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Equilibrium Climate Sensitivity (ECS), defined as the global equilibrium surface 18 

air temperature change after a doubling of atmospheric CO2 levels, is a relevant 19 

tool for understanding and predicting future climate change
1
.  Despite decades of 20 

research and model development, climate model simulations still give a wide 21 

range of values
 
for this quantity

2
.  Understanding the reason for this range helps 22 

us understand sources of uncertainty in multi-model climate projections of the 23 

21
st
 century

3
.  Recently, a new generation of climate models, participating in the 24 

Coupled Model Intercomparison Project phase 5 (CMIP5), have been developed 25 

and will support the Fifth Assessment Report (AR5) of the Intergovernmental 26 

Panel on Climate Change (IPCC).  Their climate projections will help inform 27 

policy makers on future climate change and potential mitigation strategies.  28 

Diagnosing the climate sensitivity of these models is the first step to identifying 29 

and understanding sources of uncertainty in their climate projections.  Here we 30 

apply novel analysis techniques
4
 to abrupt CO2 quadrupling experiments to 31 

quantify and compare forcing and feedback processes across a subset of 32 

available CMIP5 coupled Atmosphere-Ocean climate models.  We show that 33 

certain approximations underlying methods used to estimate climate sensitivity 34 



have to be refined to account for feedback strengths that evolve over time.  The 35 

range of ECS (2.1 – 4.7 K) is similar to that found in the previous generation of 36 

models, CMIP3 (2.1 – 4.4 K)
2
.  Differences in the response of clouds to climate 37 

change, and the consequent ‘cloud feedback’ on the Earth’s radiation balance, 38 

have long been identified as the largest source of this uncertainty
2,5,6

, and this 39 

remains the case in CMIP5.  Improved understanding of the role of clouds
7
 in 40 

climate change is therefore still needed if we want to reduce uncertainties in 41 

climate model projections. 42 

 43 

Previously, ECS has been derived by running a model to equilibrium under a doubling 44 

of CO2.  This is too computationally expensive in coupled 3D Atmosphere-Ocean-45 

General-Circulation-Models (AOGCMs), but it can be achieved by replacing the 3D 46 

ocean component with a simple thermodynamic mixed-layer, ‘slab-ocean’, model.  A 47 

caveat to this design is that it suppresses changes in ocean heat transport which may 48 

be important for the pattern of surface warming and atmospheric feedbacks
8
.  In 49 

addition, sea-ice schemes can be quite sensitive to ocean processes that are not 50 

represented in slab-ocean models
9
.  In CMIP5, slab-ocean experiments are not 51 

included in the experiment design
10

.  Different techniques are therefore needed if we 52 

want to estimate and compare the ECS of the fully coupled AOGCMs participating in 53 

CMIP5. 54 

 55 

To estimate the ECS of the CMIP5 models we use a method
4
 based on a relationship 56 

governing the energy balance of the climate system: in response to a radiative 57 

perturbation F (Wm
-2

), the climate responds such that the change in net top-of-58 

atmosphere (TOA) radiative flux N (Wm
-2

) is approximately linearly dependent on 59 

global-mean surface-air-temperature change ∆T (K), such that, 60 

 61 

 N = F – α∆T, (1) 

 62 

where -α (Wm
-2

 K
-1

) is the ‘climate feedback parameter’.  If F and α are constant, N is 63 

a linear function of ∆T with a slope –α and intercept (at ∆T = 0) of F.  Diagnosed this 64 

way, F represents an ‘adjusted radiative forcing’ (see Methods).  The equilibrium 65 

temperature change, ∆Teqm, can be estimated by extrapolating this heat balance to zero 66 

heat uptake, that is, N = 0 and ∆Teqm = F / α.  One advantage of this method is that it 67 



can be resolved into components that provide information on the forcing and feedback 68 

processes that determine the ECS.  Another is that it allows a simple estimate of the 69 

ECS without running the model to equilibrium.  On the other hand, to make this 70 

estimate, we must assume that the feedbacks are time invariant, which may not be 71 

accurate (see discussion below). 72 

 73 

We estimate F, -α and ECS of the 11 available CMIP5 models by applying this 74 

method to step change (abrupt) CO2 quadrupling experiments that are core to the 75 

CMIP5 experimental design
10

 (Figure 1 and Methods).  These experiments are 76 

designed to understand forcing and feedback processes in the climate system, but they 77 

are also useful for constructing policy-relevant scenarios
11

.  The ECS of each model 78 

(estimated as half of ∆Teqm) is shown in Figure 2, depicted in order of ECS from left 79 

to right, and tabulated in Table 1.  Based on the available CMIP5 model simulations, 80 

the range of ECS is 2.6 K (2.1 to 4.7 K). 81 

 82 

There are some differences in F across models, which might be expected from 83 

differences in their treatment of radiative transfer
12

 and differences across models in 84 

rapid tropospheric and land surface adjustment processes
13-15

.  In the previous 85 

generation of models, differences in feedbacks contributed more to the uncertainty in 86 

ECS than forcing
6
.   In the CMIP5 models, fixing α at the multi-model mean (α = 87 

1.05), differences in F give an ECS range of 1.5 K (2.5 to 4.0 K).  Fixing F at the 88 

multi-model mean (F = 6.90) however, differences in α give rise to a substantially 89 

larger range of 3.2 K (2.3 to 5.5 K).  That this is larger than the actual ECS range 90 

implies an anti-correlation between forcing and feedbacks across models (correlation 91 

coefficient between F and -α is -0.42). 92 

 93 

We decompose the feedbacks, which are responsible for the differences in α, into 94 

longwave (LW) clear-sky, shortwave (SW) clear-sky and net (LW+SW) Cloud 95 

Radiative Effect (CRE) (see Methods).  The results are presented in Figure 2 and 96 

Table 1 (note that for completeness the regression plots for all models and all 97 

components are shown in Supplementary Figures 1-6).  There is good agreement 98 

across models in strongly negative (stabilizing) LW clear-sky feedback processes 99 

(range is -1.7 to -2.0 Wm
-2

 K
-1

), which comes about principally due to the Planck 100 

response, partly offset by a positive (destabilizing) contribution due to the net effect 101 



of the water-vapour and lapse-rate feedbacks.  There is also good agreement in 102 

positive SW clear-sky feedback processes (range is 0.5 to 0.9 Wm
-2

 K
-1

), which 103 

comes about due to the retreat of land snow and sea-ice with warming and the water-104 

vapour feedback, all of which decrease the planetary albedo (i.e. enhance the amount 105 

of solar radiation absorbed in the climate system). 106 

 107 

Large differences between models emerge when we look at the response of clouds.  108 

The multi-model mean CRE feedback is close to zero (Table 1).  However, the 109 

models span a wide range (-0.5 to +0.7 Wm
-2

 K
-1

), which explains most of the range 110 

in the net feedback parameter
16

.  When ordered in terms of ECS (Figure 2), it is clear 111 

that differences in CRE feedbacks relate to the range in ECS, i.e. those models with a 112 

more positive CRE feedback tend to have a larger ECS.  Analysis of the CRE 113 

breakdown into SW and LW components reveals that this spread mostly comes from 114 

differences in SW CRE feedback processes (Supplementary Figure 6), as found 115 

previously in older generation models
6
.  It is interesting to note that MIROC5 has a 116 

relatively low ECS (2.72 K), despite having one of the largest forcings.  This is due to 117 

its particularly strong negative CRE feedback (-0.51 Wm
-2

 K
-1

).  This has been 118 

attributed to increases in low clouds over the tropical oceans in this model
17

.  The 119 

Cloud Feedback Model Intercomparison Project phase 2 (CFMIP2)
18

 proposes a 120 

series of model experiments that will be available in the CMIP5 multi-model dataset, 121 

such as patterned +4K experiments, they will allow us to probe differences in cloud 122 

feedback processes across models in more detail. 123 

 124 

The CMIP5 experimental design
10

 includes abrupt 4xCO2 experiments with fixed sea-125 

surface-temperatures (SSTs).  We use these experiments to derive an alternative 126 

estimate of the adjusted radiative forcing
19,20

, which we denote by FSST (see Methods).  127 

Differences between F and FSST in the models with available data are generally small 128 

(Figure 2) (correlation coefficient between F and FSST is 0.87). Exact agreement is not 129 

expected due to the different ways in which the methods impose ∆T = 0
13,15,19-21

.  For 130 

example, FSST only fixes local SSTs, while land temperatures can respond, which give 131 

rise to a small global ∆T increase (Figure 2).  With the regression method, on the 132 

other hand, ∆T = 0, but local temperatures are unconstrained. 133 

 134 



Some of the small differences between F and FSST result from the regression method’s 135 

assumption that feedbacks are linearly related to global temperature change, 136 

independent of time-scale.  The regression plots (Figure 1) show, however, that in 137 

some models there are deviations from linear behaviour, suggesting some time-scale 138 

dependence of the climate feedbacks.  In some models (CSIRO-Mk3-6-0, HadGEM2-139 

ES and MRI-CGCM3, for example) F is substantially lower than FSST, but if the 140 

regression lines had been based on only the first few years of data, the agreement 141 

would be better.  The CMIP5 experimental design
10

 does include an ensemble of 5-142 

year 4xCO2 experiments that could be used to obtain relatively good estimates of the 143 

effective forcing and feedback, but they will not provide information on the ‘longer 144 

term’ feedbacks that determine ∆T on a multi-decadal timescale. These results, 145 

however, are only beginning to be made available. 146 

 147 

Six of the models (CSIRO-Mk3-6-0, HadGEM2-ES, MIROC-ESM, MPI-ESM-LR, 148 

MRI-CGCM3 and NorESM1-M) qualitatively demonstrate the same initial non-149 

linearity with N in the first year falling above the regression line (Figure 1).  150 

Supplementary Figures 2-3 show that throughout the integration the clear-sky fluxes 151 

are largely linear in all of the models.  At some point we might expect this to break 152 

down, at least for the surface albedo contribution to SW clear-sky feedback once 153 

snow and sea-ice disappear altogether
22

.  There is some evidence of curvature in the 154 

SW clear-sky feedback processes in a few models, but the deviation from linearity is 155 

small. 156 

 157 

Analysis of the CRE response (Supplementary Figures 4-6) reveals that the initial 158 

non-linearity is dominated by a non-linear cloud feedback.   Averaging the CRE 159 

response over land and ocean regions separately reveals strong non-linearity in the 160 

SW CRE response over the ocean, not seen over land (Supplementary Figure 7).  This 161 

is particularly evident in MIROC-ESM, which is strongly non-linear throughout the 162 

integration (Supplementary Figures 6-7).  Consistent with a non-linear cloud 163 

response, reference [23] described a non-linear stratocumulus cloud feedback in an 164 

older generation model, which resulted from a change in the warming pattern of local 165 

SSTs in the subtropical ocean basins.  Similarly, changes in the state of the deep 166 

ocean are likely to influence the pattern of surface warming and atmospheric 167 

feedbacks on a long timescale
24

. 168 



 169 

Where there are multiple timescale responses whose combined effect is not linearly 170 

related to ∆T a linear forcing-feedback framework is clearly inadequate.  In these 171 

cases, the system is perhaps better characterised by an adjusted radiative forcing and a 172 

time-evolving feedback parameter, which could be defined with respect to the current 173 

climate state as the tangent to the curve
4
, i.e. dN/dT.  In the cases of non-linearity, 174 

estimating equilibrium climate change clearly becomes less reliable.  Our F and –α 175 

coefficients can still be used for estimation of the ECS, but if the curve has a tendency 176 

to flatten (as suggested by Figure 1), then our estimates should be taken as an 177 

approximate lower limit
4
. 178 

 179 

Time-evolving feedbacks in CMIP5 coupled Atmosphere-Ocean climate models raise 180 

the question of whether it is still useful to focus on ECS as a means of quantifying and 181 

understanding model responses to external forcing.  In the future, analysis of the 182 

adjusted radiative forcing and climate feedback parameter, including any time 183 

variation, might provide a more comprehensive characterization of the reasons for 184 

differences in model projections of future climate change, which are relevant to 185 

policy.  We therefore suggest that improved understanding of climate responses on 186 

various timescales
23-35

 should be a priority if we want to better constrain ECS, 187 

evaluate the limitations of the linear forcing-feedback paradigm and improve our 188 

understanding of uncertainties in multi-model climate projections. 189 

 190 

 191 



Methods 192 

 193 

Climate model data:  Climate model data was taken from the CMIP5 multi-model 194 

data archive (http://cmip-pcmdi.llnl.gov/cmip5/index.html).  We use four 195 

experiments: piControl (pre-industrial fully-coupled control, run for hundreds of 196 

years), abrupt4xCO2 (as piControl but run for 150 years with atmospheric levels of 197 

CO2 instantaneously quadrupled), sstClim (as piControl but run for 30 years with the 198 

ocean model replaced with climatological SSTs) and sstClim4xCO2 (as sstClim but 199 

with atmospheric levels of CO2 instantaneously quadrupled).  We extracted the latest 200 

version of all model data, correct as of 16
th

 November 2011.  HadGEM2-ES has only 201 

140 years of data currently on the CMIP5 archive for the abrupt4xCO2 experiment, 202 

but we have access to all 150 years.  We extract monthly-mean data and compute 203 

global-annual-means.  We calculate differences between the abrupt4xCO2 and 204 

piControl experiments by subtracting a linear fit of the corresponding control 205 

timeseries from the perturbation run, removing any model drift without adding control 206 

noise. 207 

 208 

OLS regression: We use ordinary least square regression of global-annual-mean N 209 

against ∆T for all 150 data points to derive our best estimates of –α (slope) and F 210 

(intercept).  Note that with this method, F includes rapid adjustments that modify the 211 

TOA radiative flux on timescales much less than a year.  Thus, F is referred to as 212 

‘adjusted radiative forcing’ and includes both stratospheric and tropospheric/land-213 

surface adjustment
13-15

. 214 

 215 

ECS: We define equilibrium climate change at N = 0, therefore ∆Teqm = F / α.  We 216 

divide our results by 2 to apply to 2xCO2: 0.5 * ∆Teqm  = 0.5 * ( F / α ) = ECS. 217 

 218 

Uncertainties: We construct 95% (2.5-97.5%) confidence intervals on all our 219 

quantities through bootstrapping methods.  We randomly sample, with replacement, 220 

150 data points from the original dataset to create 10,000 subsets, computing the 221 

required term each time.  We then sort the resulting distribution to create the 2.5-222 

97.5% confidence interval. 223 

 224 



Fixed-SST forcing:  In the sstClim4xCO2 experiments the atmosphere and land 225 

surface is free to respond to change in CO2 but the SSTs, and so climate feedbacks, 226 

are prevented from evolving
19,20

.  This means that ∆T ~ 0 (although there is some land 227 

surface warming) and F = N according to Equation (1).  FSST is therefore calculated 228 

from a time averaged N.  We calculate this as a difference from the sstClim control, to 229 

remove any common flux imbalance. 230 

 231 

Component regressions: We decompose the net TOA radiative flux, N, into LW and 232 

SW clear-sky and net CRE components.  The clear-sky diagnostics are included in the 233 

CMIP5 archive.  The net CRE term is defined as the difference between the net 234 

radiative all-sky diagnostics (i.e. with clouds) and net radiative clear-sky diagnostics 235 

(i.e. no clouds).  Note that changes in CRE should not be interpreted as being due to 236 

changes in cloud properties alone since the masking effects of clouds on clear-sky 237 

fluxes also contribute
26

.  We then perform the same linear regression technique on 238 

these terms against ∆T. 239 
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Table 1:  Forcing, feedback and climate sensitivity values.  The 4xCO2 adjusted 354 

radiative forcing has been diagnosed via two independent methods: regression and 355 

fixed-SST.  Uncertainties in these values are indicated in Figure 2. 356 

 357 

Radiative Forcing (Wm
-2

)  Climate Feedback Parameter  -α (Wm
-2

 K
-1

) 

AOGCM 
Fixed SST Regression  Net LW clear-sky SW clear-sky Net CRE 

Eqm Climate 

Sensitivity 

(K) 

CanESM2 7.35 7.67  -1.04 -1.88 0.71 0.13 3.69 

CNRM-CM5 n.a. 7.43  -1.14 -1.73 0.78 -0.20 3.25 

CSIRO-Mk3-6-0 6.20 5.17  -0.63 -1.70 0.84 0.23 4.08 

HadGEM2-ES 6.99 5.84  -0.64 -1.66 0.65 0.37 4.58 

INM-CM4 6.24 5.95  -1.43 -1.98 0.67 -0.12 2.08 

IPSL-CM5A-LR 6.49 6.20  -0.75 -1.99 0.53 0.70 4.13 

MIROC-ESM n.a. 8.51  -0.91 -1.93 0.83 0.19 4.67 

MIROC5 n.a. 8.25  -1.52 -1.85 0.84 -0.51 2.72 

MPI-ESM-LR 8.63 8.18  -1.13 -1.79 0.71 -0.04 3.63 

MRI-CGCM3 7.19 6.49  -1.25 -1.99 0.83 -0.09 2.60 

NorESM1-M n.a. 6.21  -1.11 -1.86 0.86 -0.11 2.80 

Model mean 7.01 6.90  -1.05 -1.85 0.75 0.05 3.48 

 358 



 359 
 360 

Figure 1: Relationship between N and ∆T in various CMIP5 models.  Each panel 361 

shows the change in net top-of-atmosphere (TOA) radiative flux, N, as a function of 362 

surface-air-temperature change, ∆T, after an instantaneous quadrupling of CO2.  Data 363 

points are global-annual-means.  Lines represent OLS regression fits to all 150 years 364 

of data (correlation coefficients are shown).  Conceptually, time evolution begins at 365 

the top left of the plot, where ∆T = 0 and N measures the adjusted radiative forcing, 366 

F.  As the climate warms, we move rightwards and downwards as the ocean heat 367 

uptake (≈ N) decreases.  The slope of the curve, -α, measures the strength of the 368 

feedbacks in the climate system, the ‘climate feedback parameter’.  Equilibrium is 369 

achieved once the heat uptake reaches zero, N = 0, which would lie at the bottom-370 

right of these plots, estimated by F / α.  Red crosses represent an independent 371 

estimation of the 4xCO2 adjusted radiative forcing from fixed-SST experiments for 372 

the 7 models where this is available.  These experiments largely inhibit ∆T, and so F 373 

= N.  There is some land warming, giving a small but non-zero ∆T, as indicated on 374 

the figure. 375 



 376 
 377 

Figure 2:  Comparison of the equilibrium climate sensitivity, adjusted radiative 378 
forcing and climate feedback terms.  The models are ordered from left to right in 379 

order of their equilibrium climate sensitivity.  Note that in the top panel α is reported, 380 

rather than –α, to maintain the same scale.  Errors bars represent 95% (2.5-97.5%) 381 

confidence interval based on bootstrapping techniques (see Methods). 382 




