
LLNL-CONF-520255

A Benchmark Model for Parallel
ns3

P. D. Barnes

December 13, 2011

Workshop on ns3 2012
Sirmione, Italy
March 23, 2012 through March 23, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Benchmark Model for Parallel ns3
Peter D. Barnes, Jr. , James M. Brase (brase1@llnl.gov),

Thomas W. Canales (tcanales@llnl.gov), Matthew M. Damante (mdamante@llnl.gov),
Matthew A. Horsley (horsley1@llnl.gov), David R. Jefferson (drjefferson@llnl.gov),

Ron A. Soltz (soltz@llnl.gov)
Lawrence Livermore National Laboratory

7000 East Ave.
Livermore CA 94550 USA

1-925-422-3384

pdbarnes@llnl.gov
ABSTRACT
ns3 is a simulation framework for computer networks, derived
from a long line of serial simulators. Recently, ns3 incorporated a
parallel, distributed scheduler, which enables distributed ns3

simulation for the first time. In this paper we discuss the current
implementation and some of its limitations, with an eye to
exploring potential improvements. In order to gauge progress, it is
essential to have a meaningful performance metric and a suitable
benchmark problem. Therefore we outline how to measure the
simulation critical path and use that to construct a parallel
performance metric. Second, we propose a scalable benchmark
model, inspired by the global Internet.

Keywords
MPI, network simulation, ns-3, distributed, performance, high
performance computing.

1. INTRODUCTION
ns3 is a simulation framework for computer networks, derived
from a long line of serial simulators.[4] Recently, ns3 incorporated
a parallel distributed scheduler, which enables distributed ns3

simulation for the first time.[6] The parallel scheduler
implementation has a number of limitations, and there are
alternative implementations that might provide better
performance. In order to make meaningful evaluations of
alternatives, a standard benchmark model is needed. We are
interested specifically in very large models (104-9 nodes) with a
large amount of available parallelism, and want to benchmark
highly distributed implementations running on up to 104
computing cores. After reviewing the current parallel
implementation, we propose a benchmark model including
topology and traffic specification. At the same time, we propose
additional instrumentation for ns3 to compute the critical path, in
order to measure the degree of parallelism available in any
network model..

2. CURRENT IMPLEMENTATION
The current parallel scheduler is a straightforward global
conservative scheduler, using MPI for communication between
ns3 processes, or ranks, to use the MPI terminology. The

implementation allows the topology to be partitioned at simulated
point-to-point (P2P) channels only; CSMA and wireless links may
not cross rank boundaries. At the same time, each rank must have
the full topology available. (See reference [6].)

The use of remote P2P links is handled by the
PointToPointHelper, which detects that a P2P link crosses ranks,
attaches a PointToPointRemoteChannel and an MpiReceiver object
to the PointToPointNetDevice on each side of the link. When it
comes time to transmit a packet, the packet is serialized over the
MPI link along with the receive time and destination node index
and device index. (The destination node here is the other end of
the P2P link, not the ultimate packet destination.) On the
receiving side, the same data is deserialized and used to schedule
the receive event for the destination node.

At initialization, each rank independently walks the topology to
determine the smallest cross-rank P2P channel delay; this
becomes the scheduler look-ahead, LA.

When a rank has no more events within the LA time, it enters a
synchronization phase. It is guaranteed that all ranks will
eventually exhaust their executable events and enter the
synchronization phase. During this phase, the rank receives any
outstanding messages, which will all be for events beyond the LA
time. All ranks exchange messages containing the number of
transmitted and received packets, and the time stamp of the next
available event, using MPI_ALLGATHER. To check for transient
(not yet delivered) MPI messages, each rank computes the total
number of received and transmitted events. If these are unequal,
indicating undelivered messages still exist, then the
synchronization phase restarts. Once all messages have been
received (events received equals events transmitted) each rank
computes the global minimum next event time stamp (lower
bound time stamp, LBTS), and adds the look-ahead, to obtain the
maximum time stamp which is safe to process, called the granted
time. The scheduler then proceeds to process any events scheduled
before the end of granted time.

In addition to the restrictions noted above, the current
implementation only transmits the receive time, the node index
and device index, and any packet data. Packet and byte tags are
not transmitted, nor is packet metadata, which used to interpret the
packet contents correctly.

2.1 Discussion
The current implementation should perform well when the
smallest P2P link delay is large compared to the typical event
interval. Under this condition many events can be processed
before synchronization is required. In addition, the case when
there exist long time gaps, i.e. discontinuous busy periods, should
also be handled well. By passing the timestamp of the next

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Wns3 2012, March 23, 2012, Desanzano, Italy
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

available event during the LBTS computation, the simulator
naturally skips over long gaps between events.

Requiring that each rank contain the global topology makes the
identification of remote nodes straight-forward: each rank assigns
the same index to each node, so merely passing the index between
ranks is sufficient.

This requirement is somewhat of a limitation for really big
networks. Beyond simplifying the implementation, this
requirement is driven by the existing routing algorithms. All
current ns3 automatic routing algorithms ultimately require access
to the global topology. Obviously, global (GOD) routing does,
since it pre-computes all possible routes. Nix-vector routing
computes routes as needed, but uses the global topology to do so.
The total memory requirement is reduced somewhat by only
instantiating applications on local nodes, but the need to carry the
global topology, and global routing tables (for GOD routing) at
each rank will limit the ultimate scaling. Removing this
bottleneck, however, will require implementation of a distributed
shortest path algorithm, for example Δ-Stepping.[6]

3. DEVELOPMENT DIRECTIONS
There are a number of straightforward ways to extend the current
implementation, primarily by adding support for packet and byte
tags, and packet metadata. In fact, the issue of packet tags has
already been raised in online discussions.[9]

More involved is to remove the requirement that every rank
instantiate the global topology. A much more scalable solution
would only instantiate the rank-local nodes, and perhaps ghost
nodes for the endpoints of any cross-rank links emanating from
the current rank.[6] This will require implementation of a
distributed routing algorithm, as noted above. At the same time,
there will have to be a method to identify the remote receiving
node without knowing the remote rank topology, in order to create
and schedule the receive event correctly. In the current
implementation non-blocking receives are scheduled for all other
ranks. When receiving messages, the source rank of the message
is not used to determine which P2P link is involved. Rather, the
destination node (global) index is transmitted as part of the MPI
message. Instead of identifying the receiving node by global
index, the MPI interface should track which rank sent the
message, and with that one rank build a common picture of the
shared P2P links and end nodes.

Putting aside the high-level issues in routing and distributed
topology, and the medium level issues of efficiently serializing
and transmitting packets and metadata between ranks, we should
also look at the low-level implementation of the distributed
scheduling algorithm. For example, the use of a global minimum
LA and MPI_ALLGATHER for synchronization should become
bottlenecks for very large models. As an alternative, we propose
to study a locally synchronized scheduler. This would be built
around MPI links only to neighboring ranks, that is, ranks that
share P2P links with the current rank. We determine the rank-
local LA as the minimum channel delay for the P2P links to our
neighbors, not across the global topology. For each neighbor rank,
we store the timestamp of the last received packet; this tells us
that neighbor has advanced to at least the simulation time the
packet transmission began. If the cross-rank P2P links are
generally busy, we can update our knowledge of our neighbors’
simulation time without having to block and exchange LBTS
messages. To ensure that our neighbors know our time regularly,
we pre-schedule a NULL message for some fraction, f, e.g.
f = 80%, of the link delay for each off-rank P2P link. When we

send a packet on the link, we reschedule the pending NULL
message for f LA time in the future. As a further variation, instead
of using a rank-local LA equal to the minimum off-rank P2P
delay, we could use a link-local LA equal to the specific link
delay.

4. CRITICAL PATH
In order to evaluate alternative implementations, we need accurate
instrumentation to measure changes in performance. To this end
we propose to add critical path tracking to ns3, using the method
of Srinivasan and Reynolds.[8] Each node will track the number
of packet events (sends and receives) it has processed, which is
the current path length for that node. When sending a packet, the
node will increment its own path length and add that as a tag to
the packet. When receiving a packet, the receiving node will
update its path length with the larger of its own path length or the
sending node path length, then add one (for receipt of the packet).
We see that the node path length is the total number of packet
send and receive events that must occur earlier in execution of the
model in order for this packet to arrive at this node. At the end of
the simulation, the largest node path length is the critical path for
the model.

A perfect parallel simulator would only need as much time as a
serial simulator executing just the critical path. The ratio of total
packet events to the critical path length is the available
parallelism in the model. In running a parallel simulation the
speedup is the serial wall clock time divided by the parallel wall
clock time executing the same model. Performance of the parallel
implementation is measured as the speedup divided by the
available parallelism:

 ! =
TSerial
TParallel

!
LCP
NEvents

 (1)

where π is the parallel efficiency, TSerial and TParallel are the serial
and parallel wall clock time, respectively, LCP is the length of the
critical path, and NEvents is the total number of packet send/receive
events in the simulation. Equivalently, serial running time divided
by total packet send and receive events is the average execution
time per event. This, multiplied by the critical path length, is the
minimum expected parallel running time. Finally, the minimum
expected parallel running time divided by actual parallel running
time is the parallel performance or efficiency. We should expect
this to be in the range (0,1].

5. BENCHMARK MODEL
We are interested specifically in very large models with a large
amount of available parallelism. Since the current automatic
routing algorithms are not distributed, we do not want routing
protocols and implementations to become limiting factors. To that
end, we draw inspiration from a toy model proposed by Riley and
Ammar (R&A).[7] The essential features of the R&A model are
these:

• The node count, 108, is dominated 100:1 by end hosts, not
routers.

• End hosts originate all traffic.
• The router-router graph determines the average diameter of

the topology, d !10 .
• Consequently the number of simulation events is dominated

by router-router packet transmissions, not packet events at end
hosts.

R&A leave the router-router network unspecified, except to say
that all routers have degree 4, suggesting a Erdös-Rényi G(n,M)-

type random graph, consisting of n nodes each with M links to
random other nodes.

The key observation is that the model is dominated by packets
transiting between routers, with the routing unspecified. The host
nodes exist only as sources and sinks for the packets.
Therefore, we propose the following benchmark model:

1. n router nodes; n sets the problem size. There are no host
nodes.

2. Routers are connected in a random Watts-Strogatz graph, with
average degree k.

3. Routers send packets to their nearest neighbors. There is no
routing; no packets are retransmitted from a receiving
interface to a sending interface on the same router.

4. Link utilization is either fixed at u = 10%,[5] or given by a
(unspecified) distribution, or varied to control the number of
events per LA time.

5. Link bandwidth is either fixed at B = 400 Mbps,[scaled from
7] or given by an (unspecified) distribution.

6. Link delays are either fixed at δ = 20 ms,[9] or given by a
(unspecified) distribution.

7. Packets are all S = 5 kbit (625 byte) in size.
8. Inter-packet intervals are exponentially distributed (yielding

Poisson count behaviour).

Rather than G(n,M) we choose to use a random Watts-Strogatz
graph with k ≥ 4 so that we almost surely obtain a single
connected graph, with minimum router degree ≥ 2. The choice of
n and k determine the average diameter from the relations

 n = kd d = d ! 1
k !1

" d (2)

For n = 106, roughly the number of routers in the Internet,[2] and
k = 4 we obtain average diameter d = 10, which is not too far
from the observed d = 16.[3]
The choice of link bandwidth, delay, and packet size are
motivated by average values seen in the Internet. The quantity of
interest for benchmarking the simulator is the number of packet
receive events per LA time. Given a packet size S in bits, and link
bandwidth B, the time spent transmitting a packet is

 tTX =
S
B

 (3)

The utilization, u, is this time multiplied by the rate of packet
transmission, R. The LA time will be comparable to the link delay,
δ, and the number of events within the LA window is

 r = !R = ! u
tTX

= u!B
S

 (4)

This is the delay-bandwidth product divided by the packet size,
times the utilization. If r 1, then packets are regularly
transmitted on the link and NULL messages will never be needed.
If r < 1, then quiescent periods longer than the LA should occur.
By varying the utilization we can control which regime the model
tests. Typical values for the Internet are S ≈ 5 kbit; B ≈ 400 Mbps;
δ ≈ 20 ms, as referenced above. For u ≈ 10% this gives r ≈ 160
events per LA window.

The choice of exponential inter-packet intervals is arbitrary; a
Pareto distribution with mean given by Eq (3) would be
interesting.

For a model running for total simulated time T, we expect the
critical path to be of order TuBk/S, and available parallelism of n.

Partitioning random Watts-Strogatz graphs is straightforward,
with METIS, for example.[2] For large graphs (n > 103)
partitioning with 1% of the nodes per rank results in rank degree
~ n/10, i.e, ranks communicate with 10% of all other ranks.[1]
This partitioning avoids all-to-all communication. On the other
hand, the partitioning results in caterpillar graphs on each MPI
rank, with half the links pointing to other ranks. Therefore half of
all packets will be transmitted between ranks over MPI, providing
a good test of the parallel implementation.

6. EVALUATION
To be clear, we have not studies this benchmark model with the
current parallel implementation, never mind modifications. Our
next steps are to implement the model, and the critical path
algorithm, in order to identify which of the improvements
discussed will likely have the greatest impact, and should be
tackled first.

7. CONCLUSION
In this paper we have outlined possible development directions for
the parallel, distributed scheduler in ns3. To enable meaningful
performance measurements, we propose to augment ns3 with a
critical path algorithm. We also propose a benchmark model
inspired by the global Internet. This model is trivially scalable
with a high degree of available parallelism, and requires no
routing. The combination of critical path measurement and a
highly parallel benchmark model will enable disciplined
improvement of the parallel ns3 implementation.

8. REFERENCES
[1] Barnes, P. D., Jr. Partitioning Random Watts-Strogatz Graphs.
LLNL, Livermore, CA, 2011.
[2] CAIDA Internet topology at router- and AS-levels, and the
dual router+AS Internet topology generator. 2011.
[3] Fei, A., et al. Measurements on delay and hop-count of the
Internet. In Proceedings of the EEE GLOBECOM'98 - Internet
Mini-Conference (1998).
[4] ns3 Collaboration The ns-3 network simulator. Washington,
2011.
[5] Odlyzko, A. M. The Internet and other networks: utilization
rates and their implications. Information Economics and Policy,
12, 4 2000), 341-365.
[6] Pelkey, J. and Riley, G. F. Distributed simulation with MPI in
ns-3. In Proceedings of the Workshop on ns-3 (Barcelona, Spain,
March 25, 2011, 2011). ACM Digital Library.
[7] Riley, G. F. and Ammar, M. H. Simulating Large Networks –
How Big is Big Enough. Georgia Institute of Technology, Atlanta,
GA, 2002.
[8] Srinivasan, S. and Reynolds, P. F., Jr. On Critical Path
Analysis of Parallel Discrete Event Simulations. TR-93-29, 1993.
[9] Zhang, B., et al. Measurement-based analysis, modeling, and
synthesis of the internet delay space. IEEE/ACM Trans. Netw., 18,
1 2010), 229-242.

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

