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1.  Introduction 
HERMES (High Explosive Response to MEchanical Stimulus) was developed to 

fill the need for a model to describe an explosive response of the type described as BVR 
(Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristi-
cally this response leaves a substantial amount of explosive unconsumed, the time to re-
action is long, and the peak pressure developed is low. In contrast, detonations character-
istically consume all explosive present, the time to reaction is short, and peak pressures 
are high. However, most of the previous models to describe explosive response were 
models for detonation. 

The earliest models to describe the response of explosives to mechanical stimulus 
in computer simulations were applied to intentional detonation (performance) of nearly 
ideal explosives [1-3]. In this case, an ideal explosive is one with a vanishingly small re-
action zone. A detonation is supersonic with respect to the undetonated explosive (reac-
tant). The reactant cannot respond to the pressure of the detonation before the detonation 
front arrives, so the precise compressibility of the reactant does not matter. Further, the 
mesh sizes that were practical for the computer resources then available were large with 
respect to the reaction zone. As a result, methods then used to model detonations, known 
as β-burn or program burn [4], were not intended to resolve the structure of the reaction 
zone. Instead, these methods spread the detonation front over a few finite-difference 
zones, in the same spirit that artificial viscosity [5] is used to spread the shock front in 
inert materials over a few finite-difference zones. These methods are still widely used 
when the structure of the reaction zone and the build-up to detonation are unimportant. 

Later detonation models resolved the reaction zone [6, 7]. These models were ap-
plied both to performance, particularly as it is affected by the size of the charge, and to 
situations in which the stimulus was less than that needed for reliable performance, 
whether as a result of accident, hazard, or a fault in the detonation train. These models 
describe the build-up of detonation from a shock stimulus. They are generally consistent 
with the mesoscale picture of ignition at many small defects in the plane of the shock 
front and the growth of the resulting hot-spots, leading to detonation in heterogeneous 
explosives such as plastic-bonded explosives (PBX). The models included terms for igni-
tion, and also for the growth of reaction as tracked by the local mass fraction of product 
gas, λ.  

The growth of reaction in such models incorporates a form factor that describes 
the change of surface area per unit volume (specific surface area) as the reaction pro-
gresses. For unimolecular crystalline-based explosives, the form factor is consistent with 
the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting 
with each other. For composite explosives and propellants, where the fuel and oxidizer 
are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a 
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different form factor that corresponds to grains burning inward from their surfaces [8]. 
The form factor influences the energy release rate, and the amount of energy released in 
the reaction zone. Since the 19th century, gun and cannon propellants have used perforat-
ed geometric shapes that produce an increasing surface area as the propellant burns. This 
helps maintain the pressure as burning continues while the projectile travels down the 
barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations 
use a geometric form factor to describe the changing surface area precisely. As a result, 
with a suitably modified form factor, detonation models can represent burning and explo-
sion in damaged and broken reactant [9]. The disadvantage of such models in application 
to accidents is that the ignition term does not distinguish between a value of pressure that 
results from a shock, and the same pressure that results from a more gradual increase. 
This disagrees with experiments [10], where explosives were subjected to a gradual rise 
in pressure and did not exhibit reaction. 

More recent models [11] do distinguish between slow pressure rises and shocks, 
and have had some success in the describing the response of explosives to single and 
multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited 
range. The original formulation [12] is appropriate for sustained shocks, but further work 
is ongoing to describe the response to short pulses [13, 14]. 
 The HERMES model [15-20] combines features from these prior models. It de-
scribes burning and explosion in damaged reactant, and also will develop a detonation if 
the gradual rise in pressure from burning steepens into a strong-enough shock. The shock 
strength needed for detonation in a fixed run distance decreases with increasing porosity. 
The model also incorporates an ignition criterion that can start burning from impact due 
to accidents and hazards that are too weak to cause shock-to-detonation directly. Because 
these impacts are weak, the build-up of reaction is slow and very sub-sonic. HERMES is 
therefore required to describe the compressibility and shear response of the reactant. The 
calculation of pressure equilibrium between the reactant and gas product includes both 
the compressibility of isolated reactant grains in a sea of products and the resistance of an 
interlocking structure of reactant grains to pore-collapse and shear deformation. 
 In this report we describe the features of the HERMES model in its present form. 
In addition, we highlight potential areas for future improvements, both in computational 
efficiency and more accurate treatment. Many of the features required for a complete 
model have been based on judgment in the absence of supporting experiments. When 
such experiments are performed, and the results analyzed, those features will likely re-
quire either refinement or complete reformulation. Applications of HERMES described 
here use the properties and experimental data for a UK developed explosive that is 91% 
HMX and 9% polymer/plasticizer by weight. 
 

2. Mechanical response of a mixture of reactant and product 
 The HERMES model describes the constitutive response of a mixture of the reac-
tant and product at a fixed composition. To the extent that product gas occupies connect-
ed porosity in the reactant matrix, the mixture should be represented in a multi-phase, 
multi-velocity formulation so that product gas can migrate from high-pressure regions to 
lower-pressure regions. For HERMES we have chosen instead to treat the mechanical 
response as multi-phase but single velocity. As a result, gas product is not transported 
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between adjacent computational finite elements (zones). Ongoing research at LLNL [21] 
is investigating a complementary multi-phase multi-velocity approach to explosive re-
sponse. Their research models burning and the propagation of an ignition front from a 
localized region throughout the porous volume.  

2.1 Calculation of pressure equilibrium 
 The equation for pressure equilibrium is based on multi-phase, multi-velocity 
formulations used for DDT [22] and for calculations of interior ballistics [23]. When the 
reactant is sufficiently dilute, there is pressure equilibrium between the separated reactant 
particles, s, and the gas product, g. (See Fig. 1 left) If the reactant is not dilute, so that the 
reactant particles touch, then the matrix, m, of particles carries some of the external load. 
(Fig. 1 right) Experimental models using dynamic photoelasticity illustrate the stress-
bridging that can occur for the case with no gas pressure [24]. In general, 
 Ps = Pg +PM /!s         (1) 
where PM is the macroscopic matrix pressure exerted on a cross section that includes both 
reactant and gas product. Φs is the volume fraction of the reactant. Throughout, we as-
sume that the volume fractions and area fractions are the same. The total pressure of the 
mixture is given by 
 P =!gPg +!sPs = Pg +PM        (2) 
where  

1=Φ+Φ sg .         (3) 
The macroscopic matrix pressure is just the effective stress defined in soil and rock me-
chanics [25]. The shear strength of partially saturated soils and rocks has been observed 
to depend on the effective stress. We have formulated the shear strength in HERMES to 
be dependent on the macroscopic matrix pressure. 
 The matrix specific volume is given by 
 )1/( λ−= vvm ,         (4) 
where λ is the mass fraction of product and v is the specific volume of the mixture. It is 
unchanged by the partition of volume between the reactant and the gas product: 
 sg vvv )1( λλ −+= ,        (5) 
where vs and vg are the specific volumes of reactant and product. As a result, the macro-
scopic matrix pressure is unchanged during the iteration to pressure equilibrium [17]. We 
note that the volume fractions of product and reactant are just the result of dividing each 
term on the right hand side of Eq. 5 by v. 

2.2 Conservation of energy 
 For the volume element as a whole, conservation of energy in the absence of heat 
transfer is given by 
 sdwdvQPde ++−= )(        (6) 
where e is the specific internal energy, P is the element pressure and Q is artificial vis-
cous pressure [5]. The term ws is the work done against the stress-deviator tensor of the  
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Figure 1. Illustration of dilute reactant (25% by volume, left) where the individual particles of reactant (yel-
low) are in pressure equilibrium with the surrounding gas product (red). When the reactant is not dilute 
(75% reactant by volume, right), stress-bridging can occur from one side of the cross section to the other in 
a connected matrix of reactant. 

 
matrix, including plastic work. The model must choose how to partition the energy 
among the constituents. We reject thermal equilibrium, because it is inconsistent with the 
mesoscale picture of hot spots growing into relatively cool reactant [26, 27]. Instead, we 
assume the reactant is on its adiabat [28-30], the matrix is on the new adiabat caused by 
shock loading, and the gas product picks up the remaining energy. When the reactant is 
too dilute to support a matrix stress, any shock heating goes to the more compressible 
gas. 
 The method described in [16] puts the gas on its adiabat and the solid (as distinct 
from the matrix) takes the energy left over. This is retained as an option in HERMES. 
None of these methods has proved to be entirely satisfactory. However, for burning and 
explosion applications, the pressures are low relative to a detonation, and the heating is 
relatively small. For this case the calculational results are not sensitive to the method 
chosen to partition the energy. 
 We noted in [18] that when the mass fraction of gas is small, the change in specif-
ic volume of the gas in response to a small total volume change can be quite large. Con-
servation of energy by a differential method becomes so inaccurate that the gas gets on an 
unphysical adiabat. We proposed a solution there, which requires calculating the entropy 
of each constituent. We have not implemented that solution for applications of the 
HERMES model. 

2.3 Calculation of gas product pressure 
 We developed a tabular equation of state for the equilibrium gas products using 
Cheetah, a thermochemical equilibrium code developed at LLNL [31, 32]. Prior detona-
tion models have used analytic equations of state for the gas products [6, 7, 11]. Those 
analytic equations are centered on the gas expansion adiabat from the Chapman-Jouget 
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(CJ) detonation state. For the purpose to which they are intended, they are adequate. Our 
applications, however, include relatively low-pressure explosions, so that the gas is never 
near the CJ adiabat, unless a detonation develops later in time. 
 One shortcoming of our method is that thermochemical programs such as Cheetah 
are designed to be used only above the critical point. As a result, isotherms and adiabats 
near the critical point have a very low sound speed. Calculations (or table extrapolations) 
below the critical temperature exhibit van der Waals loops for both isotherms and adia-
bats. Such loops prevent the solution of pressure equilibrium by Newton methods (and 
also have imaginary sound speeds). Although one would not anticipate that applications 
of this model would explore low enough gas temperature for this issue to arise, the gas 
does occasionally find itself at low temperature. In our experience this was  either as part 
of the phase space sampled during the iteration to pressure equilibrium, or due to the in-
accuracy of differential energy conservation. We have not developed a robust solution to 
this issue. 

2.4 Calculation of solid pressure 
 The reactant solid equation of state uses the Gruneisen form, but with the refer-
ence state taken to be the adiabat from room temperature and pressure, rather than the 
Hugoniot. 

 [ ])()( vee
v

vPP adads −
Γ

+=        (7) 

where we have used 
3

3
2

21)( µµµ AAAvPad ++=        (8) 
where the excess compression is given by 
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The specific energy density on the adiabat, ead, is given by 
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where the relative volume 
 vV 0ρ= .         (11) 
We represent the Gruneisen by a low-order polynomial 

 ( )22100 µµρ BBB
v

++=
Γ        (12) 

Throughout, ρ0 is the reference state mass density of the (non-porous) solid reactant. 

2.5 Calculation of the matrix pressure 
 The matrix compaction is based on the P-α model described by Herrmann [33]. 
The fundamental premise of that model is that if the solid equation of state has the form 
 ( )ss vfP =          (13) 



  p 8 

then the porous equation of state has the form 

 ⎟
⎠

⎞
⎜
⎝

⎛=
α
vfPp          (14) 

where Herrmann’s porosity measure, α, was given by 

 
sv
v

=α .         (15) 

However, in his formulation the mass fraction of gas product is always zero. In our gen-
eralization, we replace the specific volume of the mixture, v,  (Eqs. 14 and 15) by the ma-
trix specific volume, vm.  

 vm =
v

1!!
         (16) 

In that way, the porosity, φ, which is identical to the volume fraction of product, Φg, is 
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A crush pressure limits the pressure of the matrix, 
 ( )0,ααgPc =          (18) 
where α is the current porosity measure and α0 is its original value. If the unload-reload 
pressure Pp exceeds the crush pressure, a new value of α is calculated to make them equal 
at the current specific volume. 
 We modified Herrmann’s premise in two ways. First, we assume that the unload-
reload and crush curves are principal adiabats. In Herrmann’s examples the reference 
curves were taken to be the normal Hugoniot of the solid. In other applications [34] the 
reference curves have been quasi-static (isothermal) unloading and crush curves. Second, 
we reduce the stiffness of the unload-reload modulus by a linear function of porosity, 

 ( )
1

1 11 −
−

−+=
x

x
rrr fff
α

αα        (19) 

Here αx is the maximum porosity that can withstand compressive stress and fr1 is a pa-
rameter. In our work αx is taken to be about 1.6 and fr1 is taken to be about 0.2. The un-
load-reload curve is then given by 

 ⎟
⎠

⎞
⎜
⎝

⎛=
α
m

rp
vffP         (20) 

A reduction of the stiffness of the unload-reload curve is often observed experimentally. 
In addition, we found that calculations using a different porous crush algorithm [35] were 
improved when such a stiffness reduction was included. We use the solid reference adia-
bat (Eq. 7) as the basis f (vs /α) to calculate the unload-reload adiabat. 

3.0 Calculation of the flow stress 
 The flow stress of a PBX depends on the initial temperature, strain, strain-rate, 
porosity, and pressure. The polymeric binder itself is temperature, pressure, and strain-
rate dependent. Above the glass-transition temperature, a decrease in the initial tempera-
ture results in a strength that obtains at the original temperature but higher strain rate. 
Typically, 10 oC corresponds to a decade of strain rate. For HMX-based explosives, the 
explosive crystals are harder than the binder, and the flow stress of this highly-filled 
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composite is pressure dependent in the same way that rocks, soils, and concretes are pres-
sure-dependent. For TATB based explosives formulated with high-density binders, the 
binder is harder than the crystals, at least at the temperatures used to polish specimens for 
microscopic evaluation. As a result, our formulation may need substantial alteration when 
applied to such explosive formulations at low temperature or high strain rate. We have 
based our model for strength on a model developed for concrete under dynamic load, 
which was similarly strain, strain-rate, porosity, and pressure dependent [36, 37]. 
 Our algorithm calculates the strength for a given (trial) plastic strain-rate. The 
plastic strain increment resulting from that strength is divided by the time-step and com-
pared to the trial strain-rate. We solve for a consistent strain-rate and strength by itera-
tion. We found that bisection was the only iteration method robust enough to find a solu-
tion in all cases.  It requires about 20 iterations to converge. A more efficient solution 
method would be advantageous. 
 
3.1 Calculation of the flow stress at constant strain rate 

The pressure- and strain- dependent strength [18] is given by 
 Ω+Ω−= rei YfYY )1( .      (21) 

Where Ω is a damage measure that varies between zero and one, fe is a strain hardening 
measure that has the maximum value of one, Yi is the strength of the undamaged (intact) 
reactant, and Yr is the (residual) strength of the fully damaged material. The damage pa-
rameter Ω, is given by 
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where φ is the porosity, and where D and ϕcr are parameters. The strain hardening term fe 
is calculated by 
 )1( δδ −+= Cfe         (23) 
where C is a parameter between zero and one. The strain hardening measure δ, which 
varies between zero and one, is calculated by 
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where εh, is a parameter and εp is the plastic strain. The strength of fully damaged materi-
al (residual strength) is given by 
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where Ar, Br, and Y0 are parameters. The residual strength is constrained not to exceed the 
intact strength. For geologic materials, the parameter Ar is taken to be zero to represent 
cohesionless soils and broken rock [36]. Here we let the parameter Ar be larger than zero 
to represent the observed rate-dependent residual strength of explosive at (nearly) zero 
pressure. The strain-rate parameter R is calculated by 
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where pε  is the plastic strain rate, and where ep and 0ε  are parameters. We note that this 
form, proposed in [36], has the disadvantage of being unbounded at high strain rates. The 
experimental data typically available from Split Hopkinson Pressure Bar apparatus 
(SHPB) are limited to a strain rate of a few thousand per second. Dynamic tests, even at 
velocity < 30 m/s can lead to local strain rates more than ten times the SHPB limit. In 
plane shocks, the strain rates are a few hundred times that limit. As a result, the extrapo-
lated rate-dependent strength can become larger than is plausible. An alternative form 
retains the functional dependence fit to the SHPB data, but approaches a finite limit, Rmax, 
as the strain-rate increases further. 

 [ ]{ }( )cRR p /)ln()/ln(tanh1
2
11 10

max εεε −+
−

+=      (27) 

where ε1 and c are parameters. We have not yet implemented this option. 
The strength of the intact material is given by 
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for p ≥ 0. We let p stand for the macroscopic matrix pressure. Here s and m are parame-
ters and s generally takes the value one. This functional form suggested in [36] has the 
advantage over a previous form [17] in that it is explicit, rather than requiring solution by 
iteration.  A disadvantage shared by the previous form is that it is an unlimited function 
of pressure. Where the pressure dependence is determined by quasi-static triax tests, the 
lateral confinement, and hence the pressure is limited to a few hundred MPa. The pres-
sure developed in strong shocks is essentially unlimited, and so the strength using Eq. 28 
is also unlimited. One expedient is to limit the expression in brackets to be a multiple 
somewhat larger than that for the largest pressure tested. An alternative, also used in rock 
mechanics is to use an exponential approach to an upper limit. This has the advantage of 
a smoothly varying derivative, which is required by Newton iteration schemes. We have 
occasionally included a limit on the pressure dependence, but have not implemented such 
a limit in general. For p < 0, a straight line interpolation between the uniaxial tensile 
strength, Yt, and Yi (0) is extrapolated to the pressure intercept at zero strength. 
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where Yt is the equal to btenY0 where bten is the ratio of uniaxial tensile strength to uniaxial 
compressive strength. For rocks the ratio typically takes the value 0.1. The floor value of 
Yi is zero. Yi is the flow stress when two of the three principal stresses are equal and are 
less compressive than the third. If the Mohr-Coulomb modification is desired, the flow 
stress is further modified by the appropriate factor given in section 3.3 . 

The present calculation of the pressure dependence of strength is explicit in pres-
sure, and so does not require iteration as did the previous version. As a result, simulations 
of the Steven test using the new calculation were observed to require only 60% of the 
computer time needed by the previous pressure dependent calculation. In addition, the 
use of residual strength improves the fit to the experimental data. Figs. 2 and 3 show the 
experimental data, [38, 39] along with the fit developed with the previous strength model 
[17], which was an implicit function of pressure. The triax tests (Fig. 2) are quasistatic 
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Figure 2. Model (solid) and previous model (dash) fits to quasistatic triax test data (symbols) [39] for vari-
ous confining stresses. 
 
 

 
Figure 3. Model (solid) and previous model (dash) fit to dynamic split Hopkinson bar and quasistatic uniax-
ial compression data (symbols) [38] at various strain rates. 
 
tests performed by first applying the confining stress as an isostatic load to a cylindrical 
sample, and then applying additional axial force, while maintaining the confining stress. 
Data from the split Hopkinson pressure bar are dynamic, but the confining stress is zero. 

0 0.04 0.08 0.12 
Strain 

0 

20 

40 

60 

Strength, 
MPa 

Confining 
Stress, MPa 

140 

35 

7 

3.5 

0 

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

0.00 0.02 0.04 0.06 0.08 0.10 0.12

e.13
s7
s35
s140
e.13c
s7c
s35c
s140c
s3.5
s3.5c
s.13v37
s3.5c37
s7c37
s35c37
s140c37

0 0.04 0.08 0.12 
0 

20 

40 

60 

Strength, 
MPa 

Strain 

0.13 
1180 

Strain 
rate, s-1 

2970 

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

0.00 0.02 0.04 0.06 0.08 0.10 0.12

se.13
se.13c
s1184c
s2970c
se1184
se2970
s.13c37
se1184c37
s2970c37



  p 12 

The model treats combined strain-rate and pressure using Eq. 28 . At present there are no 
high strain-rate data with high confining stress for this explosive that can be used to test 
the model predictions.  

3.3 The Mohr-Coulomb modification 
For metals and clays, the von Mises criterion for strength is widely used. In prin-

cipal stress space, with axes (σ1, σ2, σ3), the von Mises criterion is a circular cylinder 
whose axis is the principal diagonal. A cross-section normal to that cylinder (at constant 
pressure) is a circle, whose radius is the equivalent stress. See Figure 4. Although exper-
iments to probe the yield surface are difficult, they have been done in a few instances, 
and for metals and clays, the yield surface can be nearly circular. Some tests with an alu-
minum alloy [40] have shown that even for metals, the equivalent strength in shear may 
not lie on the circle scaled to compression or tension. We are ignoring here such effects 
as kinematic hardening, whereby the circle does not expand with increasing plastic strain, 
but rather translates in the direction of straining. 

In contrast, for geologic and granular materials, the Mohr-Coulomb criterion is 
widely used [41]. The condition for that criterion is 

⎟
⎠

⎞
⎜
⎝

⎛ +
=

−

22 1
tctc f σσσσ ,       (30) 

where σc is the most compressive principal stress and σt is the most tensile principal 
stress. In this formulation, compressive stresses are positive. Most US and UK hydrody-
namics codes follow the convention described by Wilkins [4, 42] so that the principal 
stresses and stress deviators are positive in tension, and pressure is positive in compres-
sion. In terms of the principal stress deviators ordered algebraically, we have 
 0, 321321 =++≥≥ ssssss .      (31) 
The Mohr-Coulomb criterion is rewritten for that convention as 
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where we have made the general functional dependence a (locally) linear one. 
 For our explosive, the data for pressure, strain-, and strain-rate dependent flow 
strength were taken in either uniaxial or triaxial compression. In uniaxial compression, 
the lateral stress is zero, whereas in triaxial compression, the lateral stress is compressive.  
In either case, two of the three principal stresses are equal and less compressive than the 
third (axial) component. It is therefore convenient to make the basis for the model the 
equivalent stress in compression, so that 
 )(2 pfYc = .         (33) 

It is convenient to express other states of stress by the parameter ξ  where 

12 ss ξ= .         (34) 
Since we use the radial return method [4, 42] for reducing the stress tensor from the elas-
tic trial state to the yield surface, the parameter, ξ can be evaluated from the elastic trial 
state before the flow stress is calculated. For uniaxial compression, ξ = 1. For uniaxial 
tension, ξ = -1/2. In shear, ξ = 0. In uniaxial compression, Eq. 32 can be written 
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We then evaluate the yield stress in compression as 
 1

2
3

2
2

2
12

3 3)( ssssYc =++= ,       (36)  
So that Eq. 32 becomes 
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We evaluate B from Eq. 37 by calculating the tangent to the yield surface (Eq. 33). 
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where '
2f  is the pressure derivative of f2. At present we are using an expedient function  

Ar exp(-p/Y0) for the pressure derivative. We found that the discontinuous change in the 
pressure derivative when the residual strength (Eq. 25) is limited to be no larger than the 
intact strength (Eq. 28) led to a discontinuous change in the slope , B, and a discontinuous 
change to the calculated strength. This prevented convergence. A more satisfactory solu-
tion would be to force the residual strength to approach the intact strength gradually as a 
function of pressure. This has not yet been implemented.  

We evaluate Eq. 32 for the general value of ξ to obtain 
 ( ) 2/2/1 11 sBBpAs ξξ ++=+ ,      (39) 
We use Eq. 37 to evaluate (A+Bp) in terms of Yc, and note that 
 1

2 )1(3 sY ξξξ ++= .        (40) 
In terms of the compressive yield stress, 

 cYB
B

Y
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ξξ
ξ )1(2
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−+

−++
= .      (41) 

The intersection of the yield surface with the plane perpendicular to the main diagonal or 
pressure axis, σ1 = σ2 = σ3, is shown in Fig. 4 for three values of '

2f . The extreme value 
of three is the largest possible value, and corresponds to a friction angle of 90o where B 
takes the value one. The slope of one (B = 0.43) is typical of rocks and soils. The value 
zero corresponds to no pressure dependence, and for that case the yield surface is equiva-
lent to the Tresca condition [40]. The importance for our work is that the equivalent 
strength in pure shear is reduced relative to that in compression between the values 0.866 
for no pressure dependence and 0.577 for the pressure derivative equal to three. 
 We have implemented this model as a user option and applied it to the calculation 
of the residual dent in the UK modification of the Steven test [19]. At 70 m/s, the (ex-
trapolated) dent obtained in the test is about 12 mm. The standard model uses the von 
Mises “circle.” The calculation with the present model (Figs. 2, 3) and with Teflon 
strength taken to be 30 MPa [43], results in an 11.7 mm dent. When the Mohr-Coulomb 
option is used, the calculated dent is 12.2 mm. The calculated dents with and without the 
Mohr-Coulomb option are shown in Figure 5. Previously reported calculations of the dent 
[19] with the old fit showed a similar increase when the strength was reduced. Reducing 
the strength of the steel cover plate from 0.5 to 0.3 GPa increased the dent by 0.5 mm. 
Reducing the maximum strength of the HE from 0.3 to 0.15 GPa 
increased the dent by 0.7 mm.  
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Figure 4. Intersection of the yield surface with a plane normal to the pressure axis. All surfaces are normal-
ized to have the same value in triaxial compression. The three axes (thin black lines) are the three principal 
stresses. In this figure, the principal stresses are not ordered. 
 
 A modification of the triax test might be used to determine the suitability of the 
Mohr Coulomb model. After the application of isostatic stress, the axial load could, in 
principle, be reduced, rather than increased. This loading path is triaxial “tension” alt-
hough all principal stresses are compressive. In Fig. 4, triaxial tension obtains on the cor-
ners of the yield surface that (apparently) intercept the three principal stress axes. The 
calculated and measured strengths could then be compared at several different confining 
pressures. 

4. Calculation of the increase of gas product 
 An important use of the HERMES model is to quantify the amount of reactant 
that is converted to gas product as a function of time. The perceived violence of the event 
depends on both the amount of product and the time over which it is formed. For a given 
violence metric there is associated a characteristic time. If the product mass is developed 
more quickly than that, the violence measure is about the same as that produced by a det-
onation of the same mass of explosive. If the time to burn takes much longer than that, 
the violence measure is much reduced over that produced by a detonation. We quantified 
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Figure 5. Calculated dents in the UK Steven test without (top) and with (bottom) the Mohr-Coulomb op-
tion. 
 
this effect when air blast is used as the violence measure [44]. A similar effect, although 
with different characteristic times, also holds for the response of the surrounding con-
finement, whether measured by crater volume or shrapnel velocity. 
 In HERMES, there are separate submodels for ignition from a mechanical insult 
that does not produce shocks, the propagation of an ignition front through a mass of dam-
aged material, the subsequent burning of the material, and the growth of reaction to deto-
nation if strong shocks develop. 

4.1 Calculation of ignition without shocks 
 The basis of our ignition criterion is the observation that in low-speed impacts, 
ignition is accompanied by significant shear deformation. We do not identify whether the 
localization mechanism is crystal twinning, continuum shear bands, friction, or grain-to-
grain slip. Instead, we use properties of the stress tensor to identify where shear defor-
mation is occurring. The shear weighting factor, fτ , is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=
Y
s

f 232τ ,        (42) 

and has the value 2 in shear and the value 1 in compression or tension. When the factor is 
raised to a power, approximately 4, there is an order of magnitude difference in the factor 
during shear deformation than in compression or tension. A similar factor uses the third 
invariant, J3,  of the stress-deviator tensor. The use of the third invariant, rather than the 
intermediate principal stress deviator is more customary in the solid mechanics literature. 
The similar, but not identical, factor would then be given by 

von Mises 
11.7 mm dent 

Mohr-Coulomb 
12.2 mm dent 
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where 
 
 ( )ijsdet3213 == sssJ .        (44) 
and sij is the stress deviator tensor. 
 The ignition parameter also contains a weighting factor for the normal stress act-
ing on the plane of maximum shear. When the normal stress is tensile, the weight is zero. 
This term was motivated by the view that more frictional work is done on an interface 
when the normal stress is more compressive. The ignition parameter is given by 
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Here σ0 is a parameter of order 50 MPa. Use of this criterion in simulations of the US and 
UK variants of the Steven test [19] have shown that ignition in both tests occurs when 
Dignit reaches 200, although the peak pressures in the two tests differ by nearly a factor of 
2. Similarly, scorch marks on the steel holder from UK tests are not on the axis of sym-
metry, where the pressure is largest, but at an intermediate radius, near where the criteri-
on has its maximum value [20]. 
 Computer simulations of Steven tests have shown that the value of the ignition 
criterion is quite sensitive to the coefficient of friction used [19, 20]. A separate parame-
ter study, using a simplified geometry where a disk of explosive is crushed between two 
platens, illustrated both the sensitivity to friction, and how the localization of plastic 
strain depends on the pressure- and strain-rate- sensitivity of the flow stress. If the flow 
stress is assumed constant, the maximum strain developed, and the maximum value of the 
ignition criterion, is inversely proportional to the mesh size. With the pressure- and  
strain-rate dependence illustrated in Figs 2 and 3, the strain and ignition criteria decrease 
exponentially from the surface, where the e-folding distance is about 0.8 mm [18, 19]. 

4.2 Calculation of burning after ignition 
 Once an element is ignited, it is assumed to burn as an assembly of particulates 
with a starting specific surface area. For smooth, compact objects the specific surface ar-
ea is simply related to the size, D. 

 
DV

S 6
=          (46) 

For spheres, D is the diameter. For cubes, D is the length of an edge. For naturally broken 
material, the specific surface area will be larger than that implied by its nominal size. 
However, the value depends on the scale of the irregularity that is resolved by the meas-
urement technique. 
 For our purposes, the scale of irregularity is determined by the scale that can be 
sensed by an advancing flame. The frangibility test (shotgun test) [45] has been used to 
characterize propellant or explosive response to mechanical insult. Results of that test can 
be used to determine the specific surface area. The rate of change of the mass fraction 
converted to product for fragments burning from their surface inward is given by 
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where vb is the pressure-dependent laminar burn speed. Here S/V is the specific surface 
area before burning starts. At a given pressure, mass burning rate of broken material is 
larger than that measured for intact material. The ratio of the burning rates is the ratio of 
the surface areas. One complication in interpreting the test results is that fragmentation of 
the propellant or explosive is not uniform throughout the damaged volume. The pile of 
resulting fragments has a broad size distribution. We were, however, able to determine 
parameters for a simple linear dependence of specific surface area with plastic strain [9].  

 ( )0εε −= pA
V
S         (48) 

where some critical value of plastic strain is required before fragmentation starts. A more 
physically based dependent variable would be plastic work, but for a given material they 
are related by the constitutive model for strength. 
 In HERMES we retained the dependence on plastic strain. We have chosen “rea-
sonable” values for the two parameters, but there are no data. In principle, frangibility 
tests can be performed on explosives, and in practice they are sometimes tested [45]. In 
general, explosives are more difficult to ignite than propellants [45] so that the early pres-
sure history recorded in these tests can be affected by the increased amount ignition aid 
needed to start the fragments burning. Recent observations of quasi-static damage [39] 
suggest that high confining pressure may significantly reduce the surface area developed 
with plastic strain. At present HERMES ignores this dependence.  

4.3 Calculation of the spread of an ignition front 
 The permeation of hot product gas through a damaged reactant bed depends on 
the viscosity of the hot gas, the local channel dimension, and the local pressure gradient. 
Once hot gas arrives at the surface of cooler reactant, there is an induction time, which 
depends on the thermal properties of the reactant and the chemical kinetic reaction rates, 
before a self-sustaining local flame can start. This is an active research area for experi-
ments and for multi-velocity, multi-phase computer simulations. Direct numerical simu-
lation at the mesoscale, resolving both the boundary layer of flow through a channel, heat 
transfer between the hot gas and the solid, and the growth of reaction from a (reduced) 
chemical reaction net could be a fruitful and complementary approach. So far as we 
know, this has not yet been attempted. 
 In HERMES we have taken the expedient of using an input value for the ignition 
front velocity. We anticipate that experimental data and the results of multi-fluid simula-
tions will be used to calculate the local time of ignition more adequately. In the interim, 
we have performed a limited number of parameter studies that illustrate that the ignition 
front velocity can have a significant effect on the subsequent reaction (Fig. 6) .  Previous 
computer simulations with a much smaller sample volume showed less effect of ignition 
front velocity [17]. In those simulations, most of the porous bed had ignited before signif-
icant deformation occurred. 
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Figure 6. Calculation of a capped steel tube filled with  2-mm diameter explosive particles ignited at the 
bottom. The initial porosity is 20%. The assumed ignition propagation speed from the ignited layer is 300 
m/s (left) and 30 m/s (right). The deformation is shown at 1 ms after ignition (left) and 3.6 ms after ignition 
(right). The steel tubes are 48 mm OD, 28 mm ID, and 300 mm long. The endplates are 16 mm thick. The 
bottom endplate is constrained not to move vertically. The steel yield strength is 0.5 GPa, increasing to 0.7 
GPa at 50% (logarithmic) plastic strain  

4.4 Calculation of the growth to detonation 
If broken, porous explosive is shocked with sufficient amplitude, a detonation can 

develop. It is observed for all explosives that for one-dimensional plane shocks, the dis-
tance between the surface where a shock was introduced, and the point in the interior of 
the explosive where detonation develops (run-distance), depends on the shock amplitude. 
Weaker shocks require a longer run-distance to develop. Detonation models reproduce 
this feature. In addition, the CREST model [11-14, 30] distinguishes shocks from gradual 
pressure rises. We have chosen a simple subset of the CREST equations to couple deto-
nation development with the growth of reaction due to burning in broken material. The 
subset of the CREST reaction model being used is given by 
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     (49) 

Here we have retained the notation of [11]. The Z parameter is a function of entropy as 
described by [11, 30]. The parameter c13 may be positive, negative, or zero. The resulting 
pop plots (run distance as a function of shock pressure) exhibit either a cut-off shock 
pressure (below which a detonation does not form) when c13 positive, or an asymptotic 
run distance approached at low shock pressure when c13 negative, or a power-law de-
pendence when c13 zero.  
 In HERMES, the calculations (Eq. 47, 49) for the increase in mass fraction are 
integrated sequentially. The run-distance to detonation (pop-plot) for the UK explosive is 
shown in Fig. 7. Calculations were performed using Eq. 49 with c13 zero to obtain the run 
distance to detonation. The parameter values were chosen to fit the normal density data. 
The calculated values at higher porosity are predictions. 
 
 

 
 
                                1                                                               10                                                             100 
                                                                                  Pressure, GPa 
Figure 7. Run distance to detonation, mm, as a function of pressure, GPa for normal density explosive 
(open squares) [14]; calculated run distance for normal density, which corresponds to 0.1% porosity (closed 
squares); 2.4% porosity (closed triangles); and 7.8% porosity (closed circles). 
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5. Calculation of porosity changes 
 The porosity is changed in HERMES as a result of three phenomena: a reduction 
due to irreversible crush of the matrix, described in Section 2.5, an increase (dilatancy) 
due to the development of plastic volume strain when the strength depends on pressure, 
and an increase caused by an increase in the mass fraction of product (Eqs. 47, 49). 
 The increase in porosity due to dilatancy is given by 
 )]1(,0max[ ϕεϕ −= ppAy  ,       (50) 
where the parameter A varies between A0 for small values of the dimensionless pressure 
derivative of the yield stress, yp , and A1 for large values of yp.  
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The input parameters A0 and A1 are less than one, and we usually take A0 to be zero. Tak-
ing the derivative of Eq. 28,  
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for compression, p > 0, and 
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for tension (p < 0). From Eq. 25,  
rpr By = ,         (54) 

when the residual strength is less than the intact strength. The value of yp is than 
 Ω+Ω−= prepip yfyy )1( .       (55) 
See Eqs. 22 and 23. When the Mohr-Coulomb model is chosen, the parameter yp is multi-
plied by the parameter fξ (Eq. 41). 
 The increase in porosity due to burn is calculated by assuming the increase of 
burn fraction due to the growth of hot spots does not change the microscopic matrix pres-
sure, Pm, where 
 Pm = PM /!s .         (56) 
After calculating a the new equilibrated pressure, the target macroscopic matrix pressure 
PMt is calculated by 

 PMt = PM
!s
new

!s
old          (57) 

where the volume fractions new and old refer to after and before the pressure is newly 
equilibrated. A value of α is calculated that is consistent with the target macroscopic ma-
trix pressure and the matrix specific volume. The porosity φ is increased consistently with 
the new volume fraction. 

6. Future developments 
 As with any model, especially any relatively new model, there are many opportu-
nities for improvement and development. These fall into three general and broad catego-
ries: algorithm improvements, new physics and chemistry submodels, and confirmation 
of functional forms and parameter values. The latter category includes both the applica-
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tion of mesoscale simulations and carefully designed and executed experiments.  As not-
ed by McAfee [46] in the context of DDT, the results of many experiments on energetic 
materials are difficult to interpret unambiguously. The advantage of simulations with 
HERMES and with mesoscale simulations is that the calculational results can help inter-
pret the experimental results. In this section, we describe the three categories of devel-
opments, including specific examples where possible. 

6.1 Algorithmic improvements 
 The algorithm used to calculate the rate-dependent yield strength (see the discus-
sion in section 3) is slow to converge, typically requiring 20 iterations for every computa-
tional cycle. We found that a simple Newton solver would frequently not converge, as a 
result of discontinuous changes in slope to the yield strength, although when convergence 
was achieved, it was achieved quickly. Improvements here could significantly reduce the 
computational cost per cycle. 
 The calculation of pressure equilibrium with small amounts of product can be 
fragile, especially when the mesh becomes badly distorted. As a result the calculation is 
stopped with a “no convergence” message. A modest change in the element volume dur-
ing a single computational step gives a very large change of volume to the gas, since it is 
more compressible. The net result is a bad estimate of the gas energy density, which can 
result in an unrealistically large or unrealistically low temperature. The resulting gas 
pressure is unsuited to achieving pressure equilibrium. Improvements to this algorithm 
are needed. 

6.2 Additional Physics and Chemistry submodels 
 Tensile fracture is an additional way to create both porosity and surface area. In 
HERMES, this has been ignored, as it was for the PERMS model [9] that preceded it. For 
some mechanical insults, such as the Steven test, most of the material is under compres-
sion most of the time as it is deformed. As a result, ignoring tensile failure is a good ap-
proximation. For other insults, where there is less confinement, tensile failure may be a 
more important mechanism. We note that this is not a task undertaken lightly. Computer 
simulations of tensile fracture have had a long history of bad results. When the element 
fractures, it behaves like a stretched spring that is suddenly severed. The stored potential 
energy in the spring converts to kinetic energy. This sends unloading/reloading waves 
into the neighboring volume. If the spring is strong (large finite difference zone), neigh-
boring zones can break due to the numerical “noise”. The result is that very fine mesh 
resolution is required to develop a fracture pattern that is unchanged with further mesh 
refinement. 
 In general, the increase of porosity due to plastic strain (Eq. 50) should be mani-
fest as an increase in pressure at constant volume. In this way, the unloading to zero pres-
sure results in a volume larger than the starting volume. In our formulation, we have in-
creased Herrmann’s α parameter in step with the porosity. This approach, under various 
load paths needs, needs further testing and confirmation for simple rate-independent yield 
models, as well as our more complicated one. If the approach is found wanting, then the 
interplay of porosity and pressure must be reformulated. 
 The creation of specific surface area (Section 4.2) tacitly assumes that the volume 
of the finite element is sufficient to hold several of the fragments. Although the calculat-
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ed result is sensible for the case when the fragment is larger than the finite element, and 
variation with fragment size is smooth, it is inaccurate. Neighboring elements do not 
share a single large particle. More importantly, their delay before ignition should be set 
by the laminar burn speed, rather than by the propagation speed of an ignition front. The 
transition from large to small fragments, and the transition from ignition front propaga-
tion to laminar burn speed requires work. This is especially true when tensile fracture is 
implemented, because fragments created will be larger than a single volume element. 
 The present DDT model using CREST is appropriate for Type I DDT [46] where 
the initiation of detonation is the result of a sufficiently strong shock in under-dense ex-
plosive. This DDT type is observed for HMX explosives at low to moderate porosity 
(less than 40% porosity). For some other explosives, and at high porosity, Type II DDT 
can occur [46]. Small fragment size and large porosity result in a fast burn up for a rela-
tively large volume of broken material. Our model can describe this feature, but does not 
describe the heterogeneous compaction observed for weak assemblies of highly porous 
material [46]. For the most part, the porosity that develops by mechanical damage is lim-
ited, and in our test simulations only grows large as a result of burn-up. As a result, this 
type II DDT may only occur in especially prepared porous beds rather than as a result of 
mechanical insult. 

Similar considerations are required for XDT models, where the impact of a frag-
ment field on a relatively rigid boundary can result in ignition that spreads rapidly. The 
fragment field may grow more dilute as a result of velocity gradients. In some instances 
subsequent impact of the fragments may result in similar response to Type I DDT and in 
other cases to ignition followed by Type II DDT. Applying the model to experimental 
situations in which XDT develops will help focus the development of an XDT capability 
for HERMES. 

Present research in predicting the violence of thermal insults does not account for 
mechanical damage caused by differential thermal expansion in the build-up to cook-off, 
nor does it account for the extra mechanical damage caused by the local pressurization 
near the ignition site in the early stages of cook-off. To model this damage and the result-
ing violence requires coupling HERMES to heat transfer simulations and to incorporate a 
thermal ignition submodel.  

6.3 Assessing HERMES parameters and functional forms 
The HERMES model calculates the energetic response through the interaction of 

many physical and chemical processes, represented by interacting submodels. Although 
each of these submodels was developed to be consistent with our general experience in 
the behavior of explosives and propellants, the various submodels have not all been sub-
ject to the same level of vetting and parameter fitting. Throughout the text, we have indi-
cated where additional data and/or insight would be of benefit, so that the predictions of 
various submodels could be subject to testing, not just the overall response. These predic-
tions include strain and damage localization as influenced by friction, strength as influ-
enced by lateral confinement and strain rate, the propagation of an ignition front through 
damaged explosive, and the effective specific surface area as sampled by the flame ad-
vancing into the fragments.  
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7. Summary 
 We have developed a model to describe the mechanical and energetic response of 
propellants and explosives to mechanical insults. The model includes ignition from low-
velocity shear deformation, followed by more-or-less rapid burn of damaged material, as 
well as a simplified CREST detonation model for strong or developing shocks in dam-
aged material. The HERMES model is based on those experimental observations that are 
available. Where data are missing, judgment is used to develop functional forms to pre-
dict the behavior. 
 We have indicated developments that would reduce the computer simulation time 
required by the model, and improve (or possibly confirm) the accuracy of the predictions. 
Extensions of the model include additional mechanical and thermo-mechanical mecha-
nisms for damage, and for energetic response when damaged material is subsequently 
impacted. Future applications of the model include helping the design and interpretation 
of additional test vehicles to assess the adequacy of individual submodels, especially 
those developed in the absence of confirming data. 
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