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ABSTRACT 
ns3 is a simulation framework for computer networks, derived 
from a long line of serial simulators. Recently, ns3 incorporated a 
parallel, distributed scheduler, which enables distributed ns3 

simulation for the first time. In this paper we discuss the current 
implementation and some of its limitations, with an eye to 
exploring potential improvements. In order to gauge progress, it is 
essential to have a meaningful performance metric and a suitable 
benchmark problem. Therefore we outline how to measure the 
simulation critical path and use that to construct a parallel 
performance metric. Second, we propose a scalable benchmark 
model, inspired by the global Internet.  
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1. INTRODUCTION 
ns3 is a simulation framework for computer networks, derived 
from a long line of serial simulators.[4] Recently, ns3 incorporated 
a parallel distributed scheduler, which enables distributed ns3 

simulation for the first time.[6] The parallel scheduler 
implementation has a number of limitations, and there are 
alternative implementations that might provide better 
performance. In order to make meaningful evaluations of 
alternatives, a standard benchmark model is needed. We are 
interested specifically in very large models (104-9 nodes) with a 
large amount of available parallelism, and want to benchmark 
highly distributed implementations running on up to 104 
computing cores. After reviewing the current parallel 
implementation, we propose a benchmark model including 
topology and traffic specification. At the same time, we propose 
additional instrumentation for ns3 to compute the critical path, in 
order to measure the degree of parallelism available in any 
network model.. 

2. CURRENT IMPLEMENTATION 
The current parallel scheduler is a straightforward global 
conservative scheduler, using MPI for communication between 
ns3 processes, or ranks, to use the MPI terminology. The 

implementation allows the topology to be partitioned at simulated 
point-to-point (P2P) channels only; CSMA and wireless links may 
not cross rank boundaries. At the same time, each rank must have 
the full topology available. (See reference [6].) 

The use of remote P2P links is handled by the 
PointToPointHelper, which detects that a P2P link crosses ranks, 
attaches a PointToPointRemoteChannel and an MpiReceiver object 
to the PointToPointNetDevice on each side of the link. When it 
comes time to transmit a packet, the packet is serialized over the 
MPI link along with the receive time and destination node index 
and device index. (The destination node here is the other end of 
the P2P link, not the ultimate packet destination.)  On the 
receiving side, the same data is deserialized and used to schedule 
the receive event for the destination node. 

At initialization, each rank independently walks the topology to 
determine the smallest cross-rank P2P channel delay; this 
becomes the scheduler look-ahead, LA.  

When a rank has no more events within the LA time, it enters a 
synchronization phase. It is guaranteed that all ranks will 
eventually exhaust their executable events and enter the 
synchronization phase. During this phase, the rank receives any 
outstanding messages, which will all be for events beyond the LA 
time. All ranks exchange messages containing the number of 
transmitted and received packets, and the time stamp of the next 
available event, using MPI_ALLGATHER. To check for transient 
(not yet delivered) MPI messages, each rank computes the total 
number of received and transmitted events. If these are unequal, 
indicating undelivered messages still exist, then the 
synchronization phase restarts. Once all messages have been 
received (events received equals events transmitted) each rank 
computes the global minimum next event time stamp (lower 
bound time stamp, LBTS), and adds the look-ahead, to obtain the 
maximum time stamp which is safe to process, called the granted 
time. The scheduler then proceeds to process any events scheduled 
before the end of granted time. 

In addition to the restrictions noted above, the current 
implementation only transmits the receive time, the node index 
and device index, and any packet data. Packet and byte tags are 
not transmitted, nor is packet metadata, which used to interpret the 
packet contents correctly. 

2.1 Discussion 
The current implementation should perform well when the 
smallest P2P link delay is large compared to the typical event 
interval. Under this condition many events can be processed 
before synchronization is required. In addition, the case when 
there exist long time gaps, i.e. discontinuous busy periods, should 
also be handled well. By passing the timestamp of the next 
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available event during the LBTS computation, the simulator 
naturally skips over long gaps between events. 

Requiring that each rank contain the global topology makes the 
identification of remote nodes straight-forward:  each rank assigns 
the same index to each node, so merely passing the index between 
ranks is sufficient. 

This requirement is somewhat of a limitation for really big 
networks. Beyond simplifying the implementation, this 
requirement is driven by the existing routing algorithms. All 
current ns3 automatic routing algorithms ultimately require access 
to the global topology. Obviously, global (GOD) routing does, 
since it pre-computes all possible routes. Nix-vector routing 
computes routes as needed, but uses the global topology to do so. 
The total memory requirement is reduced somewhat by only 
instantiating applications on local nodes, but the need to carry the 
global topology, and global routing tables (for GOD routing) at 
each rank will limit the ultimate scaling. Removing this 
bottleneck, however, will require implementation of a distributed 
shortest path algorithm, for example Δ-Stepping.[6] 

3. DEVELOPMENT DIRECTIONS 
There are a number of straightforward ways to extend the current 
implementation, primarily by adding support for packet and byte 
tags, and packet metadata. In fact, the issue of packet tags has 
already been raised in online discussions.[9] 

More involved is to remove the requirement that every rank 
instantiate the global topology. A much more scalable solution 
would only instantiate the rank-local nodes, and perhaps ghost 
nodes for the endpoints of any cross-rank links emanating from 
the current rank.[6] This will require implementation of a 
distributed routing algorithm, as noted above. At the same time, 
there will have to be a method to identify the remote receiving 
node without knowing the remote rank topology, in order to create 
and schedule the receive event correctly. In the current 
implementation non-blocking receives are scheduled for all other 
ranks. When receiving messages, the source rank of the message 
is not used to determine which P2P link is involved. Rather, the 
destination node (global) index is transmitted as part of the MPI 
message. Instead of identifying the receiving node by global 
index, the MPI interface should track which rank sent the 
message, and with that one rank build a common picture of the 
shared P2P links and end nodes. 

Putting aside the high-level issues in routing and distributed 
topology, and the medium level issues of efficiently serializing 
and transmitting packets and metadata between ranks, we should 
also look at the low-level implementation of the distributed 
scheduling algorithm. For example, the use of a global minimum 
LA and MPI_ALLGATHER for synchronization should become 
bottlenecks for very large models. As an alternative, we propose 
to study a locally synchronized scheduler. This would be built 
around MPI links only to neighboring ranks, that is, ranks that 
share P2P links with the current rank. We determine the rank-
local LA as the minimum channel delay for the P2P links to our 
neighbors, not across the global topology. For each neighbor rank, 
we store the timestamp of the last received packet; this tells us 
that neighbor has advanced to at least the simulation time the 
packet transmission began. If the cross-rank P2P links are 
generally busy, we can update our knowledge of our neighbors’ 
simulation time without having to block and exchange LBTS 
messages. To ensure that our neighbors know our time regularly, 
we pre-schedule a NULL message for some fraction, f, e.g. 
f = 80%, of the link delay for each off-rank P2P link. When we 

send a packet on the link, we reschedule the pending NULL 
message for f LA time in the future. As a further variation, instead 
of using a rank-local LA equal to the minimum off-rank P2P 
delay, we could use a link-local LA equal to the specific link 
delay. 

4. CRITICAL PATH 
In order to evaluate alternative implementations, we need accurate 
instrumentation to measure changes in performance. To this end 
we propose to add critical path tracking to ns3, using the method 
of Srinivasan and Reynolds.[8] Each node will track the number 
of packet events (sends and receives) it has processed, which is 
the current path length for that node. When sending a packet, the 
node will increment its own path length and add that as a tag to 
the packet. When receiving a packet, the receiving node will 
update its path length with the larger of its own path length or the 
sending node path length, then add one (for receipt of the packet). 
We see that the node path length is the total number of packet 
send and receive events that must occur earlier in execution of the 
model in order for this packet to arrive at this node. At the end of 
the simulation, the largest node path length is the critical path for 
the model.  

A perfect parallel simulator would only need as much time as a 
serial simulator executing just the critical path. The ratio of total 
packet events to the critical path length is the available 
parallelism in the model. In running a parallel simulation the 
speedup is the serial wall clock time divided by the parallel wall 
clock time executing the same model. Performance of the parallel 
implementation is measured as the speedup divided by the 
available parallelism: 

 ! =
TSerial
TParallel

!
LCP
NEvents

 (1) 

where π is the parallel efficiency, TSerial and TParallel are the serial 
and parallel wall clock time, respectively, LCP is the length of the 
critical path, and NEvents is the total number of packet send/receive 
events in the simulation. Equivalently, serial running time divided 
by total packet send and receive events is the average execution 
time per event. This, multiplied by the critical path length, is the 
minimum expected parallel running time. Finally, the minimum 
expected parallel running time divided by actual parallel running 
time is the parallel performance or efficiency. We should expect 
this to be in the range (0,1]. 

5. BENCHMARK MODEL 
We are interested specifically in very large models with a large 
amount of available parallelism. Since the current automatic 
routing algorithms are not distributed, we do not want routing 
protocols and implementations to become limiting factors. To that 
end, we draw inspiration from a toy model proposed by Riley and 
Ammar (R&A).[7] The essential features of the R&A model are 
these: 

• The node count, 108, is dominated 100:1 by end hosts, not 
routers. 

• End hosts originate all traffic. 
• The router-router graph determines the average diameter of 

the topology, d !10 . 
• Consequently the number of simulation events is dominated 

by router-router packet transmissions, not packet events at end 
hosts. 

R&A leave the router-router network unspecified, except to say 
that all routers have degree 4, suggesting a Erdös-Rényi G(n,M)-



type random graph, consisting of n nodes each with M links to 
random other nodes. 

The key observation is that the model is dominated by packets 
transiting between routers, with the routing unspecified. The host 
nodes exist only as sources and sinks for the packets.  
Therefore, we propose the following benchmark model: 

1. n router nodes; n sets the problem size. There are no host 
nodes. 

2. Routers are connected in a random Watts-Strogatz graph, with 
average degree k. 

3. Routers send packets to their nearest neighbors. There is no 
routing; no packets are retransmitted from a receiving 
interface to a sending interface on the same router. 

4. Link utilization is either fixed at u = 10%,[5] or given by a 
(unspecified) distribution, or varied to control the number of 
events per LA time. 

5. Link bandwidth is either fixed at B = 400 Mbps,[scaled from 
7] or given by an (unspecified) distribution. 

6. Link delays are either fixed at δ = 20 ms,[9] or given by a 
(unspecified) distribution. 

7. Packets are all S = 5 kbit (625 byte) in size. 
8. Inter-packet intervals are exponentially distributed (yielding 

Poisson count behaviour). 

Rather than G(n,M) we choose to use a random Watts-Strogatz 
graph with k ≥ 4 so that we almost surely obtain a single 
connected graph, with minimum router degree ≥ 2. The choice of 
n and k determine the average diameter from the relations 

 n = kd d = d ! 1
k !1

" d  (2) 

For n = 106, roughly the number of routers in the Internet,[2] and 
k = 4 we obtain average diameter d  = 10, which is not too far 
from the observed d  = 16.[3] 
The choice of link bandwidth, delay, and packet size are 
motivated by average values seen in the Internet. The quantity of 
interest for benchmarking the simulator is the number of packet 
receive events per LA time. Given a packet size S in bits, and link 
bandwidth B, the time spent transmitting a packet is 

 tTX =
S
B

 (3) 

The utilization, u, is this time multiplied by the rate of packet 
transmission, R. The LA time will be comparable to the link delay, 
δ, and the number of events within the LA window is 

 r = !R = ! u
tTX

= u!B
S

 (4)  

This is the delay-bandwidth product divided by the packet size, 
times the utilization. If r  1, then packets are regularly 
transmitted on the link and NULL messages will never be needed. 
If r < 1, then quiescent periods longer than the LA should occur. 
By varying the utilization we can control which regime the model 
tests. Typical values for the Internet are S ≈ 5 kbit; B ≈ 400 Mbps; 
δ ≈ 20 ms, as referenced above. For u ≈ 10% this gives r ≈ 160 
events per LA window. 

The choice of exponential inter-packet intervals is arbitrary; a 
Pareto distribution with mean given by Eq (3) would be 
interesting. 

For a model running for total simulated time T, we expect the 
critical path to be of order TuBk/S, and available parallelism of n. 

Partitioning random Watts-Strogatz graphs is straightforward, 
with METIS, for example.[2] For large graphs (n > 103) 
partitioning with 1% of the nodes per rank results in rank degree 
~ n/10, i.e, ranks communicate with 10% of all other ranks.[1] 
This partitioning avoids all-to-all communication. On the other 
hand, the partitioning results in caterpillar graphs on each MPI 
rank, with half the links pointing to other ranks.  Therefore half of 
all packets will be transmitted between ranks over MPI, providing 
a good test of the parallel implementation. 

6. EVALUATION 
To be clear, we have not studies this benchmark model with the 
current parallel implementation, never mind modifications. Our 
next steps are to implement the model, and the critical path 
algorithm, in order to identify which of the improvements 
discussed will likely have the greatest impact, and should be 
tackled first. 

7. CONCLUSION 
In this paper we have outlined possible development directions for 
the parallel, distributed scheduler in ns3. To enable meaningful 
performance measurements, we propose to augment ns3 with a 
critical path algorithm. We also propose a benchmark model 
inspired by the global Internet. This model is trivially scalable 
with a high degree of available parallelism, and requires no 
routing. The combination of critical path measurement and a 
highly parallel benchmark model will enable disciplined 
improvement of the parallel ns3 implementation. 
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