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In a standard scenario for focusing an ion beam onto a target, for example with

ion beam driven inertial fusion energy, the beam is compressed longitudinally by a

velocity ramp to enhance the current and then directed through a transverse focusing

system to produce a small, bright spot on the target. To reach the highest levels of

compression, the space-charge of the beam is neutralized, typically by the presence

of a plasma with a density greater than the beam density. The system is arranged so

that the peak longitudinal compression is coincident with the minimum transverse

spot size. In this scenario, it has been discovered that non-paraxial effects can lead

to degradation in the amount of compression. The transverse focusing causes a

radially dependent variation in the axial velocity of the ions, leading to a radially

dependent time delay that degrades the peak compression. This effect, non-paraxial

pulse broadening, can become significant for short pulses and large focusing fields -

the time delay can be comparable to the final pulse length. This pulse broadening will

be present in both solenoid and quadrupole focusing systems. This paper describes

this effect in solenoids, with some examples. It is expected that the size of the effect

will be comparable with quadrupole focusing.
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I. INTRODUCTION

Ion beams can be used to heat targets to study warm dense matter[1] and high energy

density physics, and can be used to drive targets for fusion energy[2]. A common technique

used to enhance the beam power is compressing the beam longitudinally, via a velocity ramp,

or “tilt”, with the tail of the beam moving faster than the head, before it is focused onto the

target. To maximize the compression, the space-charge of the beam can be neutralized. The

pipe where the compression takes place is filled with a plasma that has a density higher than

the beam density. The neutralization prevents the space-charge blow off from of the head and

tail of the beam and prevents the space-charge from inhibiting the compression, especially

near the peak when the space-charge forces would be the largest. The neutralization also

prevents the transverse expansion due to space-charge, removing the need for transverse

confinement before the final focus. To obtain the shortest pulse durations, the compression

is arranged to reach its peak at the same point when the beam is focused transversely down

into a small spot, when the beam strikes the target.

It is known that having a velocity tilt in the final focus can degrade the focal spot size,

the chromatic aberration, because of differing focal lengths for the different velocities. An

analogous effect has recently been discovered, the degradation of the compression because

of radially dependent velocity, a non-paraxial effect. In a solenoid focusing system, the

particles develop radial dependent rotational and radial velocities at the expense of lon-

gitudinal velocity, causing a radial dependent time delay. In a quadrupole, the particles

similarly develop a transverse dependent velocity, from the alternating gradient flutter and

the focusing, which would lead to a transverse dependent time delay. If this delay is compa-

rable to the final pulse duration the compression will be degraded. In the typical focusing

used in the bulk of the accelerator, this time delay is present but negligible because of the

smaller solenoid strengths and much longer pulse duration. In the final focus however, the

field tends to be much stronger and the beam duration much shorter so the time delay can

become comparable to the pulse duration.

When optimizing the power of the beam on the target, because of the chromatic aber-

ration, there is a trade-off in the amount of velocity tilt. More tilt improves the peak

compression, but degrades the focal spot size. With non-paraxial pulse broadening, there is

a similar trade-off in the focusing strength of the final focus optic. A stronger focus gives a
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smaller spot, but degrades the compression. There is a further trade-off. As will be shown

below, the degradation of the compression diminishes with a smaller beam radius in the final

focus optic, but with a smaller beam radius, the focal length is shorter, moving the target

closer to the solenoid and into the increased magnetic fringe fields. These trade-offs need to

be taken into account designing the final focus system.

II. ESTIMATION OF THE DELAY IN SOLENOIDS

Estimates of the amount of delay can be made. In a solenoid focusing system, the amount

of time delay accumulates both inside of the solenoid and after the beam exits. Inside of

the solenoid, the delay occurs because of the combination of rotational velocity that the

particles pick up from the force Fθ ∝ vz×Br and the resulting radial velocity from the force

Fr ∝ vθ × Bz. After exiting, the resulting radial velocity of the focus further increases the

delay. With the conservation of kinetic energy of a particle in a magnetic field, the vθ and

vr that develop lead to a decrease in vz. The estimates below ignore space charge effects,

assuming that the beam is fully neutralized.

As a beam enters a solenoid, it spins up because of the Br, obtaining an angular velocity

of ωc/2, where ωc is the cyclotron frequency ωc = eBz/m, with Bz being the magnetic field

on axis and e and m being the particle charge and mass. Because of this vθ, the particles

will begin to move radially as well. Simple conservation of energy gives the longitudinal

velocity.

v2z = v20 − v2θ − v2r = v20 −
r2ω2

c

4
− v2r (1)

where v0 is the longitudinal velocity of the particle before entering the solenoid. For sim-

plicity, the particles are assumed to have no transverse velocity initially. Assuming a hard

edged field model for the solenoid, one can obtain the equation of motion of the particles.

See for example [3], eq 3.145.

r = r0 cos kz (2)

r′ = −r0k sin kz (3)

Here, r′ = vr/vz, r0 is the initial radius of the particle and k = ωc/2v0. Inserting this into
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equation 1 gives the following.

v2z = v20 −
r20ω

2
c

4
cos2 kz − r20ω

2
c

4
sin2 kz (4)

= v20 −
r20ω

2
c

4
(5)

Note that this gives a vz that is independent of z. Assuming that the transverse velocity is

small compared to v0, vz can be approximated.

vz ≈ v0(1.−
r20ω

2
c

8v20
) (6)

For this first component, the time delay of particles off axis compared to a particle on axis,

∆t1, can be estimated given the length of the solenoid, Ls. The maximum value of the time

delay occurs for particles at the outer edge of the beam, having r0 = a where a is the beam

radius. The time delay is the difference in the time it takes an on axis particle (which has

no delay) and an edge particle to traverse the length of the solenoid, ∆t1 = Ls/v0 − Ls/vz.

With vθ � v0, using the above, and with further approximation, ∆t1 can be written.

∆t1 ≈
Ls
v0
− Ls
v0(1.− r20ω2

c/8v
2
0)

(7)

∆t1 ≈
Lsa

2ω2
c

8v30
(8)

From equation 3 above, a′, the convergence angle of the beam at the end of the solenoid,

can be written.

a′ = −ak sin kLs (9)

Incorporating this into the expression for ∆t1, gives a more useful expression.

∆t1 ≈ −
aa′

2v0

kLs
sin kLs

(10)

The product kLs gives the total rotation angle in the solenoid. One sees readily that changing

the solenoid parameters alone, without changing the beam envelope, can not significantly

affect this component of the time delay.

The second component of the time delay occurs after the focusing beam exits the solenoid,

when the beam is converging. Using a similar derivation as above, starting with the radial

velocity vr = r′v0, the longitudinal velocity is given as follows from the conservation of

energy.

v2z = v20 − r′2v20 (11)
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This can be approximated for vr � v0.

vz ≈ v0(1.−
1

2
r′2) (12)

Again, the maximum time delay will be at the edge of the beam, with r′ = a′. After the

beam has traveled a distance z from the solenoid, the time delay for off axis particles will

be ∆t2 = z/v0 − z/vz. An approximate value can be given for small vr.

∆t2 ≈
za′2

2v0
(13)

The most interesting case is where the beam reaches peak focusing, at z = −a cos(kLs)/a
′.

The time delay can be written in form similar to the form given above for ∆t1.

∆t2 ≈ −
aa′

2v0
cos kLs (14)

The total maximum time delay is the sum of the two components.

∆tmax = ∆t1 + ∆t2 ≈ −
aa′

2v0

(
kLs

sin kLs
+ cos kLs

)
(15)

This can be expanded to second order in kLs.

∆tmax ≈ −
aa′

v0

(
1− 1

6
(kLs)

2

)
(16)

Trade-offs are needed in order to reduce the time delay. One would be to reduce the

convergence angle, at the cost of an increased spot size. Another is decreasing the beam

size, which leads to a shorter focal length. This may go against constraints on the amount of

clearance needed between the target plane and the solenoid and will put the target further

into the solenoid field which may interfere with the experiment and/or make it more difficult

to buck out the fields if that is needed.

The above derivations have been for the maximum time delay. Of more interest is an

average of the time delay. This can be calculated in a straight forward manor assuming a

cold beam. For a single slice of beam that is monoenergetic and has initially no transverse

motion, the distribution at the focus can be written f = δ(t − ∆t(r0))/(a
2/2) for r0 ≤ a,

which normalizes to one when integrated over all time and all transverse space. Note that

t = 0 is the time when the on-axis particles reach the focus. The time delay can be written

in terms of only r0, in addition to the fixed quantities ωc, Ls and v0.

∆t ≈ r20
k

2v0
(kLs + sin kLs cos kLs) (17)
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With the distribution f defined, the average time and time squared can be calculated.

t =
2

a2

∫ a

0

∫ +∞

−∞
tδ(t−∆t)r0∂r0∂t (18)

≈ 1

2
∆tmax (19)

t2 =
2

a2

∫ a

0

∫ +∞

−∞
t2δ(t−∆t)r0∂r0∂t (20)

≈ 1

3
∆t2max (21)

The RMS can then be written.

∆trms = 〈t〉 =

√
t2 − t2 ≈

√
1

12
∆tmax (22)

The effect of an nonzero beam divergence when entering the solenoid can be included in

the estimate of the nonparaxial pulse broadening. The envelope equations 2 and 3 can be

extended to include an initial divergence.

r = r0 cos kz +
r′0
k

sin kz (23)

r′ = −r0k sin kz + r′0 cos kz (24)

r0 is the radius and r′0 is the divergence when the beam enters the solenoid. Following the

same procedure as above, including the initial divergence in the initial beam energy, the two

time delays can be derived. The beam radius and divergence at the end of the solenoid can

be written as follows.

re = r0 cos kLs +
r′0
k

sin kLs (25)

r′e = −r0k sin kLs + r′0 cos kLs (26)

The time delays can be written out.

∆t1 ≈
Ls
2v0

r20k
2 (27)

∆t2 ≈
1

2v0
rer
′
e

(
1− r′20

r′2e

)
(28)

There is some nice cancellation, resulting in the time delay during transport in the solenoid

being independent of the initial divergence. The time delay after the beam leaves the

solenoid, however, doesn’t have a simple form. Note that the second term, the ratio r′20 /r
′2
e ,

will generally be small for a final focus solenoid since it is expected that typically r′20 � r′2e .

Similarly, the effect of r′0 on the term rer
′
e will typically be small for the same reason.
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III. SIMULATION

The analytic results from above can be compared against simulation. The simplest test

is simulation of a beam that has the distribution described above, a monoenergetic slice

of beam, but with a realistic solenoid profile (not hard edged). The beam is completely

neutralized. The beam is initialized before the solenoid, and followed through to the point

of focus. The example beam is singly charged lithium ions with an energy 1.65 MeV. The

initial radius is 2 cm. The simulations were done with the code Warp[4], a particle-in-cell

code designed to be used for high current, space-charge limited accelerators.

Simulations were done with two different profiles for the solenoid, as shown in figure (1).

The black curve is from the expression for the field on axis for a cylindrical current sheet

with surface current density Kθ, radius R and length l.

Bz(z) =
Kθµ0

2

[
l − 2z√

4R2 + (l − 2z)2
+

l + 2z√
4R2 + (l + 2z)2

]
(29)

For the simulations, the radius R = 5.9 cm and length l = 10 cm. The surface current

density was chosen to give the specified field on axis at the center of the solenoid. The

length of the solenoid is comparable to the diameter, so the field is essentially all fringe.

The red curve was artificially generated to be closer to a hard edged profile - it might be

what is produced in the presence of shielding for example. The profile was adjusted so that

both cases have the same value of the integral of B2
z - both have the same effective length

of 10 cm. In both cases, higher order components of the field with up the third derivative

of Bz on axis were included in the simulations.

A. Without longitudinal velocity tilt

The results of the simulations without longitudinal velocity tilt are shown in figure (2).

The circle and plus sign markers show the results from the simulations, the RMS time of

the particles at the focal spot, for varying solenoid field. The focal spot is defined as the

location where the radial RMS size of the beam is smallest. This location does not coincide

exactly with the focal spot location calculated analytically with the hard edge field profile.

The circles are for the case that is nearly all fringe and the plus signs are for the case that

is nearly hard edged. The red curve shows the analytic result for ∆trms, from equation (22).
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The green curve shows
√

1/12∆t1 and the blue curve
√

1/12∆t2. Note that at roughly 15

T, the blue curve goes negative - that is the point where the focal spot moves inside of the

effective length of the solenoid.

As expected, good agreement with the analytic result was found for the nearly hard edged

case. For the nearly all fringe case however, for larger Bz, the resulting time delay is less

than the analytic value. For those cases, the maximum transverse velocities come out to be

less than that for the hard edged case. The focal spot is near the same location however,

since the beam starts focusing earlier. Also, because of the large extent of the fringe fields,

above about 5 T the focal spot occurs in a location where the fringe field is still significant

and the full inward radial velocity had not developed before the beam reaches the focus.

Figure (3) shows the evolution of the time delay as a function of beam position, comparing

the results from the mostly fringe solenoid profile and the analytic expression. Even though

the time delay starts developing earlier than in the hard edged case, the transverse velocities

overall remain smaller than in the hard edged case and so the accumulated time delay is

less.

A fully realized system would likely have a bucking coil to remove the magnetic field

from the area of the target. A nonzero field at the target could affect the behavior of the

target and confound the results. Also, in the nonzero B-field, the beam will have a nonzero

canonical angular momentum which can limit the focusability of the beam, leaving a larger

spot size than would could otherwise be achieved if the target were field free. With a bucking

coil, the time delay would likely end up between the hard edged case and the mostly fringe

case.

B. With longitudinal velocity tilt

A next test case is a full length beam with velocity tilt. Cases are simulated with zero

thermal velocity spread and with realistic thermal velocity spreads. The same singly charged,

1.65 MeV Lithium beam is used. The beam has a initial length linit = 10 cm and a velocity

tilt ∆v/v = (vtail − vhead)/vcenter = 0.033. Without the final focus solenoid, the beam would

reach a maximum longitudinal compression in linit/∆v/v = 3.03 meters. With the solenoid

in place, however, because of the effects of the nonparaxial pulse broadening, the location of

the peak compression will vary, always happening earlier. In the simulations, for each value
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of the solenoid focusing strength, an iteration is done adjusting the location of the solenoid

until the location where the peak current occurs coincides with the location of the minimum

RMS spot radius. For the cases here, the location of peak compression can vary by as much

as 10 cm or more. The solenoid that is mostly fringe field was used.

The results with no thermal spread are shown in figure (4). With no thermal spread

and no solenoid, the pulse duration at peak compression would be zero. For small values of

the solenoid focusing, it is seen that the effect on the pulse duration is the same as if there

was no tilt. For larger values, the point of peak compression moves upstream, leaving some

residual tilt in the beam. This residual increases the minimum pulse duration above what

is there with only the time delay.

Results with thermal spread are shown in figure (5). The normalized edge emittance of

the beam is taken to be 2 π-mm-mrad, and the longitudinal velocity spread equal to 0.3

times the transverse velocity spread. The black circles show the results from the simulations

with the mostly fringe solenoid and the pluses from the nearly hard edged solenoid. Note

that there is some variation in the results due to statistical noise in the particles because

of the randomness in the initial particle velocity due to the thermal velocity spread. The

difference in the results for the two different solenoid profiles is consistent with the results

found with no tilt or thermal spread. The red curve shows the analytic results without tilt

and thermal spread. The green curves shows the same analytic data shifted upwards to have

the same ∆trms at zero focusing field. This shows that for modest focusing strengths, the

final pulse duration is bounded by the sum of the duration due to the thermal spread and

that due to the nonparaxial pulse broadening. Here, “modest” means that the focal spot

is beyond the end of the solenoid. As shown in Figure (6), in this case “modest” is up to

around Bz ≈ 10 T. Figure (7) shows the results from the cases with the normalized edge

emittances of 4 and 8 π-mm-mrad, which exhibit similar behavior.

A full design of the focusing system would optimize some measure of the beam intensity

on target, which would depend on both the focal spot size and the pulse duration. There

will be an optimal focusing strength giving the best intensity. A smaller focusing strength

would give a shorter pulse duration but larger spot size. A larger focusing strength would

give a smaller spot size but a larger pulse duration. If there is a bucking coil, it would have

to be included in the optimization since it would affect the value of the optimum.
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IV. CONCLUSION

A new nonparaxial affect has been described. This affect causes broadening of beam

pulses during the process of focusing the pulse onto a small spot, and becomes important

at short pulse durations. The broadening is due to a time delay that occurs because of

the radially dependent transfer of kinetic energy from longitudinal to transverse directions

from the action of the focusing element and the resulting radial convergence. This puts a

constraints on the minimum achievable pulse duration. Analytical estimates of the size of

the minimum duration were derived in the limiting case of no velocity tilt and no thermal

velocity spread. This was compared to simulation with realistic solenoid profiles and good

agreement was found. Further simulations examined the pulse broadening coupled with

longitudinal velocity tilt and thermal spread. With velocity tilt, at low to moderate focusing

strengths, agreement was found with the analytic result, showing little coupling with the

tilt. With thermal spreads, it is seen that adding the analytic result to the pulse duration

without focus gives an upper bound to the pulse duration for modest focusing strengths.

It is expected that the degradation of the pulse duration will be similar in a quadrupole

focusing system.
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FIG. 1. The two longitudinal profiles of the solenoid field used in the simulations. The black is the

profile that is mostly fringed, and the red is closer to a hard edge.
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FIG. 2. Comparison of ∆trms from simulation with the analytic result. The circles show the RMS

time at the focal spot in the simulation for the case where the solenoid is mostly fringe. The plus

signs are for the case where the solenoid is nearly hard edged. The red curve is ∆trms. The green

curve is ∆t1rms and the blue is ∆t2rms. Note that beyond Bz=15 T, the focal spot is inside of the

solenoid, hence the negative values for ∆t2rms.
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FIG. 3. Comparison of the simulated and analytic calculation of ∆trms for several different solenoid

strengths. For each case, the solid line is from the simulation and the dashed line is from the

analysis. The red vertical lines show the locations of the focal spots for the simulated cases. The

green curve shows the longitudinal profile of the solenoid field, scaled vertically to fit the graph.
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FIG. 4. Comparison of the simulated (circles) and analytic calculation (red curve) of ∆trms for

a beam with finite extent and an axial velocity tilt. The calculation of ∆trms does not take into

account the tilt. The solenoid is the case that is mostly fringe.
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FIG. 5. Comparison of the simulated (circles and pluses) and analytic calculation (red and green

curves) of ∆trms for a beam with finite extent, axial velocity tilt and normalized edge emittance

of 2 π-mm-mrad. The circles are from the case with the solenoid that is mostly fringe, and the

pluses from the solenoid that is nearly hard edged. The green curve is the same as the red curve

but with ∆trms from the simulation with small solenoid field added. The analytic ∆trms does not

include either the tilt or the thermal spread.
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FIG. 6. The location of the solenoid end (blue) and the focal spot and peak compression (black)

from the simulation with velocity tilt and thermal spread.
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FIG. 7. Comparison of the simulated (circles) and analytic calculation (green curve) of ∆trms for

beams with finite extent, axial velocity tilt and normalized edge emittances of 4 and 8 π-mm-mrad.

In each case, the green curve is the analytic ∆trms with the ∆trms from the simulation with small

solenoid field added. The analytic ∆trms does not include either the tilt or the thermal spread.

The solenoid is the case that is mostly fringe.




