
LLNL-TR-513942

OPEX: Optimized Eccentricity
Computation in Graphs

K. Henderson

November 15, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

OPEX: Optimized Eccentricity Computation in Graphs

Keith Henderson
Lawrence Livermore National Lab

keith@llnl.gov

Abstract

Real-world graphs have many properties of interest, but often
these properties are expensive to compute. We focus on eccentric-
ity, radius and diameter in this work. These properties are useful
measures of the global connectivity patterns in a graph. Unfortu-
nately, computing eccentricity for all nodes is O(n2) for a graph
with n nodes. We present OPEX, a novel combination of opti-
mizations which improves computation time of these properties by
orders of magnitude in real-world experiments on graphs of many
different sizes. We run OPEX on graphs with up to millions of
links. OPEX gives either exact results or bounded approximations,
unlike its competitors which give probabilistic approximations or
sacrifice node-level information (eccentricity) to compute graph-
level information (diameter).

Keywords

Graph algorithms

1. Introduction

Given a connected, undirected, unweighted graph G =
〈V, E〉, a number of global and local properties of interest are
often required for a variety of analysis techniques, including
node classification, graph comparison, anomaly detection,
and visualization. One of these properties at the node level
is eccentricity, which measures the longest geodesic (short-
est) path from a given vertex to any other vertex in the graph.
The global counterparts of eccentricity are radius and diam-
eter, which minimize and maximize eccentricity over V , re-
spectively.

Graph diameter has been studied in depth, both as a com-
putational challenge [2] and to characterize real-world graphs
[4]. Existing algorithms suffer from either scalability issues,
probabilistic approximation, or failure to compute all node
eccentricities in favor of computing global diameter. We
present OPEX (Optimized Eccentricity), a fast algorithm for
either exact or bounded approximate eccentricity, radius, and

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract No.
DE-AC52-07NA27344.

diameter. In the worst case, OPEX is O(|V |2), as is true of
any exact eccentricity algorithm. However, in several real-
world graphs we demonstrate that OPEX runs orders of mag-
nitude faster than existing algorithms. Additionally, using
O(|V |) time before running OPEX we can often tell whether
or not the optimizations will reduce runtime significantly.

The outline of the paper is as follows: Section 1 provides
an introduction to this work. Section 2 presents an overview
of the related work. Section 3 reviews definitions and in-
troduces some theorems that will underpin our algorithms.
Section 4 describes our proposed method. Section 5 presents
experimental results on 4 real-world graphs. Lastly, Sec-
tion 6 provides some concluding remarks.

2. Background and Related Work

There are three relevant competitors to OPEX: (1) the
baseline approach, Johnson’s algorithm for computing all-
pairs-shortest-paths, (2) HADI, a parallelizable algorithm for
probabilistic approximation of eccentricity, radius, and di-
ameter, and (3) the Iterating Bounds algorithm, a sampling
approach that only approximates diameter.

Recall that eccentricity of a node is the length of the longest
geodesic path from that node to any other node in V , diam-
eter is the maximum eccentricity among nodes in V , and
radius is the minimum eccentricity among nodes in V . Let
n = |V | and m = |E|, and d be the graph diameter.

Johnson’s Algorithm. The simplest approach to comput-
ing eccentricity of a node u ∈ V is to compute geodesic
paths u ; v to each node v ∈ V and record the maximum
path length. Johnson’s algorithm computes shortest paths
between all pairs of nodes in O(n2 log n + nm) time. How-
ever, since we are dealing with unweighted graphs, the run-
time can be decreased to O(n2+nm). This approach is exact,
and in the worst case we can do no better for exact eccentric-
ities. However, the method does not scale up to real-world
graphs with millions of nodes and edges.

HADI. HADI [2] is a parallelizable algorithm that com-
putes approximate eccentricity, radius, and diameter. It runs
in O(dm) time and uses O(n log n) space. An exact ver-
sion of HADI can be implemented, which uses O(n2) space.
HADI does not compute any eccentricities exactly, but it
provides a probability associated with the correctness of its
approximations.

Iterating Bounds. A third method [3] only computes di-
ameter, but runs in O(k(n+m)) time, where k is the number
of iterations (a parameter). This method alternates between

(1) relaxing a lower bound on d by performing a double sweep
from a sampled node and (2) relaxing an upper bound on
d by constructing a breadth-first search (BFS) tree from a
high-degree node. The double sweep is incorporated into
OPEX, but the BFS tree is omitted because it only improves
the bound on d without improving bounds for eccentrici-
ties. This method can overapproximate the diameter by up
to n/4.

3. Definitions and Theorems

Definitions

Here we define the terms and graph properties that we
will need to compute for OPEX.

Geodesic Distance. sp(u, v) = the minimum number of
edges on a path from node u to node v in G.

Eccentriticy. ecc(u) = maxv∈V (sp(u, v))
Radius. rad(G) = minu∈V ecc(u)
Diameter. rad(G) = maxu∈V ecc(u)
Articulation Point. An articulation point is a node u ∈ V

whose removal disconnects G.
Bridge. A bridge is an edge e ∈ E whose removal dis-

connects G.
Biconnected Components. For an edge e ∈ E, its bicon-

nected component BCC(e) is the maximal subset of edges s.t.
E ⊇ BCC(e) ⊇ {e} and every pair of edges in BCC(e) lies
on a simple cycle. The biconnected components of a graph
partition the non-bridge edges. [1] For convenience, we will
define BCC(e) = {e} for any bridge e.

Note that articulation points u always have the property
that {BCC(u → v) : u → v ∈ E} has at least two elements,
and no other nodes have this property. Thus, we can define
BCC(u) for any non-articulation node u as the biconnected
component of all of its edges.

Theorems

THEOREM 1. Given a non-articulation node u ∈ V , the longest
geodesic path from u is either (1) entirely comprised of edges ei s.t.
BCC(ei) = BCC(u) or (2) a geodesic path from u to an articu-
lation point v concatenated with the longest geodesic from v that
does not include any edges in BCC(u).

PROOF. Assume that (1) is false. Then the longeest geodesic
from u includes some edges ei s.t. BCC(ei) 6= BCC(u).
Thus this geodesic must, at some point, encounter a node v
such that v has at least one edge in BCC(u) and at least one
edge not in BCC(u). This node v must be an articulation
point, as noted above. Once v has been traversed, no sub-
sequent edge in a geodesic from u can be in BCC(u). The
path cannot traverse through v again, so the only way to
return to BCC(u) is through some other articulation point
w. However, this is impossible, as any such traversal im-
plies that there is a simple cycle containing all the edges in it,
which contradicts the definition of biconnected components
as maximal subsets. Thus (2) must be true, i.e. the longest
geodesic from u passes through some articulation point v

and then consists only of edges outside of BCC(u). Assum-
ing (2) is false leads immediately to the conclusion that all
edges in the geodesic are in BCC(u), proving (1) true.

THEOREM 2. For all pairs of vertices u, v from V , sp(u, v) ≤
ecc(u) ≤ sp(u, v) + ecc(v).

PROOF. The first inequality is simply a restatement of the
definition of ecc. To prove the second inequality, ecc(u) ≤
sp(u, v)+ecc(v), one must simply observe that for any node
w ∈ V , a path u ; v ; w has length, at most, sp(u, v) +
ecc(v) by the definiton of ecc(v).

4. OPEX

The OPEX algorithm combines three optimizations to speed
up computation of eccentricities in G. The first, Articulation
Pruning, takes advantage of biconnectedness to “skip” entire
portions of each BFS that is performed. The second, Updat-
ing Bounds, uses Theorem 2 to maintain upper- and lower-
bounds on ecc(u) for all nodes u. Lastly, we borrow Double
Sweep from the Iterating Bounds technique to ensure we are
choosing good candidates for each search.

4.1 Articulation Pruning

This algorithm computes exact eccentricities for all nodes
in V .

The first step is to compute all biconnected components
and articulation points, which can be done in O(n+m) time
using a well-known algorithm (note: the algorithm relies on
depth-first-search, which should be implemented iteratively
if scalability is an issue).

The next step is to do a BFS expansion from each articu-
lation point u. In addition to computing ecc(u), we record,
for each BCC that u participates in, the longest path that does
not include that BCC. This can be done with no additional
asymptotic cost by adding some simple bookkeeping to the
BFS algorithm.

Finally, we compute a BFS expansion from each remain-
ing node w. Any time an articulation point u is added to
the OPEN list, record also the BCC B of the incoming edge
to u. Upon expanding u, only expand edges u → v s.t.
BCC(u → v) = B. The other edges do not need to be
expanded; we already recorded the longest geodesic from
u that does not use edges in B, and can simply use this path
(plus w ; u) as a candidate for the longest shortest path
from w.

Theorem 1 ensures the correctness of this algorithm.

4.2 Updating Bounds

This algorithm can compute exact eccentricities for all
nodes in V , or can be tuned to stop after all eccentricities
are known to within a given bound. It does not use Articu-
lation Pruning (although we will combine them for the final
algorithm).

The method is similar to Johnson’s all-pairs-shortest-paths
algorithm, in that it (potentially) computes a BFS from each
node. However, we will retain two additional values for

each node u. ub(u) is an upper bound on ecc(u) and is ini-
tially n− 1. lb(u) is a lower bound, initially set to 0.

After expanding a vertex u, we know ub(u) = lb(u) =
ecc(u) exactly, and we also have exact values for sp(u, v)
for all v ∈ V . Using Theorem 2, we can uptade ub(v) =
min(ub(v), sp(u, v)+ecc(u)) and lb(v) = max(lb(v), sp(u, v)).

Given a threshold T , we can simply stop when all nodes
have ub(u) − lb(u) <= 2T . This ensures that our estimate,
ecc(u) ≈ (ub(u) + lb(u))/2 will be within T of the correct
eccentricity. If T = 0 the algorithm is exact. In practice, even
when T = 0 it is not unusual to avoid many BFS iterations
as the bounds converge for many nodes in G.

At each iteration, we choose as our BFS root the node that
currently has the highest gap, i.e. the node that maximizes
ub(u)− lb(u).

4.3 Double Sweep

This technique is borrowed from the Iterating Bounds
method for diameter computation. It is used in conjunction
with the Updating Bounds method. The method is simple.

1. Perform a BFS from some node u ∈ V . Record the fur-
thest node v from u such that we have not performed
a BFS from v.

2. Perform a BFS from v.

The Double Sweep is useful because the first step finds an
eccentric node, and the second step finds the longest path
from that node. We do a Double Sweep at every step of
the Updating Bounds method, updating ub and lb on both
sweeps. This improves performance significantly.

4.4 OPEX Algorithm

First, we compute all BCCs and articulation points as be-
fore. We also record, for each articulation point, the total
size of each of its branches (i.e. the number of vertices and
edges in each direction). Also initialize ub and lb as before.

1. If there are no articulation points with gap > 2T , go to
4.

2. Let v = the “best” articulation point (see below).

3. Do a Double Sweep from v, updating ub and lb. Go to
1.

4. If there are no vertices with gap > 2T , halt.

5. Do a Double Sweep from the vertex with the largest
gap, updating ub and lb. Go to 4.

The “best” articulation point is the one that minimizes
balance(v) =

P
<Vi,Ei>∈branches(v)

|Vi|(|Vi|+|Ei|). The branches

of v are the subgraphs (components) that would exist if v
were removed from G.

Note that whenever we do the first sweep of a Double
Sweep, we use Articulation Pruning to speed up the search.

However, on the second sweep, we do not use Articulation
Pruning because it interferes with our ability to update ub
and lb effectively. Also note that in practice we find a Triple
Sweep is usually slightly better than a Double Sweep, so our
experimental results reflect this modification.

5. Experiments

We implemented OPEX and ran experiments to compare
it to the baseline (Johnson’s) algorithm on a variety of datasets.
We did not compare to HADI because it gives probabilistic
approximations or the Iterating Bounds method because it
does not compute eccentricities, only approximate diameter.

Table 1 describes the graphs we used in our experiments.
NetSci is a collaboration network from the Network Sciences
field. HEP-TH is a collaboration network from High-Energy
Physics. Yahoo is a network of users sending instant mes-
sages over the Yahoo Messaging service. Twitter is a net-
work of Twitter users mentioning each other.

Table 2 describes the time taken for each method to com-
pute exact eccentricities. Note that OPEX is, in general, at
least an order of magnitude faster than the baseline algo-
rithm. For the Yahoo graph it is three orders of magnitude
faster. We were unable to run the exact algorithms on the
Twitter dataset due to computational resource availability.

Table 3 describes the time taken for each method to com-
pute eccentricities with T = 1. For the Twitter dataset, we
approximated the time for Baseline by sampling 1000 nodes
and extrapolating to the full graph size.

6. Conclusions

Here we presented OPEX:

• OPEX is effective, capable of computing exact or ap-
proximate eccentricity, radius, and diameter for graphs.

• It is scalable, often performing orders of magnitude faster
than its worst-case behavior in realistic graphs.

7. References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd revised
edition edition, Sept. 2001.

[2] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos,
and J. Leskovec. Hadi: Mining radii of large graphs.
ACM Trans. Knowl. Discov. Data, 5:8:1–8:24, February
2011.

[3] C. Mangien, M. Latapy, and M. Habib. Fast
computation of empirically tight bounds for the
diameter of massive graphs. 2007. Submitted.

[4] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442, June
1998.

Graph |V | |E| Radius Diameter
NetSci 379 1.8K 9 17

HEP-TH 5.8K 27K 11 19
Yahoo 27K 86K 35 69
Twitter 820K 3M ∼11 ∼20

Table 1. Summary of real-world networks used.

Algorithm NetSci HEP-TH Yahoo
Baseline 3.2×10−1 128 3004

Art. Pruning 1×10−1 65 980
Updating Bounds 3.3×10−1 95 3834

UB + Double Sweep 3.1×10−1 59 13
OPEX 8×10−2 37 3.5

Table 2. Timing in Seconds for Exact Eccentricity.

Algorithm NetSci HEP-TH Yahoo Twitter
Baseline 3.2×10−1 128 3004 3.5M

Updating Bounds 2.3×10−1 16 3588 -
UB + Double Sweep 2.1×10−1 55 1.7 6886

OPEX 4×10−2 4 3.0 3342

Table 3. Timing in Seconds for Approximate Eccentricity at T = 1.

