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What Scientific Applications can Benefit from Hardware
Transactional Memory?

Early experience from a commercially available HTM system.

ABSTRACT

Achieving efficient and correct synchronization of multiple
threads is a difficult and error-prone task at small scale and,
as we march towards extreme scale computing, will be even
more challenging when the resulting application is supposed
to utilize millions of cores efficiently. Transactional Mem-
ory (TM) is a promising technique to ease the burden on
the programmer, but only recently has become available on
commercial hardware in the new Blue Gene/Q system and
hence the real benefit for realistic applications has not been
studied, yet.

This paper presents the first performance results of TM
embedded into OpenMP on a prototype system of BG/Q
and characterizes code properties that will likely lead to
benefits when augmented with TM primitives. We first,
study the influence of thread count, environment variables
and memory layout on TM performance and identify code
properties that will yield performance gains with TM. Sec-
ond, we evaluate the combination of OpenMP with multiple
synchronization primitives on top of MPI to determine suit-
able task to thread ratios per node. Finally, we condense
our findings into a set of best practices and apply them to
a Monte Carlo Benchmark, closely representing a real world
application, to optimize its performance. This optimized
TM version, executed with 64 threads on one node, yields a
speedup of 26.47 over baseline.
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1. INTRODUCTION

Achieving efficient and correct synchronization of multi-
ple threads is a difficult and error-prone task. In particu-
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lar, lock-based synchronization schemes often lead to high-
overheads, either due to lock contention, when using coarse
grain locks, or unnecessary lock overhead, when using fine
grain locks. This not only slows down the overall process
using the locks, but also has a global effect in large scale
programming due to the creation of skew between processes
as well as load imbalance, both major factors limiting the
scalability of applications.

Transactional Memory (TM) has been proposed almost
a decade ago to tackle this issue in shared memory sys-
tems [15]. TM simplifies synchronization by providing a
simple construct: the programmer wraps the critical in-
structions in a transaction (also called atomic block). These
transactions then are executed optimistically in parallel and
conflicting accesses are resolved by a TM run time system.
As a consequence only the effects of entire and completed
transactions are visible to concurrent threads avoiding the
visibility of intermediate memory states.

Except for a few, by now discontinued prototype imple-
mentations in research processors, TM has mainly been con-
fined to software solutions and therefore has been burdened
with significant runtime overheads severely restricting its
applicability in high performance computing. However, the
recently introduced Blue Gene/Q (BG/Q) system by IBM
for the first time provides Hardware Transactional Memory
(HTM) in a commercially available platform. BG/Q is de-
signed as a large scale platform designed for scientific com-
puting workloads. The first full machine will be installed at
Lawrence Livermore National Laboratory and will provide
more than 1.6 million compute cores with a total of over
6 million hardware threads, making application scalability
one of the premier challenges on this machine.

This paper presents the first performance evaluation of
the HTM capabilities on BG/Q from the application per-
spective. Not every lock-based application will be able to
benefit from HTM and it is important to understand what
code properties lead to efficient executions and, hence, which
codes can benefit from a port to HTM. In order to help
code developers with this task, we provide a precise evalua-
tion of the strengths and weaknesses of the architecture as
well as what is required to map applications to the archi-
tecture in an efficient way. In particular, we focus on the
the synchronization primitives for parallel programming in
shared memory architectures with OpenMP and provide de-
tail benchmark results. Our experiments take into account
the application’s characteristic (high or low contention), the
influence of environment variables, the effects of enlarging
transaction sizes, and hybrid parallelization with MPI. We



further apply our results to the optimization of a Monte
Carlo Benchmark (MCB) that is characteristic for several
large scale Monte Carlo simulations and show they can be
used to guide deployment of HTM capabilities.

This paper makes the following contributions:

1. We presents the first performance results of HTM com-
bined with OpenMP of the new BG/Q architecture.

2. We study the influence of thread count, environment
variables and memory layout on TM performance.

3. We evaluate MPI with OpenMP and multiple syn-
chronization primitives to determine a fitting task to
thread ratio for one node.

4. We identifies code properties that are likely to yield
performance gains with TM.

5. We condense the findings into best practices that are
applied to a realistic Monte Carlo Benchmark code and
optimize its performance by tuning the choice of syn-
chronization primitives.

For the latter, an optimized TM version, executed with
64 threads on one node, outperforms the original code and
a simple TM implementation and yields a speedup of 26.47
over the baseline.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on Transactional Memory in gen-
eral as well as related work. Section 3 describes our exper-
imental setup, the TM architecture of the BG/Q system,
and our benchmark used to determine overheads. Section 4
presents low-level measurements, followed by the lessons
learned in Section 5. Section 6 shows how we can use our
lessons to add transactions to a Monte Carlo code and to op-
timize it. Section 7 concludes and presents ideas for future
work.

2. BACKGROUND AND RELATED WORK

Transactional Memory has been proposed as architectural
support for lock-free data structures in shared memory sys-
tems [15]. The core idea is to replace pessimistic synchro-
nization, such as locks, with optimistic synchronization in
the form of transactions. Programmers can group updates
into transactions and these can be executed concurrently
with the rest of program. A runtime system (in hardware
or software) detects conflicts between transactions as well as
between a transaction and the rest of the program and, if
necessary aborts and rolls the effects of the transaction back.
As a consequence, the effects of any transaction are seen as
if the transaction occurred as one atomic block, providing
the necessary synchronization guarantees.

Many different TM designs have been proposed [14].
Software-based approaches [11, 10, 18, 21] (STM) use a Soft-
ware Transactional Memory library to implement algorithms
for the detection and resolution of conflicting memory ac-
cesses. Software is very flexible but also comes with inher-
ent overheads [4]. On the contrary Hardware Transactional
Memory systems are fast for transactions that fit into the re-
stricted hardware [20, 12, 16]. Further, hybrid approaches,
combining hardware and software to accelerate execution
and lift the limits of the hardware have been researched [22,
19, 8, 6].

The only paper that described an early experience with
a commercial hardware transactional memory implementa-
tion published in a major conference, to our knowledge, is
by Dice et al. [9]. The paper describes and evaluates the
hardware transactional memory feature of SUN’s Rock pro-
cessor [5], which is no longer available. The focus of their
paper is on the evaluation of concurrent data structures such
as Red Black trees and Hashtable, and the construction of a
minimum spanning forest [17]. The parallelization of these
codes uses threads only. Thus, no experiments are made
that estimate the performance of a hybrid parallelization
with MPL.

A description of a second commercial HTM implementa-
tion can be found in a paper by Dick [7]. The goal is to
accelerate the synchronized keyword in Java. Thus, no ex-
tensions to the language are made and explicit programming
with transactions is not possible. Instead a heuristic decides
whether to run a critical section as transaction or not.

Most STM papers use STAMP, a benchmark suite for
transactional memory research [3]. The codes comprise:
Bayesian network learning, gene sequencing, network in-
trusion detection, K-means clustering, maze routing, graph
kernels, a client/server travel reservation system, and delau-
nay mesh refinement. This covers many application areas in
which STM have been used, but do not represent codes from
the area of of high performance computing, for which HTM
is a promising approach to overcome synchronization over-
heads and to improve scaling of hybrid thread/MPI codes.
In this paper, we therefore focus on a new benchmark ex-
plicitly designed to cover this area and present result that
demonstrate how HTM can be deployed in HPC.

3. EXPERIMENTAL SETUP

For all following experiments we use an early prototype of
BG/Q installed at IBM. TM is available as HTM through
IBM’s XL C/C++/Fortran Compiler suite for BGQ, which
provides new language primitives that allow users to specify
transactions.

3.1 Overview of BG/Q’s TM Hardware

The BG/Q prototype we had access to contained 32 nodes
with 16 cores each. Each core can execute up to four hard-
ware threads. Transactional memory is implemented within
the L2 cache, which consists of 16 banks of 2 MB each lo-
cated across a full crossbar from the 16 multithreaded com-
pute cores. Each L2 cache has a cache line size of 128 Bytes.
Memory accesses that can lead to conflicts between trans-
actions, are tracked by the L2 cache, which is a point of
coherency. Conflict detection between different transactions
is completed in hardware, while conflict resolution is coor-
dinated through the TM software stack. Note that, in ad-
dition to TM, the L2 cache also implements an improved
set of atomic operations that also target faster and more
efficient thread synchronization. Comparisons in the re-
mainder of the paper between TM and atomic operations
therefore provide results between two novel and highly op-
timized schemes. More information on BG/Q’s hardware in
general can be found in a recent presentation by Haring at
Hot-Chips [13].



Name | Description

| Contention

None Threads do not conflict.
Adjacent
Random

Adjacent memory addresses are updated.
Randomly (but repeatable) seeming updates. | High contention.
FirstParts | Only the first parts are updated

No contention.
No to small contention.

Highest contention.

Table 1: Different contention levels in the CLOMP-TM benchmark.

Name Implementation Description

Bestcase — Bestcase without synchronization.

Serial Ref — Serial reference implementation.

Small TM #pragma tm_atomic Synchronizing each update with a transaction.

Small Atomic | #pragma omp atomic

Synchronizing each update with an atomic operation.

Small Critical | #pragma omp critical | Synchronizing each update with OpenMP’s critical section.

Large TM #pragma tm_atomic All scatter zone updates in one transaction.
Large Critical | #pragma omp critical | All scatter zone updates in one critical section.
Huge TM X #pragma tm_atomic X times Large TM in one transaction.

Table 2: Description of synchronization constructs used in CLOMP-TM.

3.2 Application Perspective in BG/Q’s TM Soft-

ware Stack

By default, the TM runtime defaults to a “lazy " (or op-
timistic) conflict detection scheme, at commit time, as the
runtime suppresses the hardware from sending conflict inter-
rupts to the conflicted threads. However, applications/users
can enable a 'pessimistic detection’ scheme by setting the
environment variable TM_ENABLE_INTERRUPT_ON_CONFLICT.
That is, conflict arbitration happens immediately at the
time of conflicts. Either scheme needs to be carefully chosen
as an already doomed thread, if allowed to run till the end,
may cause further spurious conflicts.

The TM runtime also relies on a lazy versioning (i.e.,
write-back) scheme as all speculative writes are buffered in
the multi-versioned cache, until commit time. Strong atom-
icity (i.e., opacity) is guaranteed unless a thread is running
in irrevocable mode. In such case, the thread runs non-
speculatively and all writes take affect immediately. The
TM_MAX_NUM_ROLLBACK environment variable controls when a
thread should enter into irrevocable mode. The irrevocable
mode is a mechanism that guarantees that a threads makes
progress. The contention manager favors an older thread to
commit based upon the timebase register value of the thread
at the time when speculation starts. Aborting a transaction
does not back-off for pre-determined time, rather, a thread
retries immediately. The runtime also implements flat nest-
ing whereby commits and rollback are to the outermost TM
region. As an additional feature, the runtime monitors the
TM behavior of the application and provides the resulting
TM statistics to the user. All TM statistics, presented in
this paper, are retrieved by this method.

3.3 The CLOMP-TM Benchmark

Since current TM benchmark suites do not provide the
necessary coverage for scientific applications, we focus on a
new benchmark specifically designed for this purpose,
CLOMP-TM!, which originates from the publicly available
CLOMP benchmark [2].

While the original CLOMP aims to quantify overheads

'For the experiments CLOMP-TM version 1.54 is used and
will be made publicly available at publication time of the
paper.

due to threading and the specific OpenMP implementation,
the CLOMP-TM aims at quantifying and comparing syn-
chronization overheads of multiple synchronization
constructs. CLOMP-TM can be configured to resemble the
synchronization characteristics of typical scientific applica-
tions used in HPC. Thus, performance results of CLOMP-
TM enable us to project the performance of these large scale
applications.

Major changes over CLOMP

Traditionally synchronization is achieved through mutual
exclusion. This is deemed a pessimistic synchronization
construct because conflicts between threads are prevented
through mutual exclusion. Now, Transactional Memory en-
ables optimistic synchronization. Transactions are executed
concurrently. The TM run time system monitors transac-
tional memory accesses to detect and resolve conflicts. In
case of a conflict one transaction is aborted and its changes
are rolled back. This changed behavior has an impact on the
application performance and demands to be studied thor-
oughly. Further, we compare the performance of TM with
OpenMP-based constructs with the same level of abstraction
in terms of programming.

For a meaningful comparison of optimistic and pessimistic
synchronization constructs, multiple memory access patterns
have to be considered. These memory access patterns deter-
mine the likelihood of a conflict between concurrent accesses
of two threads. A single parameter defines the zones that are
updated by a thread. The contention arises when multiple
threads update the same zones. These different contention
scenarios are shown in Table 1.

In comparison to the CLOMP benchmark, the updates of
a zone are enlarged. This new construct is called “scatter
zone” and enables larger critical sections, which resembles
the update of multiple variables (e.g., coordinates with mul-
tiple dimensions z, y, and z) in one critical section. For
the large versions of the synchronization constructs, scatter-
Count updates many zone in a single synchronized block.

Each iteration executes the selected computation pattern.
Available patterns with increasing complexity are: none, di-
vide, manydivide, and compler. CLOMP-TM is carefully
designed to eliminate as much noise as possible: I/0 is per-
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formed only outside of timing loops and all the loops are
run just before the timing loops to eliminate start up costs
and cold cache effects. Table 2 holds the synchronization
constructs to be compared.

4. CLOMP-TM RESULTS

Figure 1 shows an example with CLOMP-TM parameters
that we chose to examine the cases where TM outperforms
a highly efficient implementation of omp atomic. In this
configuration CLOMP-TM performs 8 divide operations per
zone update with a stride of 4. Threads do not contend
for memory locations. We increase the size of the scatter
zone so that an increasing amount of updates is carried out
in Large TM. Figure 1(a) illustrates that in the case of 32
threads performing 4 zone updates is the cross-over point for
Large TM over Small Atomic. For 64 threads the number
of zones is twice as high (see Figure 1(b)). Please note that
the large amount of computation per zone update masks the
overheads of synchronization.

For the CLOMP-TM cases presented in this paper, syn-
chronization overheads can dramatically affect speedup. We
vary the parameters of CLOMP-TM to learn how the param-
eters affect the speedup and to find out what code properties
qualify for TM. These results will help application develop-
ers to tune their codes (e.g., through picking a better suited
synchronization primitive), but the achievable speedup is
determined by the properties of the application (e.g., ratio
of computation and synchronization, contention for memory
locations).

4.1 Synchronization Overhead

We obtain the results in this section by using the param-
eters shown in Table 3. Memory is allocated by the main
thread. This is sufficient because memory access are uni-
form in BG/Q. The setting of zonesPerPart equal to 100
stems from the original CLOMP and mimics the loop sizes
of many multiphysics applications [2]. The chosen compu-
tation pattern is divide. For each zone update 8 extra di-
vide calculations are executed. The environment variable
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CLOMP-TM performing 8 divide operations with a stride of 4 per zone update with
excellent speedups of Large TM over Small Atomic.
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Figure 4: CLOMP-TM performing 8 divide oper-
ations per zone update with huge critical sections.
Speedup shown with None.

OMP_WAIT_POLICY has been set to ACTIVE for all runs.

Figure 2 shows the speedup of the different synchroniza-
tion mechanisms for updating one memory location. Due
to the high contention generated by the Random and first-
Parts memory access pattern, Small Atomic is the method
of choice for synchronization.

Large TM outperforms Large Critical as can be seen for
both no and high contention cases of Figure 3. Thus, for
critical sections with more than one memory update, TM
is the preferred method. The Huge TM with 100 times the
size of Large TM performs excellent in case of no contention
(cf. Figure 4). Further experiments with higher contention
cases reveal that this speedup is very fragile. These exper-
iments demonstrate (and the TM statistics confirm) that
longer transactions are more susceptible to contention.
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Figure 2: CLOMP-TM performing 8 divide operations per zone update with small critical sections.

numParts | 64
zonesPerPart | 100
zoneSize | 128
zone alignment | 128
scatter | 3
flopScale | 1
timeScale | 100
Zones per Part | 100
Total Zones | 6400
Zone Calc Stride | 1
Extra Zone Calcs | 8
Zone Calc Flag | -DDIVIDE_CALC
Zone Calc Formula | ((1.0/(x+2.0))-0.5)

Table 3: Parameters for CLOMP-TM.

4.2 How may the memory layout affect speedup

and rollbacks?

For the following experiments CLOMP-TM has been ex-
tended with a special mode that allows to transition be-
tween scatter modes. Thus, a parameter has been added
that defines the number of intended conflicts for this run.
For our experiments this parameter can be computed from a
conflict probability (cp) according to the following equation:
total zones * scatter * cp. Updates are counted as intended
conflicts and performed inside a large transaction. Note,
however, not all of these intended conflicts lead to an actual
conflict and some conflicts can cause multiple rollbacks.

Figure 5 illustrates the impact of the number of retries on
the achievable speedup. From this figure we can clearly see
that a linear increase of the conflict probability leads to an
exponential decrease of the speedup. In this experiment the
zone size is set to 128 bytes. In case it is smaller (e.g., 64 or
32 bytes) conflicts may be falsely detected because two zones
are mapped to the same cache line. These Fualse Positives
are eliminated when the zone size equals the size of the L2
cache line.

Intended conflicts Serialized
Retries Speedup

CLOMP-TM with 64 threads, RBM 10 and zone size 128 bytes

12000

10000

8000 10

6000

o
Speedup over serial

4000

Number of rollbacks per loop iteration

2000

0 0
0 5 10 15 20 25 30 35 40 45 50

Conflict Probability (in %)

Figure 5: CLOMP-TM experiment with a
zone size of 128 bytes and 64 threads. Run
with clomp-tm-bgq-dividel -1 1 x1 d6144 128
firstZone,cp,randFirstZone 3 1 0 6 100.

4.3 Performance Tuning through Environment
Variables

This section studies the effect setting the environment
variable TM_MAX_NUM_ROLLBACK (RBM) on the performance
of CLOMP-TM. Figure 6 shows results with 32 threads and
RBM set to 1 and 10. RBM controls the number of roll-
backs before the TM run time will execute it in irrevocable
mode. Then this transaction is executed non-transactional
under a global lock so that other transactions can not inter-
fere. In Figure 6(a) RBM is set to 10 and shows a signif-
icant higher number of retries than Figure 6(b) (RBM 1).
The relative number of serialized transactions is higher for
RBM=1. Both observations are due to the RBM setting
because a smaller RBM value serializes after less retries. In
terms of speedup RBM 10 outperforms RBM 1 because of
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Figure 3: CLOMP-TM performing 8 divide operations per zone update with large critical sections.

Small TM RBM 1
Small TM RBM 5
Small TM RBM 10
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Figure T7: Studying the influence of setting
TM_MAX_NUM_ROLLBACK with CLOMP-TM and changing
the level of contention. Run with clomp-tm-bgq-
divide4 32 1 256 128 256 stridel,cp,stridel’/2 10 1
0 6 100.

the less frequent serialization. This explanation can not be
generalized and needs closer investigation.

Figure 7 demonstrates the influence of RBM1, RBM5 and
RBM10 on the achievable speedup with TM. For a small con-
tention level and Small TM, RBM 5 shows a slightly better
speedup than RBM 10. For higher contention and Large TM
RBM 5 outperforms RBM 10 substantially. RBM 1 shows
the worst performance for the presented level of contention.
Setting RBM to 10 performs well in our experiments, but,
depending on contention and size of a transaction, the per-
formance of an application may increase by reducing RBM
to 5.

44 CLOMP-TM with mixed Scatter Modes
The initial CLOMP-TM design supports only one scatter
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Figure 8: Influence of the scrub rate for Speclds on
performance with 64 threads. Run with clomp-tm-
bgq-dividel -1 1 64 100 128 InPart,10,firstParts
10 1 0 sr 100

mode at a time (cf. Table 1). This leads to a fixed TM appli-
cation behavior that defines the contention between threads
for the whole program run. As a result, TM either performs
excellent because of the lack of conflicts (e.g., scatter mode
None) or suffers from the frequent retries (e.g., firstParts).
We found this too restricted to model all scientific workloads
and bring out the strong sides of TM. Thus, we implemented
an alternating scatter mode that uses a parameter to define
how often the second scatter mode will be used for updates.
Increasing this parameter leads to more updates with the
second scatter mode. An important parameter for TM is the
scrub rate. It triggers a garbage collection for TM Speclds.
Speclds mark entries in the cache as belonging to the same
or different transactions. Figure 8 shows that varying the
scrub rate has a large impact. For our benchmark with a lot
of transactions and short intervals between these, a scrub
rate of 6 shows the best performance.
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x1 d6144 128 firstZone,cp,randFirstZone 3 1 0 6 100.

4.5 CLOMP-TM with MPI

Results with CLOMP-TM presented earlier in this paper
focused on parallelization with OpenMP only. Given the
size of the planned BG/Q system, scientific applications will
require parallelization with MPI in order to exploit its com-
pute power. This very same MPI parallelization can also be
used to run multiple MPI tasks on one node. In the follow-
ing we study the side effects of running multiple MPI tasks,
each executing CLOMP-TM, on one node. Our goals are:

1. to verify the robustness of the previously presented
results,

2. identify bottlenecks due to the sharing of architectural
resources,

3. and determine a fitting MPI task to OpenMP thread
ratio.

Similar to the previously published CLOMPI [2], we en-
hanced CLOMP-TM with MPI calls. Besides calls to init
and finalize MPI, we inserted MPI Barriers. These barriers
are placed such that all MPI tasks execute the code for the
same synchronization primitive. An example for the place-
ment of the MPI Barriers is shown in Listing 1. To execute
in this lock step fashion guarantees that all MPI tasks exe-
cute the code for the same synchronization primitive. As a
consequence, the contention for architectural resources that
are necessary for synchronization (such as the L2 cache) is
increased artificially. Thus, the methodology stresses the ar-
chitectural resources needed by that synchronization primi-
tive and will uncover bottlenecks in the implementation.

MPI_Barrier (MPI_COMM_WORLD );
get_timestamp (&bestcase_start_ts);
do_bestcase_version ();
get_timestamp (&bestcase_end_ts);
MPI_Barrier (MPI_COMM_WORLD );

Listing 1: Use of MPI barriers for CLOMP-TM
with MPI.

Figure 9 illustrates the performance characteristics of
CLOMP-TM with MPI and small as well as large critical
sections. The experiments are carried out as strong scaling
experiments, i.e., the amount of work is constant for all task
counts. We achieve this by dividing the number of parts
(initially 1024) by the number of MPI tasks. The number
of updates in the second scatter mode is also divided by
the number of MPI tasks. All MPI tasks execute as many
threads as possible without oversubscribing the node (e.g.,
1 MPT task executes 64 threads).

First, Figure 9(a) shows the average speedup of the threads
in each MPI task multiplied by the number of MPI tasks on
the y-axis. The number of MPI tasks is plotted on the x-
axis. In this case with extremely low contention, Large TM
performs almost as well as Small Atomic. The surprise is
that for large task counts, Small and Large Critical perform
better than Small TM. Especially Small Critical, that is pro-
tecting one memory location, has been optimized heavily in
the new BG/Q L2 cache and is now a strong contender for
TM. This first impression is confirmed by Figure 9(b) where
Small Critical outperforms Small and Large TM in a case
with high contention. Large T'M is still outperforming Large
Critical, especially on small task counts. Large Critical ben-
efits from the smaller thread numbers at higher task counts
because the cost for serialization is reduced.

Finding a competitive task to thread ratio.

Looking at the peak performance of one BG/Q node,
we see that there are 16 cores each equipped with 4-way
hyper-threading. Thus, the theoretical peak performance
in terms of speedup is 64. As demonstrated in earlier pa-
pers [2], an OpenMP barrier has a higher overhead for higher
thread counts. Thus, a hybrid parallelization with MPI
and OpenMP may achieve a higher score than the current
OpenMP only implementation. In order to be able to com-
pare results of OpenMP and hybrid parallelization, we use a
simple metric. For the hybrid case, we multiply the reported
OpenMP speedup with the number of MPI tasks. Figure 9
shows that the Bestcase across MPI tasks is stable. Depend-
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Figure 9: CLOMP-TM with MPI performing 8 divide operations with a stride of 4 per zone update with no
and high contention. Run with clomp-tm-mpi-bgq-divide4 -1 1 (1024/taskno) 128 256 stridel,cp,stridel%/2 10
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ing on the properties of the application the best synchro-
nization primitive varies. Across all tested memory access
patterns and MPI tasks configurations, the OpenMP version
with the highest possible thread count performs best. This is
an important first insight that we gain from this experiment.
For architectures with hyper-threading, the additional HW
threads are often turned off because they lead to a slow-
down. For the BG/Q architecture running the CLOMP-TM
(with MPI) benchmark this is not the case. Every thread
contributes an important part of the reported performance.
For the executed strong scaling experiments the results of
finding a preferable task to thread ration are inconclusive.
All tested ratio perform well and differences are extremely
small.

The synchronization primitive with the best performance
varies. In all high contention cases Small Atomic performs
best. For cases with little to no contention Large TM may
perform almost as good as Small Atomic. The large trans-
actions benefit from the optimistic concurrency. The over-
head for setting up the transaction amortizes due to the long
transaction size. Unfortunately, this effect is limited to sce-
narios where expensive roll back operations are infrequent.

S. LESSONS LEARNED

The findings from the previous section are summarized
(by listing desired code properties for TM) and condensed
into best practices afterwards. The identified preferable code
properties for TM are:

e critical section should have low contention so that con-
flicts are unlikely,

e critical sections should access more than one memory
location (preferably in the range of 10 to 20) so that
omp atomic is not applicable and TM’s property of
providing atomicity for updates of multiple memory
locations is valuable,

e high computation to synchronization ratio so that com-
putation can mask the overheads of synchronization.

for the figure on the right.

For synchronization with OpenMP, both the size of the
code region that needs to be executed atomically and the
potential conflict rate play an important role:

e For code regions that only require atomic updates us-
ing one instruction, omp atomic shows the best perfor-
mance, since it can be mapped to the efficient atomic
instructions implemented in the BG/Q L2 cache.

e For larger critical sections with low to moderate con-
tention and conflict potential (<< 1 rollback per trans-
action), TM using the ¢m_atomic primitive is bene-
ficial, since any transaction conflict is amortized by
avoiding serialization.

e In case of very high contention (> 1 rollback per trans-
action) and small critical sections, omp critical also
outperforms TM, since the TM conflicts start domi-
nating leading to higher overhead.

e For large critical sections and high contention (= 1 roll-
back per transaction) setting TM_MAX_NUM_ROLLBACK to
5 yields better results because the retrying transac-
tions are serialized earlier, wasting less work.

e For applications that are not utilizing the full memory
bandwidth with a high transactional execution time
and short times in between transactions, setting the
scrub rate to 6 yields better performance.

These findings complement a previous study on using Soft-
ware Transactional Memory for scientific codes using a dif-
ferent and more specific setup [1]. Additionally, researchers
already identified codes that match the criteria from above
and are expected to benefit from TM [23], although also this
work was limited to STM methods and has up to now not
been verified on a HTM system, and thus no performance
results have been published either. Our current recommen-
dations verify the applicability of these previous preliminary
studies to HTM, extend them by adding tradeoffs offered by
the new performance knobs found in IBM’s HTM solution,



and generalize them to a more comprehensive guide for ap-
plication developers.

6. TRANSACTIFYING AND OPTIMIZING
MCB

In this section we apply the best practices from the previ-
ous section to a benchmark closely representing a real world
application. The Monte Carlo Benchmark (MCB) models a
Monte Carlo simulation. Characteristic for the Monte Carlo
simulation is that an exact result is not computed directly.
Instead the simulation has a probabilistic parameter and
simulations are repeated until the probability of a result can
be quantified. This technique is called random sampling.
These Monte Carlo simulations are very popular in the con-
text of physics simulations.

MCB is already parallelized with MPI and OpenMP. The
original version uses omp critical and omp atomic to syn-
chronize OpenMP threads. It is called Critical & Atomic in
the following. As a first simple TM implementation, referred
to as T'M simple, all critical sections are replaced with trans-
actions. Environment variables are set to the default for TM
simple and Critical €& Atomic. We apply the lessons learned
from the previous Section 5 and construct a transactional
version, called TM opt.

In TM opt synchronization that involves only one instruc-
tion uses omp atomic. Further, all omp critical constructs
are replaced with tm_atomic. A profiling run with TM statis-
tics reveals that the remaining transactions are rolling back
frequently. Thus, we set TM_MAX_NUM_ROLLBACK to 5 for TM
opt to speedup serialization. This reduces the amount of
wasted work and has been shown to yield speedups in Sec-
tion 4.3.

Table 6 holds the results of the experiments with one MPI
task and 64 threads in a strong scaling experiment with
5 % 10° particles. Each value is an average of tracks per
second over 30 runs and normalized to baseline: tracks per
second with one MPI task and one thread. T'M opt performs
very well with a speedup over baseline with 26.47. The re-
sult of TM simple demonstrates that the lessons learned in
this paper are viable for programming with TM. Further
experiments reveal a limited potential for optimizing the
synchronization of threads in MCB. Commenting out all oc-
curences of omp atomic and omp critical (and getting the
wrong answer for the simulation) yields ~ 5% perfomance
improvement. This finding makes the achieved score of TM
opt even more precious.

Code version | Critical & Atomic | TM simple | TM opt
Speedup | 25.80 | 21.50 | 26.47

Table 4: MCB with one MPI tasks and 64 threads
(strongScaling) — speedup over baseline.

7. CONCLUSIONS

In this paper we evaluated BG/Q’s TM hardware from
the perspective of an application developer. We introduced,
CLOMP-TM, a benchmark designed to represent scientific
applications, and applied it to benchmark transactions against
traditional synchronization primitives, such as omp atomic
and omp critical. We then extended CLOMP-TM with MPI

to mimic hybrid parallelization with OpenMP and MPI. Ad-
ditionally, we studied the impact of environment variables
on the performance. Finally, we condensed the findings into
a set of best practices and applied them to a Monte Carlo
Benchmark that closely resembles real world applications.
An optimized TM version of MCB with 64 threads achieved
a speedup of 26.47 over the baseline.
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