
LLNL-CONF-525411

Interactive Visualizations for Performance
Analysis of Heterogeneous Computing
Clusters

A. Landge, J. Levine, P. Bremer, M. Schulz, T.
Gamblin, A. Bhatele, K. Isaacs, V. Pascucci

January 30, 2012

GPU Technology Conference
San Jose, CA, United States
May 14, 2012 through May 17, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1

Interactive Visualizations for Performance
Analysis of Heterogeneous Computing Clusters

Aaditya Landge1, Joshua A. Levine1, Peer-Timo Bremer2, Martin Schulz2, Todd Gamblin2, Abhinav
Bhatele2, Katherine Isaacs3, and Valerio Pascucci1

1Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah,
{aaditya, jlevine, pascucci@sci.utah.edu}

2Lawrence Livemore National Laboratory, Livermore, CA,
{ptbremer, schulzm, tgamblin, bhatele@llnl.gov}

3University of California, Davis, Davis, CA,
{keisaacs@ucdavis.edu}

Abstract—Performance analysis is a vital step in iden-
tifying execution bottlenecks to help target optimizations.
This analysis is derived from observations of performance
data collected from the computing hardware. Data ob-
tained from computing clusters is necessarily complicated
because its collection involves multiple interacting nodes,
potentially with several cores each, as opposed to just
a single serial execution. Further, heterogeneous clusters,
often in the form of nodes combining one or more CPUs
working together with several GPUs, are becoming more
commonplace and thus the computation involves additional
layers of complexity. These characteristics pose a serious
challenge to the analysis and improvement of application
performance. We present a tool that assists performance
analysis by visualizing performance data with the help of
various linked views. In the following report, we present
the description of these various views and the highlight the
advantages of their use with the help of a case study.

I. INTRODUCTION

Supercomputers and clusters are used for executing
immensely compute intensive applications. These ap-
plications exploit the parallel processing capabilities of
these resources to decrease application runtime. But
making fullest use of the hardware remains a difficult
task for such application developers due to the complex
nature of these parallel programs. In most of the cases,
this results in programs that underutilize the systems
and do not take advantage of the full potential of these
clusters or supercomputers. In order to improve the
efficiency of these programs one has to understand the
performance behavior of the application. Traditionally,
profilers have been used to collect performance data
of applications. Analysis of this data is then done to
understand the code behavior and identify performance
bottlenecks.

For a single node system, this data is the hardware
performance counters collected from the CPU. In the

case of a heterogeneous system, a CPU is working along
with one or several GPUs. Performance data must also
collected from the GPUs along with that of the CPUs.
Since the CPUs and GPUs are interacting with each other
during the lifetime of the application, understanding this
data can become complicated even at this small scale.

In the case of heterogeneous computing clusters, per-
formance data is collected from the CPUs and GPUs of
every node present in the cluster. Since all the nodes in
the cluster interact with each other and work together
during the execution of the application, the analysis of
this data is confounded by multiple levels of interaction.
Compared with the single node case, a supercomputer
can have hundreds of thousands of nodes. Thus, the
data collection and analysis must be tuned to handle the
massive volumes of data as well.

To cope with these challenges, various profiling tools
have been developed. Conventional profilers collect var-
ious hardware performance counters from the hardware.
These counters are then consolidated on the basis of
function calls and presented to the user in the form
of tables or charts. But this type of data representation
may be unintuitive when one is dealing with systems
at the exascale. As a result, there is a severe need for
specialized tools that can assist performance analysis
by analyzing and visualizing this data in much more
intuitive ways.

Schulz et al. have identified three domains of perfor-
mance data most familiar to the user: (i) the application
domain, (ii) the hardware domain, and (iii) the communi-
cation domain [1]. The philosophy states that taking data
from each of these domains and projecting, visualizing,
and correlating it to the other domains can give valuable
insights into the behavior of parallel application codes.
Following is a short summary of the way they describe
these domains:



2

The application domain is the output of the appli-
cation and is ideally the most easily understood by the
application developer. Often the application output can
be represented by some mesh, matrix, or graph. Perfor-
mance data can then be mapped to this representation.
Doing so, one can correlate some phenomenon occurring
in the output of the application to the performance data
which may provide insights or highlight problems in
some sections of the application code.

The hardware domain is spatial representation of the
physical hardware of the computing system in terms of
its nodes or computing cores. Performance data can then
be shown in the context of the entire system and patterns
in hardware behavior could be easily understood. Map-
ping the application data to the hardware domain can
help in understanding how parts of the application get
attributed to certain nodes or computing cores.

The communication domain consists of a general
graph that can represent the communication that occurs
between the various MPI processes during the execution
of the application. Understanding the communication
patterns with respect to the hardware and application
domain can lead to the identification of performance
bottlenecks caused by communication between the nodes
or MPI processes.

In the present project, we attack the challenges men-
tioned in the earlier section faced in performance anal-
ysis of clusters and supercomputers by developing a
tool that provides various visualizations of performance
data collected from clusters and supercomputers. The
tool visualizes the performance data in (i) multiple
domains, (ii) multiple granularities and, (iii) provides
visualization for combined CPU-GPU performance data
for heterogeneous clusters. These visualizations are in-
teractive in nature and are linked together which helps
understand the performance behavior of heterogeneous
parallel applications in an intuitive manner.

We take inspiration from the domains described by
Schulz et al. and provide visualizations for the ap-
plication and hardware domains. Standalone views for
each of these domains provides good insights about
the respective domains, but they may lack in showing
the correlations and mapping between these domains.
As presented in [1], drawing correlations between the
domains is a much more intuitive way of understanding
performance data. In this regard, we bring about these
correlations by linking the visualizations together and
making each of them interactive. By linking these views,
one can see the corresponding data in the other views
when a particular selection is made in any one of the
views.

Inspired by the ”focus plus context” philosophy, which
is often used in information visualization [3], these views

help to visualize the data at various granularities in
the appropriate context. For example, one can view the
performance data at the cluster level and understand the
behavior of nodes with respect to each other; or one can
compare the performance of a GPU on one node to a
GPU of some other node without losing the context of
the entire cluster.

By providing a combined visualization of the CPU
and GPUs, one can get a good understanding of the
behavior of the application in this heterogeneous envi-
ronment. Such combined analysis is beneficial as one can
understand the behavior of CPU and GPUs with respect
to each other and armed with this knowledge redesign
code to make best use of both the processing units.

The contributions of the project are summarized as
follows:

• We extend the idea of multiple data domains [1]
and introduce visualizations for the complex perfor-
mance data in the application and hardware domain;

• Correlations between the hardware and application
domain are shown by coupling the visualizations of
these two domains through interactions;

• Based on the above two, we focus on presenting
visualizations for the analysis of the complex be-
havior of heterogeneous computing clusters; and

• We highlight the various insights that can be ob-
tained by the usage of such interactive linked visu-
alizations and how it assists performance analysis
with the help of a case study.

II. INTERACTIVE LINKED VISUALIZATIONS

As performance data can be visualized in the appli-
cation and hardware domain, we have developed views
that represent each of these domains. The application
domain is visualized using the Application view. The
hardware domain is considered at multiple granularities
which we represented using the cluster level and node
level views. Performance data is then mapped on these
domains and visualized in these interactive linked views.
As the views are linked to each other, data from one view
can be easily correlated to data visualized in other views.
This enables viewing the same data in the context of the
application domain and the hardware domain. Viewing
the data in these multiple contexts simultaneously gives
a good intuition about the behavior of the application,
which standalone views would fail to provide.

Since each of these views is interactive, they allow
the user to have multiple channels of interaction with the
performance data. The user has the freedom to interact
with the data in the application or hardware domain or at
the granularity of the cluster level or at the node level or
at the CPU or GPU level. In switching between these
granularities the user never loses track of the global
context of the computing cluster since views showing the



3

Fig. 1. Interactive Linked Views: The various views presented by the system. The Application View represents the application domain. The
Cluster Level View represents the spatial representation of the hardware domain. The Data Plot View consists of conventional statistical plot
views. The Node Level View shows the internals of a heterogeneous compute node present in the cluster. The arrows show the various linkages
between these views.

data at different granularities are always linked together
and visible to the user all the time.

For heterogeneous systems, we present a view that
enables visualizing the CPU and GPU performance data
together. This type of view helps optimize the perfor-
mance of the applications taking advantage of both the
CPUs and GPUs. It also helps compare GPUs from the
same node as well as from other nodes. This view is also
linked with the other views and domains. This linking
enables the user to understand and relate parts of the
application to specific GPU/s in the nodes of the cluster.

All these features combine to form a powerful tool
for visualization of performance data of heterogeneous
computing clusters that can give valuable insights about
the parallel code behavior in an intuitive way. We shall
now describe each of the views provided by the tool in
detail.

a) Application View: This view represents the ap-
plication domain. The application output is decomposed
as a suitable mesh, graph, or matrix. Performance data
can then be mapped onto this decomposition to gain
valuable insight. As the application developers are most
familiar with this representation, it becomes simple to
relate the performance characteristics to the application
output. Also, it may expose any application data specific
performance issues in the application. For instance, a
particular node may take some more time to perform
computations which can be attributed to some character-
istic of the data it is processing.

b) Cluster View: The hardware domain is spatially
represented in this view. The computing system is shown
as a grid of cubes, where each cube represents a com-
puting node or computing core. Various performance
metrics from the CPU or from the GPUs are aggregated

for each node and shown on this grid. Visualizing data
in this fashion helps in identifying patterns in behavior
of nodes with respect to that performance metric. For
example, nodes can be colored based on total compute
time of CPU or GPUs which enables easy identification
of time consuming nodes, also the spatial representation
gives an idea about the performance of neighboring
nodes which can help in better understanding about the
application behavior.

Application data can also be mapped to this domain
to provide insights into how the application decomposes
the problem domain on to the physical hardware. For ex-
ample, one can easily represent the size, shape, or other
characteristics about the chunk of input data processed
by each node to get an idea about the load balancing.

c) Data Plot View: This view is a conventional
statistical view incorporating plots like scatter plots and
histograms where the user can control the plotting axes.
Performance metrics can be plotted against each other
for comparisons and gaining insights. Also, various ap-
plication specific data can be plotted against performance
data. For example, number of cells processed per node
vs. MPI rank.

The Cluster view and Application view both highlight
qualitative aspects of the data, while the Data Plot view
can show complimentary quantitative behavior. Also, this
view gives the user the freedom to compare data entities
from any of the domains.

d) Node Level View: This view represents the in-
ternals of the heterogeneous computing node enabling
visualizing the performance data at finer granularity. The
CPUs and the GPUs within a node are shown and a
combined visualization of their performance metrics can
be made. As each CPU and GPU is visualized separately,



4

a comparison between individual GPUs and CPUs is also
possible. Performance of the data transfer buses between
the CPUs and GPUs can also be visualized. In general,
an understanding of the heterogeneous system can be
made which can help in making optimum use of both
CPUs and GPUs.

This view also allows comparing multiple nodes at
a finer level. For example, one can compare a CPU or
GPU from one node with a CPU or GPU of another
node. This can be done by opening multiple node level
views corresponding to different nodes.

Interactions: All the aforementioned views and the
linkages amongst them are shown in Figure 1. An
example of the interaction can be seen in Figure 3.
The application view in this figure, shows the way in
which the input image is partitioned and processed by the
various nodes in the cluster. The rainbow color coding is
used to represent the time taken by each node to compute
the part of the image assigned to it; going from red that
took the maximum time to blue that took the least time.
The user has clicked on the partition of the image that
has taken the maximum time in the Application View,
the corresponding node in the Cluster view has been
highlighted by a larger red cube. At the same time, the
data point pertaining to the MPI rank of that node has
been highlighted in red in the Data Plot View. Right-
clicking the highlighted red cude in the Cluster View
opens up the Node Level View for that particular node
to show the performance statistics of the CPUs and GPUs
present in that node.

Such type of interactions are possible amongst all the
views. For example, a click in the Cluster View will
highlight corresponding areas in the Application and
Data Plot views. This enables the user to attack the
problem of perform analysis from both - the application
domain as well as the hardware domain and understand
the correlations between these two domains, giving better
insights into the application behavior.

III. CASE STUDY

Application Description: We try to understand the
behavior of a Hybrid CPU-GPU Solver for Gradient
Domain Processing of Massive Images [2]. This applica-
tion basically takes a number of images and seamlessly
stitches it into a gigapixel panoramic image. This par-
ticular process is done using MPI and CUDA.

The algorithm decomposes the input images into
1024×1024 pixel sized tiles that are distributed across all
MPI processes. The number of MPI processes is decided
on the available nodes of the computing cluster. Each
MPI process then processes some tiles on a CPU or
on the GPUs depending on available resources on the
particular node.

This application was executed on an HP cluster lo-
cated at the Scientific Computing and Imaging Institute,
University of Utah. Fifty nodes of the cluster were used
for the experiments. Each node consists of a Intel Xeon
X5550 2.6Ghz Processor having 8 cores and 2 NVIDIA
Tesla T10 GPUs. The cluster uses an Infiniband network
for communication between the nodes.

Fig. 2. Above: Input to the application consisting of photographs
that are used to construct the panorama. Below: The 3.27 gigapixel
panorama generated as the output by the application.

The dataset used for the application runs is a
126,826×29,633, 3.27 gigapixel panorama decomposed
into 124×29 spatial tiles. The application takes about
5430 seconds to generate the output for this input set on
the specified cluster.

Data Collection: The performance data was collected
by direct instrumentation of the source code of the
application. Code was inserted at various parts of the
application to collect the desired data. Data was collected
specifically for each tile that was processed by the ap-
plication. Collecting the data on a per tile basis allowed
us to represent the performance data in the application
domain as opposed to at a per-function call granularity.
The CPU performance metrics were collected using
PAPI and the GPU performance metrics were collected
using CUPTI provided in the NVIDIA CUDA Tools
SDK.

The application domain for this case study was
chosen as a 2D rectilinear grid to represent the output
of the application which is a panoramic image in this
case. Each cell in this grid represented a spatial image
tile of the panorama image which was processed by the
assigned MPI process on a CPU or on a GPU.

The hardware domain was chosen as 10×5 grid of
cubes to represent the 50 node cluster. Each of the cubes
in this grid represented a node of the cluster consisting
of the CPU and the two GPUs.

Experiment 1: In this experiment seen in Figure 3, we
map the total time taken by each node to the application
domain and present it in the application view. This
automatically shows us the data partitioning done by
the algorithm to distribute work between the nodes.
Immediately after looking at this view, we observe that



5

Fig. 3. Experiment 1:
Application View: Data partitioning and assignment done by the application on the cluster. The coloring of the partitioned is done using a
rainbow color map based on the time taken by each node to complete the computation of the partition assigned to it. A click on any of the
partition automatically highlights the node in the other views. Cluster Level View: Each node colored using a rainbow color map to show the
time taken by each node to complete the computation. A selected node is highlighted with an enlarged red cube. Data Plot View: Plot of total
time of each node vs. the MPI rank. The data point for the selected node is highlighted in red. Node Level Views of the selected node(from
right to left): CPU time vs. Overall GPU compute time, GPU0 compute time vs. GPU1 compute time, Data Bus0 transfer time vs. Data Bus1
transfer time.

the node doing computation on the center of the image
takes the maximum time. Also, the nodes that process
the parts of the image near the border take less time.
By looking at the output image and this view, one can
infer that since there is a lot of detail in the center of
the image, the solver takes more iterations to process that
region of the image whereas since there is less detail near
the borders, the solver takes less time. We can also see
that load is not equally balanced as some nodes take less
time whereas some take considerably longer time. This
suggests a superior load balancing for this application
may need to take into account the complexity of the
tiles being processed.

Though the Application view presents insight about
the application behavior, some questions are better an-
swered using a coupled visualization that combines the
Cluster view. For example, which exact node took the
maximum time; what was its spatial location in the
cluster; how much time was taken by its neighbors;
and what was the behavior of the hardware performance
metrics for that node compared to the others are best
considered using the Cluster view along with the Ap-
plication view. Selecting the node that takes maximum
time in the application view automatically highlights
the corresponding node in the Cluster view. Its spatial
position in the grid can be easily seen as well as time

taken by its neighbors is also easily observed. One
can then color the nodes on the basis of some other
performance metric to get further insights.

The Application and Cluster view give the qualitative
aspect of the data, so we look at the Data Plot view to
get a notion of the actual quantities. In the Data Plot
view we can see that the selected node is highlighted
in red. One can easily identify its MPI rank and get
an idea of the actual time the node took to finish its
computation. Since the interaction is two-way, one also
can select some other MPI rank in this view and that
corresponding node will be highlighted in the Cluster
and Application views.

The Cluster view and Data Plot view present data at
a coarser granularity. All the performance metrics for a
node are aggregated over its CPUs and GPUs. To look
at the data at a much finer granularity one can click on
the node that opens up the Node Level view. This view
enables the direct comparison of the CPU, the GPUs
and data transfer buses within this node. One can view
the time taken by the CPU and the GPUs, time taken
by individual GPUs and time taken by individual data
transfer buses.

This heterogeneous view helps us understand the
utilizations of the CPU and GPUs on that node. One
can then easily infer if the bottleneck is the CPU, one of



6

Fig. 4. Experiment 2:
Application View (top): Final image generated by the application. Application View (middle): Image tiles, colored on the basis of if they
were processed by CPUs or GPUs. The green tiles correspond to those processed on the GPU and the red tiles correspond to the tiles processed
on the CPU. Application View (bottom): Time taken by the tiles processed on GPUs represented with a rainbow color map with red being
maximum and blue being minimum. Cluster View: Each node colored by GPU compute time with the help of a rainbow color map. Node
with max GPU compute time is selected and highlighted with an enlarged red cube. Data Plot View: Plot of GPU compute time vs. GPU ID.
Node Level View: Each GPU in the node colored by the GPU compute time.

the GPUs or the data transfers. Optimizations can then
be targeted on the basis of these observations.

From this experiment one can see that certain key
insights are so easily inferred with the help of these
interactive views and how correlating the data between
different domains provides better intuition of the perfor-
mance data.

Experiment 2: In this experiment as seen in Figure 4,
we visualize the way work is distributed amongst the
CPUs and GPUs in the cluster. In the application view
we can see that how the tiles in the images are processed
on CPUs and GPUs. The green tiles correspond to those
processed on the GPU and the red tiles correspond to the
tiles processed on the CPU. This gives good understand-
ing of how the load has been balanced between the CPUs
and GPUs of the cluster. About 70 percent of the tiles
were processed on the GPUs and the rest on the CPUs.
This view also shows which exact tiles were processed
on the CPUs and the GPUs. With this information, one
can design better scheduling algorithms that can schedule
tiles having higher detail on to the GPUs, as the GPUs
are comparitively much faster at processing the tiles than
the CPUs.

In the other application view, the time taken by the
GPU to process the tiles is mapped on the application
domain. The coloring is done with the help of a rainbow

color map where red corresponds to high values and blue
to values. One can see that the tiles that contain higher
levels of detail from the image consume more time.

In the Cluster view we color the nodes on the basis
of total GPU compute time to identify the node that
takes the maximum GPU compute time. Since, several
nodes have more or less the same higher valued color
it becomes difficult to identify the node that takes the
maximum time. So, we take the help of the Data Plot
view to get the GPU ID of the GPU that has the maxi-
mum total GPU compute time. The GPU ID is a unique
identifier given to every GPU in the cluster. Selecting
this GPU ID in the Data Plot view, the corresponding
node is highlighted in the Cluster view and the Node
Level view.

From the node level view we can then take a look at
the other performance metrics for this GPU to investigate
why it takes the maximum amount of time. We can
also do a comparison of this GPU with the GPUs of its
neighboring node or any other node to get better insights.
Thus the user can go deeper into the analysis from a
higher granularity to a lower granularity to understand
performance bottlenecks.

From this experiment its evident that making use of
these interactive linked views is helpful in understanding
the behavior of heterogeneous applications. Load balanc-



7

ing between the CPUs and GPUs can be well understood
and optimizations to improve this balance can be done
to improve application efficiency. Also, the combined
visualization of the CPU and GPU performance data
gives deeper understanding of such complex parallel
codes.

IV. DISCUSSIONS

In this project we have developed novel visualizations
for visualizing and analyzing performance data. The
various linkages between these views and the interac-
tivity they provide give a good intuition of the perfor-
mance data. We have successfully shown that valuable
insights about heterogeneous application behavior can be
achieved with the use of interactive linked visualizations
that have been developed in this project. These valuable
insights help target optimizations resulting in faster ex-
ecution of parallel applications.

In the future, we would like to extend these views to
also show data from the Communication domain which
has been left out in the current project. This view should
be able to show the network topology of the cluster and
show the communication data. The node level view can
be enhanced further to show thread specific data. Also,
data can be visualized per CPU core and GPU cores
adding a finer level of granularity. Novel visualization
techniques need to be added to the cluster level view
to view larger clusters having hundreds of thousands of
nodes.

REFERENCES

[1] Martin Schulz, Joshua A. Levine, Peer-Timo Bremer, Todd Gam-
blin, Valerio Pascucci, Interpreting Performance Data Across In-
tuitive Domains. International Conference on Parallel Processing,
Sept. 2011.

[2] Sujin Philip, Brian Summa, Peer-Timo Bremer, Valerio Pascucci,
Parallel Gradient Domain Processing of Massive Images. Euro-
graphics Symposium on Parallel Graphics and Visualization, Apr.
2011.

[3] Stuart K. Card, Jock D. Mackinlay, Ben Shneiderman, Readings
in Information Visualization: Using Vision to Think. California:
Academic Press, 1999.

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344




