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ABSTRACT

Papers should follow standard technical paper format, 
an  abs t r ac t  fo l lowed  by  the  more  de ta i l ed  
presentation.  The abstract should be typed on this 
area of the first page, with the presentation following 
after two lines of space.

INTRODUCTION

Geological formations in crystalline rocks with low 
initial permeability can be hydraulically stimulated to 
create enhanced (or engineered) geothermal 
reservoirs with enhanced permeability and thereby 
improved heat production efficiency. The conceptual 
model for hydraulic stimulation that is most 
commonly referred to depicts the following process. 
When fluid pressure exceeds the minimum principal 
stress in the rock formation, new hydraulic fractures 
initiate and propagate along the plane that is 
perpendicular to the minimum principal stress 
direction. These new hydraulic fractures will intersect 
existing natural fractures in the formation and form a 
interconnected fracture network, through which fluid 
in the production phase can flow from the injection 
well to production well(s) and bring heat from the hot 
rocks covered by this network. 

A concern over the process described in this 
conceptual model is that once a hydraulic fracture 
(termed primary fracture here) is opened, the 
conductivity within this fracture from the injection 
point to the fracture front is much higher than the 
neighboring fractures that are still closed. 
Meanwhile, the high fluid pressure in this open 
fracture creates a “stress shadow” around this 
fracture, which increases the rock matrix compressive 
stress experienced by closed fractures. The direct 
consequence of these two effects is that this open 
fracture will continue to grow at a relatively high 
rate, thereby further strengthening these effects, 
whereas the neighboring closed fracture may never 
be able to open and subsequently compete with the 
primary fracture. This is true regardless whether the 

primary fracture is a newly created hydraulic fracture 
or a existing fracture that happens to be oriented 
normal to the minimum principal stress. In this 
scenario, only one fracture (the primary fracture) can 
be stimulated. Even though it is possible to obtain 
high permeability between the injection well and the 
production well through this primary fracture, only a 
small volume in the reservoir around this fracture is 
stimulated, which is highly undesired for enhanced 
geothermal system (EGS) stimulation. It is possible 
t o  s t imu la t e  mu l t ip l e  f r ac tu re s  and  c rea t e  
interconnected fracture network using technologies 
such as horizontal drilling with staged fracking, but 
such technologies are expensive and more applicable 
to shale gas production than to EGS.

An alternative stimulation strategy is to stimulate the 
reservoir at a fluid pressure lower than the minimum 
principal stress in the rock matrix. No new fracture 
will be created and no fracture will be completely 
open. In this scenario, instead of stimulate a single 
fracture, the fracture network which must already be 
interconnected prior to the stimulation will be 
stimulated by “hydro-shearing” (Willis-Richards et 
al., 1996). This paper investigates the mechanisms of 
low pressure hydraulic stimulation using a fully 
coupled hydro-geomechanical numerical test bed 
developed at the Lawrence Livermore National 
Laboratory. The numerical algorithms in this 
numerical test bed, which originally focuses on high-
pressure hydraulic fracturing, have been described 
elsewhere (Fu et al., 2011). In this paper, we describe 
the modifications to the original algorithms that 
enable the simulation of low pressure stimulation in 
this paper, as well as various numerical examples on 
low pressure stimulation.

STRESS SHADOWING CONSIDERATION

First, we quantitatively evaluate the evolution of 
stress shadowing, namely the increase of rock matrix 
stress as fluid pressure in a fracture increases. 
Consider an infinite array of parallel fractures with 
infinite length as a highly idealized scenario that 
enables a closed-form solution to be obtained, as 



illustrated in Figure 1. The distance between any two 
neighboring fractures is H. Initially the fluid pressure 
in these fractures is PF=0 and the rock matrix stress 
normal to the fractures is σM0.  As the fractures are 
simultaneously pressurized with a fluid, they will 
begin to dilate and the rock matrix stress σM will 
increase accordingly. The effective normal stress 
along these fractures
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Figure 1: Two adjacent fractures in an infinite 
array of parallel fractures.

Note that σM is not a constant, but a function of σM0
and PF. Assume under the initial condition (effective 
normal stress being σMi) the mechanical aperture 
width is wi; at arbitrary effective joint stress σ'J the 
mechanical aperture width becomes w. We define the 
secant unloading joint stiffness to be
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The normal stiffness of a joint kn is conventionally 
defined using the zero-normal stress state as the 
reference state, whereas we use the zero-fluid 
pressure state as the reference. The compression 
experienced by the rock body between two 
neighboring fractures due to a matrix stress increase 
from σMi to σM should be the same as the joint dilation 
due to the corresponding effective stress change from 
σMi to σ'J, namely
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where E' is the confined stiffness of the rock matrix 
as
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with E and  being the Young’s modulus and 
Poisson’s ratio of the rock, respectively. We 
introduce a length scale

nn kEh /' (5)

so that the closure of the joint between the reference 
stress state and the current effective stress state is the 
same as the compression of a layer of virtual rock 
mass of thickness nk experiencing the same stress 
change.

By plugging equations (1) and (2) into equation (3), 
we can obtain the increment of rock matrix stress 
ΔσM=σM-σMi as









otherwise

)/1(if)/1/(

MiF

nMiFnF
M P

HhPhHP



 (6)

which indicates that the fracture will be completely 
open if the fluid pressure is higher than a threshold 
value of )/1( HhnMi  . When the fracture is still 
partially closed, the rock matrix stress increment is 
only a portion of the fluid pressure increment.  A 
survey of rock mechanics literature found that nh is 
generally within the range between tens to hundreds 
of millimeters for interlocked rocks compressed with 
a stress level typical of hydraulic stimulation 
applications. If the fracture spacing is in the range of 
a few meters to tens of meters, then the rock matrix 
stress increment is a relatively small percentage of 
the fluid pressure increment. Therefore, the stress 
shadowing effects for partially closed fractures can 
generally be ignored. We term this scenario “joint 
stiffness-dominated” regime for fracture flow.

On the other hand, however, as the fluid pressure 
exceeds the threshold value and the fractures are 
completely open, the opening of the fracture will not 
be governed by joint stiffness, but by the deformation 
in the rock matrix instead. Under this condition, the 
stress shadowing effects mentioned in the first 
section dictates that a primary fracture will emerge 
and suppress the pressure propagation in neighbor 
fractures.

COUPLING JOINT MODEL WITH FLOW 
SOLVER

In order to investigate fluid pressure propagation in 
the joint stiffness-dominated regime in an arbitrary 
fracture network, we use the numerical model for 
hydraulic fracturing developed at the Lawrence 
Livermore National Laboratory (LLNL). This fully 
coupled hydro-geomechanical  model  has  been 
described elsewhere (Fu et al., 2011) and will not be 
repeated here. However, the original model was 
formulated for the scenarios where the fractures are 
completely open. To simulate the cases with partially 
closed fractures, some modifications are necessary.
The weak stress shadowing effect allows us to 



directly incorporate joint closure models into the 
finite volume flow solver.

Fractures are discretized into interconnected flow 
cells in the flow solver. The permeability of each 
flow cell is a function of the hydraulic aperture width 
and the fluid storage volume of a cell is related to the 
mechanical aperture size. It is well known that the 
hydraulic aperture width is highly correlated with the 
mechanical aperture size as effective stress evolves, 
with the former generally smaller than the latter 
(references). However, their difference is ignored in 
this preliminary study. In each time step of solving 
the network flow, the fluid mass into and out of each 
flow cell is calculated and subsequently, the fluid 
mass in each cell is updated. Fluid pressure in each 
cell is calculated using the following equation-of-
state
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where Kf is the bulk modulus of the fluid; ρref is the 
reference density of this fluid, namely the density at 
zero or the datum pressure; Lc is the length (area in 
3D) of the fluid cell and w is the aperture width, so 
Lcw is the fluid storage volume of the cell; mc is the 
fluid mass in this cell; Pvap is the temperature-
dependent vapor pressure of this fluid which can be 
considered to be zero for the purpose of hydraulic 
stimulation modeling as the pumping pressure is 
many orders of magnitude higher than the vapor 
pressure. In the original model, the aperture width is 
calculated based on the deformation of the rock mass 
through a finite element solver. In the current study, 
instead we adopt the well known closure model by 
Bandis et al., which relates the aperture width w and 
joint effective normal stress as
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where wmax is the aperture width at the zero-effective 
stress state, which is essentially the maximum joint 
closure in the original joint model; a and b are two 
material-specific constant. We plug equations (7) and 
(8) into equation (1) and obtain
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which can be solved as
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where A=KFrefLC/mC and B=σM-KF+Awmax are two 
constants to simplify the expression of the equations.
With this equation, we can directly calculate the 
aperture width at each time step from the updated 
fluid mass and then obtain the fluid pressure using 
equation (7). The finite element solid solver is not 
required for joint stiffness-dominated fluid flow.

FLOW IN A SINGLE FRACTURE

We investigate fluid flow in a single fracture in this 
section. Because the strong coupling between fluid 
pressure, aperture volume, and aperture permeability, 
closed-form solutions cannot be derived. 

A 100 meter long straight fracture is considered and 
it is discretized into 1,000 flow cells with LC=0.1 m. 
In the initial condition where no fluid exists in the 
fracture, the normal stress along the fracture σn=10 
and we ignore the total normal stress change due to 
pressurization of the fracture. In this state, the 
aperture width wi=0.01 mm whereas wmax=0 
corresponding to the zero-effective stress state. The 
closing behavior of the fracture is anchored by these 
two states and we can back-calculate the two 
constants in the joint model as
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The dynamic viscosity, bulk modulus (KF), and 
reference density (ref) of the fluid are 0.001 Pas, 2.2 
GPa, and 1000 kg/m3, respectively. All the above 
parameters remain the same for all the numerical 
examples in this paper unless stated otherwise. 

In the baseline scenario, we start pumping fluid with
pressure PF0=10 MPa into the fracture at time t=0. 
This is also the highest fluid pressure allowed by the 
joint stiffness-dominated regime. The length of the 
fracture that is pressurized by fluid LF as a function 
of t is shown in Figure 2(a). A regression analysis 
finds that LF is linearly proportion to the square root 
of t, with the regression equation and a perfect R2

value shown in the figure. For an ideal case where the 
aperture width is a constant regardless of the fluid 
pressure, a closed-form solution exist between LF and 
t as
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which also indicates that LF is a linear function of the 
square root of t. In Figure 2(a), two scenarios with 
pressure-independent aperture widths 0.1 mm and 
0.01 mm are plotted. Since these two aperture widths 
are the upper and lower bounds of the aperture width 
in the baseline case, it is not surprising to see the 
propagation speed of the baseline case is somewhere 
between these two ideal cases.
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Figure 2: Numerical simulation results for the 

baseline single fracture. (a).

The flow rate q at the pumping end of the fracture 
decreases as the fluid front propagates, as shown in 
Figure 2(b). This phenomenon has an important 
implication for the stimulation of a fracture network 
instead of a single primary fracture. It indicates that 
as the stimulation progresses, it will be harder and 
harder to pump fluid into a single fracture. The flow 
tends to find alternative route, thereby stimulating 
other fractures in the network. On the other hand, if a 
open primary fracture has developed, the flow rate 
into this fracture increases as this fracture grows if 
the pump pressure remains constant. This single 
fracture will consume most of the flow volume and 
make the stimulation of other fractures more difficult.

Two more simulations for the same single fracture 
but with lower pumping pressures, 5 MPa and 2 MPa, 
were performed and the results are shown in Figure 
3. The effect of pumping pressure on the fluid front
propagation rate is very significant. For all the three 
pumping pressures, LF is always a linear function of 
the square root of time. We also implemented some 

other forms of the relationship between the effective 
normal stress and the aperture width in addition to the 
Bandis-Barton model, and found that this square root 
grow rate relationship is always valid.
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Figure 3: The effects of pumping pressure P0 on the 
growth rate of LF.

SELF-PROPPING THROUGH SHEAR 
DILATION 

It  is  believed that  a fracture network can be 
stimulated by the mechanism of shear dilation under 
the following conditions: 1) There exists significant 
shear stress long the fractures; and 2) the fluid 
pressure is high enough to induce shear slipping of 
the fractures as a result of the reduced effective 
stress. Predicting the amount of shear dilation is a 
challenging task, primarily due to the lack of 
experiment data that enable characterization of joint
behaviors along the complex stress paths associated 
with hydraulic stimulation and drawdown. The 
following simple phenomenological empirical model 
is used in this study to represent the most important 
shear dilation behaviors associated with low pressure 
stimulation.

We introduce a variable, termed the stimulation 
factor S to quantify the extent to which a fracture has 
been stimulated through shear dilation. The aperture 
width is a function of not only the compressive 
effective stress σ', but also this stimulation factor S.  
If we assume the effects of σ' and those of S can be 
decoupled, S becomes a multiplier of the original 
joint model as

)'(),'(  SwSww 
In the unstimulated state, S=S0=1.We denote the three 
parameters in the joint model in this state as wmax0, a0
and b0, and the evolution of these parameters with S
is as Sww maxmax 0 and Saa 0 while b is a constant 
as b=b0. We define the “excessive” shear stress along 
a fracture to be τ'=τ0-σ', where τ0 is the shear stress 
along the fracture in the initial state without hydraulic 
pressure and  is coefficient of friction of the 
fracture. The stimulation factor S is assumed to be 



related to the greatest excessive shear stress τ'max ever 
achieved by the fracture
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where Smax is the upper limit of S and S reaches Smax
at excessive shear stress τ's.  The above formulation 
dictates that an increase of the excessive shear stress 
can induce increase of S, but a decrease of τ' has no 
effect on S. In other words, the stimulation effects 
induced by the increase of fluid pressure will not be 
reversed when the pressure decreases after the 
stimulation. However, the aperture size is still a 
function of the effective stress as dictated by equation 
(8). The main effect of stimulation by shear dilation 
is to change the values of the constants in equation 
(8).

NUMERICAL EXAMPLE: STIMULATION OF 
A NATURAL FRACTURE NETWORK 

In this section, we exercise the numerical model on a 
virtual reservoir. As shown in Figure 4, the 
simulation domain is 320 m wide (x from -160 m to 
160 m) and 240 m tall (y from 0 to 240 m). There are 
two sets of joints (existing natural fractures) in this 
reservoir. The horizontal set has orientation angles 
with a uniform distribution between 10° and 30° 
where as the vertical set has orientation angles 
between 80° and 100°. Note that this 2D simulation 
domain should be considered as a plan view of the 
reservoir, so the term “vertical” actually refers to the 
direction within the image. All the fractures have 
lengths between 20 m and 60 m and the total length 
of fractures in the two sets are 8,300 m and 8,700 m 
respectively. The injection well is located near the 
middle point of the lower boundary of the domain as 
shown in Figure 4, so the simulation is on half of the 
reservoir. The location of the production well is
shown in Figure 4. The far field in situ stress applied 
is σxx=10 MPa, σyy=14 MPa, and σxy=0. Although no 
far field shear stress is applied, since the fractures 
usually do not align with the coordinate system, shear 
stress with varying shear stress dependent on the 
orientation angle exist along these fractures.  Joint 
model parameters used are shown in Table 1 and 
parameters for the fluid phase are the same as the 
numerical examples for single fractures..

Table 1: Model parameters used in this study.
Parameter Value
wmax0 0.2 mm
wi0 0.02 mm
t's 3 MPa
Smax 3.0
 0.7

Figure 4: The effects of pumping pressure P0 on the 
growth rate of LF.

The injection pressure at the injection well is 10 
MPa, the same as the minimal preincipal stress. The 
portions of the fracture network that is pressurized 
(with non-zero fluid fracture) at 20,000 seconds (5.6 
hours) and 100,000 seconds (28 hours) after the 
injection has started are shown in Figure 5.

Figure 5: Pressurized fracture network 20,000 and 
100,000 seconds after stimulation.

Injection well

Production well

20,000 seconds

100,000 seconds



We simulate four scenarios (A to D) that share the 
same stimulation process in the first 100,000 seconds 
as described above but with different operations after 
100,000 seconds. For cases A through C, we start 
pumping into the production well at 10 MPa fluid 
pressure from 100,000 seconds to 125,000 seconds.  
The objective is to stimulate the fractures near the 
production well. The difference between these three 
cases is the back pressure we use in the production 
case, being 0, 2 MPa, and 4 MPa for cases A, B, and 
C, respectively. A higher back pressure can increase 
the aperture width and permeability in the near-well 
region but on the other hand, it also decreases the 
pressure gradient from the injection well and the 
production well. In case D, we do not stimulate the 
region around the production well and we directly 
apply 4 MPa of back pressure at 100,000 seconds.

The flow rates at the two wells for case A are shown 
in Figure 6. Negative flow rate means flow from the 
well into the reservoir and positive value means flow 
from the reservoir to the well. Because this is a 2D 
model, the flow rate is for unit-thickness reservoir. 
From the beginning of the stimulation (t=0) to 
100,000 seconds, the absolute flow rate at the 
injection well continues to decreases, similar to what 
the single fracture model has shown. The fluid front 
reaches the production well at approximately 50,000 
seconds, and fluid starts to flow out from that well, 
which is an artifact of the zero-pressure boundary 
condition given at the well. Fluid flow into the 
production well between t=100,000 and t=125,000 
seconds  dur ing  the  s t imula t ion  th rough  the  
production well. Once we lower the pressure to the 
back pressure (0 for case A), fluid starts to flow back 
into the well. The flow rate in the beginning is high 
due to the high pressure that has built up during 
production well stimulation, and it soon reaches a 
relatively steady level when most of the fluid is 
supplied from the injection well. We terminate the 
simulation at 300,000 seconds because the fluid front 
has reaches the boundary of the simulation domain. 
At this moment, the injection rate is still slowly 
decreasing and the production rate is slowing 
increasing. The flow rate at t=300,000 seconds for all 
four scenarios are summarized in Table 2. 
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Figure 6: Flow rate at the two wells in scenario A.

Table 2: Absolute flow rate at t=300,000 seconds.
Scenario Injection  (L/s) Production (L/s)

A 0.0183 0.00991
B 0.0197 0.00913
C 0.0197 0.00779
D 0.0193 0.00720

The fluid recovery ratios (production flow rate 
divided by injection rate) for the four scenarios are 
54%, 46%, 40%, and 37%, respectively. The benefit 
of production well stimulation is apparent, but the 
back pressure seems to not only reduces flow rate but 
also decreases recovery rate. Adding more production 
wells should increase the recovery ratio, but this is to 
be studied in the future.

SUMMARY

In this study, we investigate the use of a numerical 
test bed to study the stimulation of existing fracture 
networks with relatively low hydraulic pressure. We 
found that in this regime, the coupling between the 
flow and the solid phase can be considered local and 
the numerical model can be greatly simplified. The 
results show that low pressure stimulation can indeed 
stimulate the entire network, instead of a primary 
fracture as in high pressure stimulation. This paper 
only documents our initial effort, and more realistic 
scenarios are to be studied.
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