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Fig. 1: Age model — d180; + 14C.

Fig. 2: B/Ca (+rep) and d11B for 4 cores;

Fig 3: B/Ca (only show avg) derived CO3 and d13C; vs. pCO2; RSL

Fig. 4: vertical profile for Hol — LGM for Atlantic and Indo-Pacific;

Fig. 5: %CaCO3 vs. DCO3 sensitivity to DCO3 changes; point: sensitive to small change
in DCO3 between -25 to -5, i.e., in Indo-Pacific, not in Atlantic.

Fig. xx: WIND 28K %CaCO0O3, CO3, d13C, CO2. RSL+coral growth time interval.

Fig. x: cartoon from C vertical plus RSL effects

Fig: From VM28-122 CO3 and d13C*43 to PC61 CO3 (it is difficult to distinguish
anything; effects of circulation, vertical distribution and sea level changes are all
cancelled)

Fig. x: high resolution abyssal d13C (N Atl-ODP982, 607, SO-1089, Indian-w28K, Eq
Pacific-ODP849)

Fig- hot spots;

Fig- PC61 CaC0O3%, CO3 vs PC72 Th CaCO3 — largely water column, not surface
productivity

Table, time slices avgs. For VM, GGC15, GGC48, PC61
Further consideration:

Plot: Land biomass: CH4, Speleothem, Italian biomass; No!
SO: upwelling, mention dust in text; just mention in text.
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Figure 1. Schematic diagram showing responses of deep ocean [CO32-], whole ocean
alkalinity and atmospheric pCO2 to (A) the vertical reorganization of CO2 in the oceans
and (B) sea level changes. No scales are given to either axis, and thus the changes are
only qualitative to assistant understanding of deep ocean carbonate system. The
horizontal grey lines indicate the glacial-interglacial steady-state values. In (B), it is
assumed that coral reef growth on shelves are coupled with sea level changes. While this
is reasonable during marine transgressions when coral growth declines as sea level drops,
a lag in coral reef growth respect to sea level rise is expected during times of regression
due to the fact that sea level rise out-speed coral growth on shelves. Therefore, delayed
responses (dashed curves) are expected in deep ocean CO32-, oceanic alkalinity and
atmospheric pCO2. As can be seen, for scenario (A), no overall correlation between deep
ocean CO32- and whole ocean alkalinity is expected. For scenario (B), alkalinity and
deep ocean CO32- are expected to change at a ratio of 2:1.
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B/Ca and d11B raw data; gray symbols are replicates. Hollow symbols with dashed lines
are data that may be biased due to bioturbation.

Mention that there is a pressure effect on B/Ca. so the same B/Ca indicates different CO3,
d11B.
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Key figure of CO3 and d13C during the last full glacial/interglacial cycle, compared with
RSL and pCO2.
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Points: (1) global d13C excursion at MIS4. (2) Roughly stable but lower d13C relative to
Holocene d13C during MISS.
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CaCO3 is sensitive to -25 to -5 umol/kg change in DCO3.
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Point: Deep Atlantic experienced large decline in CO3, but the small volume of Atlantic

may contribute a relatively small decrease in global CO3. Furthermore the higher CO3 at
intermediate Atlantic may compensate any decrease in deep Atlantic.

Pacific witnessed a relatively small rise below about 3.5 km, in contrast to large changes
in N Atlantic and large changes in benthic d13C. However the volume of Pacific is large.
Thus the global mean change in CO3 between HOL and LGM may be very small.

LGM water depths are adjusted by -120 m.

Table 1. Reconstructed deep-water [CO32-] during four time intervals for cores used in
this study

Core Location Deep-water [CO32'] (umol/kg)

(Lat., Long., water depth) [COf']Sat Late HOL LGM LGM—HOL MIS 5e MIS 6 MIS6—MIS5e

(0-5ka)  (19-23 ka) (115-130 ka) (135-145 ka)

VM28-122 12°N, 79°W, 1800 m 86  111:4(2) 145:5(4) 3416  105:7(6) 135¢15(4) 3017
v 0, 58°E, 2311 m 67  70£2(3) 73%2 (3) 313 6614 (4)  73:2(7) 7+4
MW91-9- .
RV 0, 161°E, 3400 m 83 79+2(2) 74£2(3)  -5+3 _ _ _
Shets 0.86°S, 140°W, 4276 m 98 86t4 (8) 873 (3) 124 7582 (4) 822 (4) 743

*. for time interval < & ka.
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Point: CO3 largely controls seafloor CaCO3 preservation.
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