 for different mono-

energetic neutron sources, along with a1, b1, b2, c1, c2 and c3, which are the coefficients that enter into the
system of equations 16.

Table 1: Fractions f2 and f3 of neutrons double- and triple-
scattering between liquid scintillator cells, for mono-energetic and
fissile neutrons incident on the array shown in Fig. 1. The liquid
scintillator energy threshold is 250 keV.

Neutron source f2 [%] f3 [%] a1 b1 b2 c1 c2 c3

1.5 MeV 0.000e+00 0.000e+00 1.0000 0.000e+00 1.0000 0.000e+00 0.000e+00 1.0000
2.0 MeV 0.000e+00 0.000e+00 1.0000 0.000e+00 1.0000 0.000e+00 0.000e+00 1.0000
2.5 MeV 0.000e+00 0.000e+00 1.0000 0.000e+00 1.0000 0.000e+00 0.000e+00 1.0000
3.0 MeV 5.008e-02 0.000e+00 1.0005 5.005e-04 1.0005 0.000e+00 1.002e-03 1.0010
3.5 MeV 1.808e-01 0.000e+00 1.0018 1.804e-03 1.0018 0.000e+00 3.615e-03 1.0036
4.0 MeV 6.746e-01 0.000e+00 1.0067 6.701e-03 1.0067 0.000e+00 1.349e-02 1.0135
4.5 MeV 1.199e+00 0.000e+00 1.0120 1.185e-02 1.0120 0.000e+00 2.399e-02 1.0241
5.0 MeV 1.678e+00 0.000e+00 1.0168 1.650e-02 1.0168 0.000e+00 3.356e-02 1.0338
5.5 MeV 2.088e+00 1.188e-03 1.0209 2.049e-02 1.0209 1.164e-05 4.183e-02 1.0422
6.0 MeV 2.408e+00 3.843e-03 1.0242 2.363e-02 1.0242 3.752e-05 4.839e-02 1.0489
6.5 MeV 2.506e+00 6.802e-03 1.0252 2.464e-02 1.0252 6.635e-05 5.052e-02 1.0510
7.0 MeV 2.695e+00 1.129e-02 1.0272 2.656e-02 1.0272 1.099e-04 5.457e-02 1.0551
7.5 MeV 3.056e+00 1.516e-02 1.0309 3.009e-02 1.0309 1.470e-04 6.204e-02 1.0627
8.0 MeV 3.034e+00 1.763e-02 1.0307 2.995e-02 1.0307 1.710e-04 6.173e-02 1.0623
8.5 MeV 2.998e+00 2.510e-02 1.0305 2.982e-02 1.0305 2.436e-04 6.146e-02 1.0619
9.0 MeV 3.153e+00 3.195e-02 1.0322 3.148e-02 1.0322 3.096e-04 6.498e-02 1.0654
9.5 MeV 3.094e+00 3.219e-02 1.0316 3.093e-02 1.0316 3.120e-04 6.380e-02 1.0642

10.0 MeV 3.086e+00 3.355e-02 1.0315 3.089e-02 1.0315 3.253e-04 6.373e-02 1.0640
238U 2.786e-01 0.000e+00 1.0028 2.778e-03 1.0028 0.000e+00 5.572e-03 1.0056

240Pu 3.875e-01 3.407e-04 1.0039 3.870e-03 1.0039 3.394e-06 7.770e-03 1.0078
252Cf 4.245e-01 9.739e-04 1.0043 4.256e-03 1.0043 9.698e-06 8.549e-03 1.0085

2.2 MeV (Fig. 12) 0.000e+00 0.000e+00 1.0000 0.000e+00 1.0000 0.000e+00 0.000e+00 1.0000
4.4 MeV (Fig. 10) 1.113e+00 0.000e+00 1.0111 1.101e-02 1.0111 0.000e+00 2.226e-02 1.0224

7.24 MeV (Fig. 11) 2.680e+00 1.307e-02 1.0271 2.647e-02 1.0271 1.272e-04 5.438e-02 1.0549

Their definitions are given in Eqs. 20 through 25.

a1 = 1+ f2 +2 f3 (20)

b1 =
f2 +3 f3

1+ f2 +2 f3
(21)

b2 = 1+ f2 +2 f3 (22)

c1 =
f3

1+ f2 +2 f3
(23)
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c2 = 2( f2 +3 f3) (24)

c3 = (1+ f2 +2 f3)
2 (25)

For the sake of clarity, system of equations 16 is rewritten here using the new coefficients:

C̄ (T ) = a1R∗1T

Y2F (T ) = b1 +b2εq(M)M
[ D2s

1+α
+(M−1)D2

](
1− 1−e−λT

λT

)
Y3F (T ) = c1 + c2εq(M)M

[
D2s

1+α
+(M−1)D2

](
1− 1− e−λT

λT

)
+ c3 (εq(M)M)2

[[
D3s

1+α
+(M−1)D3

](
1− 3−4e−λT + e−2λT

2λT

)
+
[

2(M−1)
D2sD2

1+α
+2(M−1)2 D2

2

][
1− 2− (2+λT )e−λT

λT

]]
(26)

One should point out that the multiple scattering fractions f2 and f3 greatly depend on the geometry of
the liquid scintillator array and on the energy threshold of the liquid scintillator cells. The values in table 1
are only valid for the geometry shown in Fig. 1 and for a liquid scintillator energy threshold of 250 keV.
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3.2 Second method to determine multiple scattering fractions

To make sure the analysis using the system of equations 16 was derived properly, we derived the numbers
of multiple scatterings not from a statistical perspective, but from an alternative second method. This can be
done simply using the procedure described here: each fast neutron count registered by the liquid scintillator
cells triggers a time window of length T and one counts how many fast neutrons are within that window. If
there is one fast neutron in the window, then this count along with the one that triggered the window will
be consolidated into a single double scattering count. If there were two fast neutrons in the window, then
these 2 counts along with the trigger count will be consolidated into a single triple scattering count. The
empty windows are considered single scattering events, because they only contain the trigger event. The
fractions of doubles and triples are quasi-identical to the ones shown in Fig. 8, the count rates do not differ
much either, as shown by the “method 2” line in Fig. 9. These two ways ot producing the same data gives
us confidence that the models used to predict the unknowns R∗1, f2 and f3 are correct.

4 Input spectrum reconstruction

Before trying to determine the factors f2 and f3, we will see if we can reconstruct the spectra of 3 different
mono-energetic neutron sources, based on the set of spectra of deposited energies shown in Fig. 5. We use
the subscript Ei to distinguish each one of the basis functions gEi (Ed) shown in Fig. 5. The subscript Ei

denotes the different initial source neutron energies, from 1 MeV (i=1) up to 10 MeV (i=19), in increments
of 0.5 MeV. Given a measured spectrum of deposited energies g̃(Ed), the goal for the reconstruction is to
find the set of weights wEi for which the difference between g̃(Ed) and the reconstructed energy deposition
spectrum is minimized. The weights wEi are physically to be interpreted as the strengths of the neutron
sources of energy Ei. If the distribution g̃(Ed) is normalized, the weights wEi will be the relative strengths
of the different neutron sources of energy Ei.

Let’s call gr (Ed) the reconstructed energy deposition spectrum. gr (Ed) is defined as

gr (Ed) =
19

∑
i=1

wEigEi (Ed) (27)

The optimal set of weights wEi will be such as to minimize

gr (Ed)− g̃(Ed) (28)

In order to minimize Eq. 28, we use χ-square minimization algorithm implemented by Minuit in ROOT.
Based on this optimization, an estimate of the source neutron spectrum will be given by the energies Ei

weighed by the weights wEi . For mono-energetic neutron sources, the estimated source neutron energy Eest

will be given by the wEi weighed average of the Ei.

Eest =
19

∑
i=1

wEiEi (29)

Based on the solution set for the weights wEi , we can produce the spectrum of energies deposited by the
neutrons using

gest (Ed) =
19

∑
i=1

wEigEi (Ed) (30)
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4.1 Reconstruction of mono-energetic neutron sources

We ran a few simulations similar to the ones in Sec. 3, but with energies not among the Ei for which
we have basis functions. The first energy of mono-energetic neutrons considered was 4.4 MeV. Fig. 10
shows the reconstructed source neutron energy spectrum and with the spectrum of energies deposited by the
neutron constructed from the reconstructed source neutron energy spectrum using Eq. 30. Because we know
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Figure 10: (a) Reconstruction of the source neutron energy spectrum using Eq. 28. (b) Reconstructed
spectrum gest (Ed) of energies deposited by the neutrons, evaluated from Eq. 30. The estimated average
source neutron energy is 4.406 MeV. The data is from a MCNPX simulation of a mono-energetic 4.4 MeV
neutron source.

the neutron source was mono-energetic, we used Eq. 29 to compute the energy of the neutron source, the
reconstructed energy was estimated at 4.406 MeV. The reconstruction of the deposited energy spectrum is
not perfect but nonetheless a very good approximation of the one “measured” directly in the modeled liquid
scintillator cells.

The second and third simulations are mono-energetic 7.24 MeV and 2.2 MeV neutron source in the
same liquid scintillator array. The reconstructed source neutron energy spectra and the spectra of energies
deposited by the neutron constructed from the reconstructed source neutron energy spectra are shown in
Fig. 11 and 12. The average energies determined from the reconstructions were 7.51 MeV and 2.22 MeV.
From these few data points, we observe that the predictions of the source neutron energies are good, but not
perfect. Fig. 11 indeed shows that there is a somewhat unexpected secondary peak at 8.5 MeV, while we
would have expected a secondary peak at 7.5 MeV.
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Figure 11: (a) Reconstruction of the source neutron energy spectrum using Eq. 28. (b) Reconstructed
spectrum gest (Ed) of energies deposited by the neutrons, evaluated from Eq. 30. The estimated average
source neutron energy is 7.51 MeV. The data is from a MCNPX simulation of a mono-energetic 7.24 MeV
neutron source.
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Figure 12: (a) Reconstruction of the source neutron energy spectrum using Eq. 28. (b) Reconstructed
spectrum gest (Ed) of energies deposited by the neutrons, evaluated from Eq. 30. The estimated average
source neutron energy is 2.22 MeV. The data is from a MCNPX simulation of a mono-energetic 2.2 MeV
neutron source.
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4.2 Reconstruction of spontaneous fission sources.

The next test is to see whether the reconstruction algorithm could predict the neutron spectrum emitted by
spontaneous fission sources. Of course, the caveat here is one should not expect to predict the source neutron
spectrum under approximately 1.25 MeV, since liquid scintillators cannot detect neutrons below that energy.

We performed a simulation of a 252Cf source in the middle of the liquid scintillator array shown in
Fig. 1. The reconstruction of the source neutron spectrum is shown in Fig. 13. The estimated average
source neutron energy is 3.05 MeV, but this value cannot be compared to the true average energy of 252Cf
spontaneous fission neutrons, because it is computed over the truncated energy distribution shown in Fig. 13.
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Figure 13: (a) Reconstruction of the source neutron energy spectrum using Eq. 28 (red), along with the
measured 252Cf spectrum from Ref. [1]. (b) Reconstructed spectrum gest (Ed) of energies deposited by the
neutrons, evaluated from Eq. 30. The data is from a MCNPX simulation of a 252Cf source.
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5 Prediction of multiple scattering correction

Using equations similar to Eq. 29, we can estimate the fraction of double scattering f2 and triple scattering
f3 by weighing the fractions f2 (Ei) and f3 (Ei) at different source energies Ei by wEi (given by Eq. 27 when
Eq. 28 is minimized):

f2 =
19

∑
i=1

wEi f2 (Ei) (31)

f3 =
19

∑
i=1

wEi f3 (Ei) (32)

The functions f2 (Ei) and f3 (Ei) are the curves shown in Fig. 8.
For the 3 mono-energetic neutron sources of section 4.1, and the 252Cf source of section 4.2, the esti-

mated fractions f2 and f3 are given in table 1.
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6 Mass correction using multiple scattering correction

A simulation was run to see if the strength of a 252Cf could be more accurately determined using the multiple
scattering correction. For this simulation, we used the same geometry as for the previous cases. The count
distribution bn, along with the first 3 moments are shown in Fig. 14.
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Figure 14: Count distribution bn (T = 20 µs) and first three moments C̄ (T ), Y2 (T ) and Y3 (T ) as a function
of time gate width T . The moments are fit using Eqs. 1, 5 and 8, with α set to 0. The data are from an
MCNPX simulation of a 252Cf source in the middle of the liquid scintillator array shown in Fig. 1.

For 252Cf, the multiplication M is 1 and the parameter α is 0. If one tries to solve for the mass of 252Cf
using this simulated data set, the system of equations 15 only has two unknowns Fs and ε and the first 2
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moments{
R1 = εν̄spFs

R2F = εD2s
(33)

contain enough information to solve for the efficiency ε and the source strength ν̄spFs. Knowing that D2s

is equal to 1.595975 for 252Cf, the detection efficiency ε is equal to 7.6% with a relative error of 0.2% and
the 252Cf source strength is 38,524±0.2% neutrons/s. For this simulation, the input source strength was
39,761 neutrons/s. The source strength is thus underestimated by 3.2% (that is 16 standard deviations) with
the equations with no multiple scattering correction. With ν̄sp equal to 3.7727, one gets a 252Cf mass of
16.46±0.2% nanograms.

If we account for multiple scattering, we will use the following system of equations instead of Eqs. 33:{
R1 = (1+ f2 +2 f3)εν̄spFs

R2F = f2+3 f3
1+ f2+2 f3

+(1+ f2 +2 f3)εD2s
(34)

Using the multiple scattering corrections given in table 1, the source strength now becomes 39,925
neutrons/s and the efficiency 7.3% with a relative error of 0.2%. With the multiple scattering correction, the
source strength is within 2 standard deviations from the true value, which is a significant improvement over
the estimate not using the multiple scattering correction.

The same checks were done for mono-energetic random (i.e. uncorrelated) neutron sources emitting
single neutrons at a time. In these cases, we showed that the measured value of R2F was equal to the first
term in the equation for R2F in the system of equations 34, which is consistent with D2s being equal to 0,
which is the correct uncorrelated value. Of course, it is impossible to determine the detection efficiency ε ,
nor the mass of such sources.
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7 Conclusion

With the help of theoretical expressions for the moments of count distributions that account for multiple
scatterings of neutrons, we showed that it is possible to determine the fractions of neutrons scattering twice
and thrice between liquid scintillator cells from the first 3 moments of measured count distributions. These
multiple scattering fractions can be determined for any neutron source, whether monoenergetic or not, and
they strongly depend on the energy of the source neutrons.

For nuclear materials undergoing either spontaneous or induced fission, the same theoretical expressions
for the moments can be used in conjunction with the measured deposited energy spectrum to apply correc-
tions to the estimates of the detection efficiency, the system multiplication, and the masses of the sources
under measurement. A simple simulation using a Californium source showed that the determination of the
252Cf mass was greatly improved using the multiple scattering correction. While the 252Cf uncorrected mass
was 16 standard deviations off, the mass was within 2 standard deviations of the correct value with the
multiple scattering correction.

Also, we were able to show that measuring the spectrum of fast neutrons depositing energy in the liquid
scintillator cells reveals spectral information about the neutron source.
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A Derivation of the moment equations for neutrons scattering multiple times

One can derive the expressions for C̄ (T ) starting from the equations for the Λn (T ) including single neutrons
registering multiple counts in different liquid scintillator cells in the limit of large time gate width T :

lim
T�λ−1

Λn (T )
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where Λn (T ) is the probability of measuring n neutrons from a fission chain originated by a single sponta-
neous fission in a time gate of width T . α2 and α3 are the probabilities that a neutron detected in one liquid
scintillator cell scatter and registers one or two more counts in other liquid scintillator cells, respectively. α1
is the probability that a neutron detected in one liquid scintillator cells does not register more counts in other
liquid scintillator cells, so that the α distribution is normalized, α1 = 1−α2−α3. If we were to account for
higher order scattering events, we would have α1 = 1−∑

∞
i=2 αi.

Here is how to interpret Eq. 35: the first term in the series is a summation of probabilities to detect n
neutrons from a single fission chain producing ν neutrons where none of the ν neutrons registered multiple
counts. Each one of the probabilities in the sum is thus multiplied by αn

1 , the probability that none of the n
neutrons detected registered multiple counts. The second term in the series is a summation of probabilities to
detect n neutrons from a single fission chain producing ν neutrons, where n−2 of the ν neutrons produced
by the chain did not register multiple counts in liquid scintillator cells, and one neutron from this fission
chain registered two counts in different liquid scintillator cells. Each one of the probabilities in the sum is
thus multiplied by α

n−2
1 and α2, the probability that n−2 neutrons registered single detected events and the

probability that one neutron was detected in two different cells. Because the neutron registering two counts
can be any of the n− 1 neutrons, we need to multiply these probabilities by the number of ways one can
choose 1 neutron among n−1 neutrons, i.e.

(n−1
1

)
.

The first term in the second group of terms in Eq. 35 is a summation of probabilities to detect n neutrons
from a single fission chain producing ν neutrons, where n−3 of the ν neutrons produced by the chain did
not register multiple counts in liquid scintillator cells, and one neutron from this fission chain registered
three counts in different liquid scintillator cells. Each one of the probabilities in the sum is thus multiplied
by α

n−3
1 and α3, the probability that n−3 neutrons registered single detected events and the probability that

one neutron was detected in three different cells. Because the neutron registering three counts can be any of
the n−2 neutrons, we need to multiply these probabilities by the number of ways one can choose 1 neutron
among n−2 neutrons, i.e.

(n−2
1

)
.

If one denotes by Λ∗n (T ) the expressions Λn (T ) when neutrons are not counted multiple times (that is
with αi>1 = 0), we get
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One notices that each one of the terms in the series in Eq. 35 is a different order of Λ∗n (T ) multiplied by a
multinomial coefficient of the form

(∑∞
i=1 ji)!

∏
∞
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α
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i (37)

The multinomial coefficients are counting the number of ways to distribute the different populations of
neutrons (those registering one count, those registering two counts, etc.).

When there are only two kinds of multiple counts (e.g. α1 and α2), the multinomial reduces to a binomial
coefficient(

i+ j
i

)
α

i
mα

j
n (38)

Using the Λ∗n (T ) notation, the first term of Eq. 35 becomes αn
1 Λ∗n, the second term
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1

)
α
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1 α2Λ∗n−1, the
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third one
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2 Λ∗n−2, etc. Eq. 35 can thus be rewritten more compactly as
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or
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i≤n/2

∑
i=0

(
n− i

i

)
α

n−2i
1 α

i
2Λ
∗
n−i

+
j≤n/3

∑
j=1

(
n−2 j

j

)
α

n−3 j
1 α

j
3Λ
∗
n−2 j

+
i≤(n−3)/2

∑
i=1

(n−2− i)!
i!1!(n−3−2i)!

α
n−3−2i
1 α

i
2α3Λ

∗
n−2−i

+
i≤(n−6)/2

∑
i=1

(n−4− i)!
i!2!(n−6−2i)!

α
n−6−2i
1 α

i
2α

2
3 Λ
∗
n−4−i

+ ...

(40)

which can be rewritten as

lim
T�λ−1

Λn (T ) =
j≤n/3

∑
j=0

i≤(n−3∗ j)/2

∑
i=0

(n−2 j− i)!
i! j!(n−3 j−2i)!

α
n−3 j−2i
1 α

i
2α

j
3Λ
∗
n−2 j−i (41)

The first few Λn (T ) are thus

lim
T�λ−1

Λ1 (T ) = Λ
∗
1α1

lim
T�λ−1

Λ2 (T ) = Λ
∗
2α

2
1 +Λ

∗
1α2

lim
T�λ−1

Λ3 (T ) = Λ
∗
3α

3
1 +Λ

∗
2

(
2
1

)
α1α2 +Λ

∗
1α3

lim
T�λ−1

Λ4 (T ) = Λ
∗
4α

4
1 +Λ

∗
3

(
3
1

)
α

2
1 α2 +Λ

∗
2α

2
2 +Λ

∗
2

(
2
1

)
α1α3

lim
T�λ−1

Λ5 (T ) = Λ
∗
5α

5
1 +Λ

∗
4

(
4
1

)
α

3
1 α2 +Λ

∗
3

(
3
2

)
α1α

2
2 +Λ

∗
3

(
3
1

)
α

2
1 α3 +Λ

∗
2

2!
1!1!0!

α2α3

lim
T�λ−1

Λ6 (T ) = Λ
∗
6α

6
1 +Λ

∗
5

(
5
1

)
α

4
1 α2 +Λ

∗
4

(
4
2

)
α

2
1 α

2
2 +Λ

∗
3α

3
2 +Λ

∗
4

(
4
1

)
α

3
1 α3 +Λ

∗
2α

2
3 +Λ

∗
3

3!
1!1!1!

α1α2α3
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(42)

Using these expressions for Λn (T ), the measured count rate C̄ (T ) can be written as

C̄ (T ) =
∞

∑
i=1

(
i
1

)
Λi

= Λ1 +2Λ2 +3Λ3 +4Λ4 +5Λ5 +6Λ6 +7Λ7 +8Λ8 +9Λ9 +10Λ10 +11Λ11 +12Λ12 + ...

= (1+α2 +2α3)Λ
∗
1 +2(1+α2 +2α3)Λ

∗
2 +3(1+α2 +2α3)Λ

∗
3 +4(1+α2 +2α3)Λ

∗
4 + ...

= (1+α2 +2α3)(Λ∗1 +2Λ
∗
2 +3Λ

∗
3 +4Λ

∗
4 + ...)

= (1+α2 +2α3)
∞

∑
i=1

(
i
1

)
Λ
∗
i

= (1+α2 +2α3)C̄∗ (T )

(43)

which means that the true count rate C̄∗ (T ) is increased by the multiplier 1+α2 +2α3. In the limiting case
where α2 is 1, that is, all neutrons register two counts in the liquid scintillators, the measured count rate
is twice the true count rate. In the limiting case where α3 is 1, where all neutrons register three counts in
the liquid scintillators, the measured count rate is thrice the true count rate. These two limiting cases are
consistent with our expectations.

Similarly, the moment Y2 (T ) can be written as

Y2 (T ) =
∞

∑
i=2

(
i
2

)
Λi

= (α2 +3α3)
∞

∑
i=1

(
i
1

)
Λ
∗
i +
(
1+α

2
2 +4α

2
3 +4α2α3 +2α2 +4α3

) ∞

∑
i=2

(
i
2

)
Λ
∗
i

= (α2 +3α3)C̄∗ (T )+
(
1+α

2
2 +4α

2
3 +4α2α3 +2α2 +4α3

)
Y ∗2 (T )

= (α2 +3α3)C̄∗ (T )+(1+α2 +2α3)
2Y ∗2 (T )

(44)

and Y3 (T ) as

Y3 (T ) =
∞

∑
i=3

(
i
3

)
Λi

= α3

∞

∑
i=1

(
i
1

)
Λ
∗
i +2

(
α2 +α

2
2 +3α3 +5α2α3 +6α

2
3
) ∞

∑
i=2

(
i
2

)
Λ
∗
i

+
(
1+3α2 +3α

2
2 +α

3
2 +6α3 +12α2α3 +6α

2
2 α3 +12α

2
3 +12α2α

2
3 +8α

3
3
) ∞

∑
i=3

(
i
3

)
Λ
∗
i

= α3C̄∗ (T )+2(1+α2 +2α3)(α2 +3α3)Y ∗2 (T )+(1+α2 +2α3)
3Y ∗3 (T )

(45)

Dividing both expressions by C̄ (T ), we get

Y2F (T ) =
α2 +3α3

1+α2 +2α3
+(1+α2 +2α3)Y ∗2F (T ) (46)

and

Y3F (T ) =
α3

1+α2 +2α3
+2(α2 +3α3)Y ∗2F (T )+(1+α2 +2α3)

2Y ∗3F (T ) (47)
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An alternative way to get to the same result is by considering the generating function for the en (ε)
distribution, which gives the probability of detecting n neutrons from a single fission chain. In the case
when neutrons never multiple scatter between liquid scintillator cells, the generating function for the en (ε)
distribution can be written as

h(y) =
∞

∑
ν=0

en (ε)yn (48)

When neutrons are allowed to multiple scatter between liquid scintillator cells, the variable y can be replaced
by the following polynomial in y

f (y)→ (1− ε)+ ε (1−α2−α3)y+ εα2y2 + εα3y3 (49)

where the first term (1− ε) — which could also be written as (1− ε)y0 — is the probability that a neutron is
not detected; the second term (or more precisely the coefficient of y) ε (1−α2−α3) is the probability that a
neutron is detected by a single liquid scintillator cell; the third polynomial coefficient εα2 is the probability
that a neutron is detected by a liquid scintillator cell, scatters and is detected once and only once more by
another liquid scintillator cell; and finally the last polynomial coefficient εα3 is the probability that a neutron
is detected thrice by 3 different liquid scintillator cells. The powers in y count the number of times a single
neutron is detected by the array: 0, 1, 2 or 3 times.

Taking the first derivative of h( f (y)) with respect to y, and setting y to 1, we get

∂h
∂y

= h′ f ′

= εh′ ((1−α2−α3)+2α2 +3α3)
= εh′ (1+α2 +2α3)
= R∗1 (1+α2 +2α3)

(50)

The second derivative leads to

1
2!

∂ 2h
∂y2 =

1
2!
(
h′′ f ′2 +h′d′′

)
=

1
2!

h′′ (ε (1−α2−α3)+2εα2 +3εα3)
2 +h′ε (α2 +3α3)

= R∗2 (1+α2 +2α3)
2 +R∗1 (α2 +3α3)

(51)

Similarly, the third derivative is written as

1
3!

∂ 3h
∂y3 =

1
3!
(
h′′′ f ′3 +3h′′ f ′ f ′′+h′d′′′

)
=

1
3!

h′′′ε3 (1+α2 +2α3)
3 +h′′ε2 (1+α2 +2α3)(α2 +3α3)+h′εα3

= (1+α2 +2α3)
3 R∗3 +2(1+α2 +2α3)(α2 +3α3)R∗2 +α3R∗1

(52)

Dividing Eqs. 51 and 52 by Eq. 50, we get the following 2 equations for R2F and R3F :

R2F =
α2 +3α3

1+α2 +2α3
+(1+α2 +2α3)R∗2F (53)
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R3F =
α3

1+α2 +2α3
+2(α2 +3α3)R∗2F +(1+α2 +2α3)

2 R∗3F (54)

(55)
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