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Fig. 1: Age model – d18O; + 14C. 
Fig. 2: B/Ca (+rep) and d11B for 4 cores;  
Fig  3:  B/Ca (only show avg) derived CO3 and d13C; vs. pCO2; RSL 
Fig. 4: vertical profile for Hol – LGM for Atlantic and Indo-Pacific; 
Fig. 5: %CaCO3 vs. DCO3 sensitivity to DCO3 changes; point: sensitive to small change 
in DCO3 between -25 to -5, i.e., in Indo-Pacific, not in Atlantic. 
Fig. xx: WIND 28K %CaCO3, CO3, d13C, CO2. RSL+coral growth time interval. 
 
Fig. x: cartoon from C vertical plus RSL effects 
 
Fig: From VM28-122 CO3 and d13C*43 to PC61 CO3 (it is difficult to distinguish 
anything; effects of circulation, vertical distribution and sea level changes are all 
cancelled) 

 
Fig. x: high resolution abyssal d13C (N Atl-ODP982, 607, SO-1089, Indian-w28K, Eq 
Pacific-ODP849)  

 
Fig- hot spots; 

 
Fig- PC61 CaCO3%, CO3 vs PC72 Th CaCO3 – largely water column, not surface 
productivity 

 
Table, time slices avgs. For VM, GGC15, GGC48, PC61 

 
Further consideration: 

Plot: Land biomass: CH4, Speleothem, Italian biomass; No! 
SO: upwelling, mention dust in text; just mention in text. 
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Figure 1. Schematic diagram showing responses of deep ocean [CO32-], whole ocean 
alkalinity and atmospheric pCO2 to (A) the vertical reorganization of CO2 in the oceans 
and (B) sea level changes. No scales are given to either axis, and thus the changes are 
only qualitative to assistant understanding of deep ocean carbonate system. The 
horizontal grey lines indicate the glacial-interglacial steady-state values. In (B), it is 
assumed that coral reef growth on shelves are coupled with sea level changes. While this 
is reasonable during marine transgressions when coral growth declines as sea level drops, 
a lag in coral reef growth respect to sea level rise is expected during times of regression 
due to the fact that sea level rise out-speed coral growth on shelves. Therefore, delayed 
responses (dashed curves) are expected in deep ocean CO32-, oceanic alkalinity and 
atmospheric pCO2. As can be seen, for scenario (A), no overall correlation between deep 
ocean CO32- and whole ocean alkalinity is expected. For scenario (B), alkalinity and 
deep ocean CO32- are expected to change at a ratio of 2:1.  
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Age model of cores 
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B/Ca and d11B raw data; gray symbols are replicates. Hollow symbols with dashed lines 

are data that may be biased due to bioturbation. 
 

Mention that there is a pressure effect on B/Ca. so the same B/Ca indicates different CO3, 
d11B. 
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Key figure of CO3 and d13C during the last full glacial/interglacial cycle, compared with 
RSL and pCO2. 
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Points: (1) global d13C excursion at MIS4. (2) Roughly stable but lower d13C relative to 
Holocene d13C during MIS5. 
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CaCO3 is sensitive to -25 to -5 umol/kg change in DCO3. 
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Point: Deep Atlantic experienced large decline in CO3, but the small volume of Atlantic 
may contribute a relatively small decrease in global CO3. Furthermore the higher CO3 at 
intermediate Atlantic may compensate any decrease in deep Atlantic. 
Pacific witnessed a relatively small rise below about 3.5 km, in contrast to large changes 
in N Atlantic and large changes in benthic d13C. However the volume of Pacific is large. 
Thus the global mean change in CO3 between HOL and LGM may be very small. 
LGM water depths are adjusted by -120 m. 
 
 
Table 1. Reconstructed deep-water [CO32-] during four time intervals for cores used in 
this study 
 

Core Location  Deep-water [CO3
2-] (µmol/kg) 

 (Lat., Long., water depth) [CO3
2-]sat Late HOL LGM LGM–HOL MIS 5e MIS 6 MIS6–MIS5e 

   (0-5 ka) (19-23 ka)  (115-130 ka) (135-145 ka)  

 
VM28-122 12°N, 79°W, 1800 m 86 111±4 (2) 145±5 (4) 34±6  105±7 (6) 135±15 (4) 30±17 
MW91-9-
GGC15 0, 58°E, 2311 m 67  70±2 (3) 73±2 (3) 3±3  66±4 (4) 73±2 (7) 7±4 

MW91-9-
GGC48 0, 161°E, 3400 m 83  79±2 (2) 74±2 (3) -5±3  – – – 
TTNO13 
PC61 0.86°S, 140°W, 4276 m 98  86±4 (8)* 87±3 (3) 1±4  75±2 (4) 82±2 (4) 7±3 

 
*: for time interval < 8 ka. 
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Point: CO3 largely controls seafloor CaCO3 preservation. 
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T1 CO3 response:  
 




