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Abstract 

The partially resolved transition array (PRTA) model is extended from JJ to intermediate 

coupling. The PRTA model conserves known array properties, yields improved higher moments, 

and systematically accounts for initial level populations. In addition, a random PRTA (R-PRTA) 

model is proposed to simulate detailed line accounting (DLA) calculations of complex spectra. 

Numerical examples show that the PRTA model with intermediate coupling reproduces the 

effects of the electrostatic interaction between spin-orbit split arrays on the spectrum. They also 

show that the R-PRTA model is in good agreement with DLA results and accounts for 

systematic line coincidences across transition arrays differing only in the subshell occupation of 

excited spectator electrons important in opacity calculations. Both PRTA and R-PRTA models 

are computationally much faster than DLA calculations. Hence, the models can accelerate 

spectrum calculations without introducing significant uncertainties whenever the DLA method is 

considered arduous or impractical. 
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1. Introduction 

An accurate description of plasma radiative properties is important in many research areas 

such as astrophysics and inertial confinement. For plasmas containing partially ionized atoms the 

detailed line accounting (DLA) method is, in principle, the ideal approach to calculate bound-

bound spectra. For complex ions, however, the myriad spectral lines make DLA calculations 

impractical [1]. One approach to circumvent this impasse is the unresolved transition array 

(UTA) model where the lines are treated as a single unresolved feature [2,3]. The UTA model 

gives compact formulas for the transition array strength-weighted energy mean and variance that 

together with a Gaussian assumption for the line energy-strength correlation function allows for 

a fast calculation of the spectrum. 

The UTA approach, however, introduces uncertainties due to inaccurate higher moments 

[4,5]. Furthermore, conditions exist where the array lines do not merge and the “porosity” of the 

spectrum makes the plasma more transparent to radiation than predicted by the UTA model. For 

example, in stellar envelopes the low matter density leads to narrow spectral lines and Rosseland 

mean opacity calculations with the UTA approach significantly overestimate DLA results [6]. 

Transition arrays requiring intermediate coupling are also challenging for UTA approaches 

and there is no exact statistical formalism that progressively describes the transition of the single 

feature in the near-LS case towards the spin-orbit split relativistic sub-arrays. Models have been 

developed to account for this effect [7,8], but these require approximations. 

Recently an extension of the UTA approach to complement DLA calculations in JJ coupling 

was developed [9]. The partially resolved transition array (PRTA) model replaces the single 

feature of the UTA by a number of Gaussians that conserve the known arrays properties, 

provides improved higher moments, and accounts for initial level populations. 

The present work has two main goals. The first is to extend the PRTA model to intermediate 

coupling. The second is to propose a statistical simulation of DLA results based on the PRTA 

method. Section 2 briefly reviews the PRTA method and presents the modifications for 

intermediate coupling. Section 3 describes a statistical approach to simulate DLA calculations 

using the PRTA model. Numerical examples in both Sections compare results from the PRTA 

based models to DLA and UTA calculations. The opacity of Fe in stellar envelope conditions is 

featured in Section 4 comparing results using various approximations for the bound-bound 

spectrum. Conclusions are offered in the final Section 5. 
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2. Partially resolved transition array (PRTA) model 

Consider a transition array consisting of 

€ 

N  spectral lines linking two electronic 

configurations by a dipole radiative transition. Assuming there are 

€ 

M  open subshells in the 

transition array, then it can be symbolically written as 

   

€ 

η1
α1η2

α 2λ3
α 3λM

α M →η1
α1 −1η2

α 2 +1λ3
α 3λM

α M  (2.1) 

where 

€ 

η and 

! 

"  denote subshell quantum numbers (  

! 

n! or   

! 

n!j ) and 

€ 

α  is the number of electrons 

occupying the subshell. Here the 

€ 

η 's represent active subshells in the transition while the 

! 

"'s  

represent spectator or passive subshells. The variance of the transition array in Eq. (2.1), 

assuming the Slater integrals are the same in both configurations, can be written in the form [2,3] 

 

€ 

σtot
2 =σ2 η1

α1η2
α 2 →η1

α1 −1η2
α 2 +1( ) + αm Πm −αm( )σ2 λmη1 →λmη2( )

m=3

M

∑  (2.2) 

where 

€ 

Πm is the degeneracy of the 

€ 

λm  subshell. 

The PRTA method computes the contribution to the line spectrum by splitting the open 

subshells into two groups: main and secondary [9]. An explicit DLA calculation of the main 

group that is by design small compared to the full DLA calculation is performed. This small-

scale DLA calculation generates 

€ 

K << N  lines by artificially assuming that the subshells in the 

secondary group are closed, but retains the radial integrals from the self-consistent calculation 

for the complete configuration. A statistical approach for the secondary group assigns the 

missing variance in the small-scale DLA calculation to each of the 

€ 

K  lines. 

In local thermal equilibrium (assumed throughout the work), the PRTA spectrum for the 

transition array is described by a sum of Gaussians [9], 

 

€ 

1
σK 2π

fi exp −
h2 ν −ν i( )2

2σK
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
gie

−ε i T

i=1

K

∑  (2.3) 

where 

€ 

T  is the plasma temperature in energy units. The small-scale DLA calculation for the 

main group yields 

€ 

fi  and 

€ 

hν i  for the oscillator strength and line energy while 

€ 

ε i  and 

€ 

gi  are the 

energy and degeneracy of the initial level for the 

€ 

ith  line. The variance 

€ 

σK
2 , assuming the first 

€ 

Mk  

subshells in Eq. (2.1) define the main group, is given by 

 

€ 

σK
2 = αm Πm −αm( )σ2 λmη1 →λmη2( )

m=M K +1

M

∑  (2.4) 
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and contains the remainder of 

€ 

σtot
2  from the secondary group not accounted by the 

! 

K  lines. 

The PRTA model selects the main and secondary group to balance between accuracy and 

computational speed. The idea is to include in the main group the subshells that most strongly 

couple with the active electrons treating the remaining subshells statistically. Although presently 

this separation is intuitive and not rigorous, it is reasonable to assume those subshells with the 

largest contribution to the variance couple most strongly with the active electrons [9]. 

The PRTA model approximately conserves the transition array total oscillator strength, 

which depends only on the active subshells except for how the spectator electrons affect line 

energies [10] and exactly conserves the strength-weighted energy mean and variance. The 

expression in Eq. (2.3) includes Boltzmann factors, which approximate the spectrum dependence 

on initial level populations. Finally, the Gaussians are convolved with the intrinsic line profile to 

generate the line spectrum 

 2.1 RPTA model in intermediate coupling 

The form for the variance in Eq. (2.1) is valid in intermediate coupling, but it is complicated 

by the electrostatic interaction between the relativistic sub-arrays [7,8]. That is, the sub-arrays 

can overlap or not depending on the relative size of the spin-orbit interaction. 

It is convenient to use the LS representation and explicitly separate the spin-orbit interaction 

contribution to the variance [2], 

 

€ 

σtot
2 =σLS

2 +σSO
2 η1,η2( )  (2.1.1) 

Here 

€ 

σSO
2  only involves the orbital quantum numbers and spin-orbit radial integrals for the active 

subshells [11] and 

 

€ 

σLS
2 =ΩLS

2 η1
α1η2

α2 →η1
α1 −1η2

α2 +1( ) + αm Πm −αm( )ΩLS
2 λmη1 →λmη2( )

m=3

M

∑  (2.1.2) 

with 

€ 

ΩLS
2  the electrostatic interaction contribution for the open subshells. Since the main group 

always includes the active subshells, the secondary group contribution to the variance is given by 

 

€ 

σK
2 = αm Πm −αm( )ΩLS

2 λmη1 →λmη2( )
m=M K +1

M

∑  . (2.1.3) 

The selection of the first 

€ 

Mk  subshells in Eq. (2.1) for the main group uses 

 

€ 

R ≡1− σK
2 σLS

2( ) (2.1.4) 
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rather than comparing 

€ 

σK
2  to the total array variance [9]. This reflects that spin-orbit splitting 

contributes to the total array variance, but not to the individual relativistic sub-array variance [3]. 

The value 

€ 

R ≥ 0.7 yielded good results for calculations with JJ coupling [9]. 

2.2 Calculation details 

In the examples below the radial integrals are computed with a Dirac-Hartree-Slater self-

consistent field including Breit and QED corrections [12,13] assuming the single configuration 

approximation. The DLA calculations use intermediate coupling in the LS representation [10], 

which does not require configuration interaction, so an averaging procedure of the relativistic 

results is applied [14]. 

A Voigt profile describes the intrinsic line shape where the Gaussian and Lorentz 

components are attributed to Doppler and a small natural width 

€ 

Γ, respectively. The small line 

width minimizes merging of the lines and allows for “porous” line spectra. 

The spectrum has temperature dependence from Doppler broadening and Boltzmann 

weighting of the initial levels. The temperature is chosen so that the ion charge state featured in 

the example agrees with the ionization average from a Thomas-Fermi [15] calculation at one-

hundredth normal density of the material. Thus, the examples are representative of conditions 

relevant to experiments or laboratory applications. 

The fraction of the total variance squared retained in the main group of the PRTA scheme, 

€ 

R 

in Eq. (2.1.4), is reported in Tables 1 and 2. Also reported in these tables is an estimate of the 

computational speedup of the PRTA model relative to the full DLA calculation, 

 

€ 

speedup = tDLA tPRTA  (2.2.1)
 

where 

! 

tDLA  and 

€ 

tPRTA  are the times to compute line strengths and positions in the full and small-

scale DLA calculations. It is stressed that the speedup does not reflect any timesaving associated 

with generating the spectrum using a reduced number of lines. This potential savings was 

excluded since it depends on the number of points in the photon frequency mesh. 

2.3 Numerical examples: 

€ 

3p→3d  transitions 

The PRTA scheme with intermediate coupling is compared with DLA and UTA calculations. 

The numerical examples in this subsection are the transition 

€ 

3p→3d  in the ions Fe4+, In27+, 

Ba34+, and Tm+47 for the initial configuration  

 

€ 

[Mg]3p5 3d3 4s4 p  (2.3.1) 
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The spectra calculations using DLA and PRTA with the active subshells in the main group are 

plotted in Figs. 1 through 4 and Table 1 summarizes the results including the number of open 

subshells and lines in the DLA calculations. 

In addition, Figs. 1 through 4 display UTA calculations using the LS basis including the spin-

orbit interaction [2] as well as calculations with the spin-orbit split-array method [3] (here 

referred to as UTA-LS and SOSA, respectively). The figures show the PRTA in better agreement 

with DLA than either UTA approaches. Most importantly, the PRTA scheme reproduces the 

transition from near-LS to spin-orbit split arrays. This good agreement applies to the relative 

strength of the relativistic sub-arrays whereas in Fig. 4 the SOSA model [3] yields good energies 

and variances for Tm+47 compared to the DLA results, but incorrect strength ratio of the 

relativistic sub-arrays (known limitation of SOSA approach [7,8]). In these examples the PRTA 

offers about 3 orders of magnitude savings in computational effort compared to the full DLA 

calculation (see Table 1). 

2.4 Numerical examples: 

€ 

2s→3p transitions 

The numerical examples in this subsection are for the transition 

€ 

2s→3p in the ions Fe5+, 

In28+, and Ba35+ for the initial configuration 

 

€ 

[Mg]3p4 3d3 4s4d  (2.4.1) 

Calculations using DLA and PRTA with 3 subshells (

€ 

2s3p3d ) in the main group are displayed 

in Figs. 5 through 7. In these examples the charge states are only modified by one bound electron 

so the temperature is kept the same as in the previous examples. The Lorentz widths, however, 

are a factor of 10 larger. Again, the figures show the PRTA in better agreement with DLA than 

either UTA approaches. In fact, the agreement in Figs. 6 and 7 makes it difficult to differentiate 

the two calculations. The PRTA model offers more than 3 orders of magnitude savings in 

computational effort compared to the full DLA calculation (see Table 2). 

3. Random partially resolved transition array (R-PRTA) 

Figures 1 through 7 show the PRTA model reasonably reproducing the envelope of the DLA 

results, but not the porosity of the spectrum in the case of non-overlapping lines. Past attempts to 

simulate DLA results by randomly generating lines relied on approximate energy-strength 

correlation functions [8,16,17]. The latest model [8] favorably compared with opacity 
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calculations using full DLA models. The two earlier models [16,17], however, produced 

significant opacity overestimates for astrophysical plasmas [6].  

A partial explanation for the overestimate is that random line generation methods do not 

retain the near line coincidences of transition arrays having similar configurations with only 

different excited subshell occupations common in opacity calculations. As an example, Fig. 8 

presents spectra for the transition 

€ 

3p→3d  for In27+ for initial configurations 

 

€ 

[Mg]3p5 3d3 4snp  (3.1) 

with 

€ 

n = 4, 5, and 6. These are DLA calculations in intermediate coupling that show a strong 

correlation of line energies and strengths across transition arrays. The more excited 

configurations display a small red shift produced by the self-consistent field calculations for the 

configuration-average energy. There is also a slight narrowing of the features since the more 

excited spectator electron couples less with the active subshells. Clearly, a random line-by-line 

simulation of the lines based only on an approximate line envelope can destroy this correlation 

and fill spectral windows overestimating the opacity. 

For comparison Fig. 8 displays PRTA calculations in intermediate coupling (only active 

subshells in the main group) for the same transitions, but setting 

€ 

σK = 0  in Eq. (2.3). It is stressed 

that the lines from this calculation are not a subset of the full DLA calculations; that is, the 

coupling with the secondary group would further split the 

€ 

K  lines generated by the main group. 

There are over a factor of 100 fewer lines compared to the DLA spectrum (see Table 1) and since 

the PRTA model essentially conserves the total oscillator strength the individual lines are on 

average much stronger. Consequently, to preserve the scale in Fig. 8, the Lorentz width in the 

PRTA

€ 

σK = 0( )  calculation was arbitrarily increased by a factor of 10. The figures show that the 

PRTA

€ 

σK = 0( )  results mimic the line energy-strength behavior of the full DLA calculations. 

Incidentally, this last comparison helps explain the reasonable success of the PRTA model in 

reproducing the line envelope from the DLA results in Figs. 1 through 7. 

3.1 Random partially resolved transition array (R-PRTA) model 

Although it is possible to generate the lines using the envelope in Eq. (2.3), as mentioned 

above this procedure tends to destroy the correlations across arrays. Instead, it is preferable to 

simulate the splitting of the 

€ 

K  lines from the main group by the electrons in the secondary group. 

The specific details require a full DLA calculation so it is approximated by splitting the 

€ 

ith  line 
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into 

€ 

ni lines with random energy and strength based on a Gaussian distribution of variance 

€ 

σi. 

The different 

€ 

ni and 

€ 

σi values for each of the 

€ 

K  lines reflect the different coupling between the 

electrons in the secondary group and the total angular momentum levels generated by the DLA 

component of the PRTA scheme. 

After selecting the main and secondary subshell groups in the transition array as before, the 

following ansatz relies on two general properties of transition arrays to generate the set 

€ 

ni,σi{ } 

and bound-bound spectrum: 

(1) The number of lines in a transition array is proportional to the product of the number 

states in the initial and final configurations [18]. Hence, take 

 

€ 

ni = Nest ×Nearest integer
2Ji +1( ) 2 ʹ′ J i +1( )

2Ji +1( ) 2 ʹ′ J i +1( )
i=1

K

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 (3.1.1) 

where 

€ 

Ji  and 

€ 

ʹ′ J i  are the total angular momentum of the initial and final levels of the 

€ 

ith  line from 

the small-scale DLA calculation and 

€ 

Nest  is the estimated number of total lines in the transition 

array [18]. The normalization factor in Eq. (3.1.1) cancels the contribution to the number of 

states from the secondary group common to all 

€ 

K  lines and yields 

 

€ 

ni
i=1

K

∑ ≈ Nest  (3.1.2) 

conserving (within the accuracy of the estimate) the total number of lines in the transition array. 

(2) The relatively few strong lines of a transition array are described by a small variance 

while the much larger number of weak lines are described by a large variance [19]. Thus, 

€ 

σi
.2  is 

assumed to have the form 

 

€ 

σi
2 ∝

ni
si

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ σK

2

=
SK
NK

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ni
si

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ σK

2

 (3.1.3) 

where the total strength of the 

€ 

K  lines is given by 

 

€ 

SK = si
i=1

K

∑  (3.1.4) 
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with 

€ 

si the strength of the 

€ 

ith  line and the proportionality constant is constrained by conserving 

the total transition array variance (see Appendix). 

(3) Each of the randomly generated 

€ 

ni lines is dressed with the assumed intrinsic line profile 

and weighted by the Boltzmann factor for the level population. Specifically, the bound-bound 

spectrum is proportional to 

 

€ 

gie
−ε i T f j

i( )φ ν −ν j
i( )( )

j=1

ni

∑
i=1

K

∑  (3.1.5) 

where 

€ 

φ ν( ) is the intrinsic line profile with 

€ 

f j
i( ) and 

€ 

ν j
i( )  the 

€ 

j th  randomly generated line energy 

and oscillator strength from the 

€ 

ith  line from the main group. In addition, the randomly generated 

position and strength of the 

€ 

ni lines are adjusted to conserve the strength as well as the strength-

weighted energy mean and variance, 

€ 

si, 

€ 

hν i, and 

€ 

σi. 

3.2 Numerical details 

The proposed random line-by-line (R-PRTA) method entails a slightly larger computational 

effort than the PRTA scheme. The additional cost involves generating random line energies and 

strengths from a Gaussian distribution (used Box-Mueller method [20]). For very weak lines 

(

€ 

si ≤10
−11SK ) there can be numerical difficulties associated with a very large variance. Since 

such lines make insignificant contributions to the spectrum, they are neglected. 

Generating the spectrum from myriad lines can present a computational challenge. Here, the 

spectrum calculation takes advantage of an efficient algorithm based on fast Fourier transform 

(FFT) techniques [21]. The implementation of this algorithm requires that all 

€ 

Nest  lines in the 

transition array have identical profiles so the Doppler width for all the lines assumes the mean 

transition energy. 

3.3 Numerical examples: Excited spectator electrons 

The R-PRTA model described in Section 3.1 is applied to the examples with varying 

spectator subshell and the results displayed in Fig. 8. The comparison of the DLA and R-PRTA 

calculations in the figure shows good agreement except that in the former the strongest lines are 

stronger. Most importantly, the R-PRTA method retains the line position and strength 

correlations across transition arrays. 

It is interesting to note that the description of excited spectator electron effects on the 

intrinsic line profile involves quantum interference phenomena [22]. Furthermore, opacity 
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calculations can be sensitive to line shape models [23]. These topics, however, are beyond the 

scope of the present discussion. Since the examples are only intended to evaluate the R-PRTA 

method, the individual lines in the DLA and R-PRTA calculations in Figs. 8 have identical 

intrinsic line profiles independent of the spectator electron excitation. 

3.4 Numerical examples: 

€ 

3p→3d  transition 

The R-PRTA model is now applied to the remaining 

€ 

3p→3d  examples in Section 2.3. The 

results are compared in Figs. 9 through 11 (results for In27+ are in Fig. 8) showing good 

agreement with the DLA spectra. As mentioned before, the R-PRTA method does not produce 

strong enough lines compared to the DLA method. Another shortcoming is the absence of strong 

features in the shoulder of the transition array. Although these strong lines are present in the 

DLA calculation of the main group and produce a local maximum, the adopted procedure 

overestimates their splitting. 

3.5 The PRTA model with variable variance 

An alternative model for generating the envelope of the transition array using the variable 

variance procedure in Section 3.1 is possible. The PRTA spectrum with variable variance for the 

transition array is given by 

 

€ 

f i
σi 2π

exp −
h2 ν −ν i( )2

2σi
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
gie

−ε i T

i=1

K

∑  (3.5.1) 

Such a method should improve on the PRTA with constant variance 

€ 

σK  in Eq. (2.3). It has the 

apparent advantage of involving only 

€ 

K  lines compared to 

€ 

Nest  lines in the R-PRTA scheme 

(

€ 

K << Nest , see Tables 1 and 2) to generate the spectrum. On the other hand, the different 

€ 

σi  

implies that the total Gaussian width (combined Doppler plus 

€ 

σi) is different for each of the 

€ 

K  

lines and the efficient FFT method [21] is not applicable. The computational efficiency of the 

FFT method is demonstrated in Section 4. 

4. Stellar envelope opacities 

There are several types of variable stars whose pulsations are driven by the κ-mechanism 

[24]. Originally proposed by Eddington [25], the κ-mechanism works by having an increase in 

the photon absorption coefficient in some parts of the star at the moment of maximum 

compression creating the instability. Thus, the study of stellar pulsations provides indirect tests 
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of opacities and has stimulated research. The “Z bump” is and important example, originally 

invoked to resolved mass discrepancies [26], soon after predicted by new opacity calculations 

[27,28], later corroborated by laboratory experiments [29] as well as pulsation studies [30], and 

now a standard feature in astrophysical opacities [31]. The Z bump is due to photon absorption 

by iron group elements. Not surprisingly Fe has received considerable attention from theoretical 

and experimental efforts for over 2 decades [32,33]. 

At matter conditions relevant to stellar envelopes the transition arrays are complex (partially 

filled M-shell electronic configurations in Fe) and the spectral lines do not overlap so UTA 

approaches significantly overestimate the opacity [6]. Furthermore, the spin-orbit interaction is 

not negligible and intermediate coupling is necessary for DLA calculations [34]. These 

circumstances have presented a computational challenge for theoretical opacity models. 

The numerical example considers the Rosseland and Planck opacities of Fe at temperature 

and density 

€ 

T = 20eV  and 

€ 

ρ =10−4 g cm3 . The spectrum is computed on a uniform photon 

energy mesh with 104 points in the range 

€ 

0 ≤ hν ≤ 20T . All the calculations use the same initial 

set of configurations made sufficiently large that additional configurations had negligible impact 

on the Rosseland opacity. To minimize the effort the configuration term structure is neglected for 

transition arrays in the energy range 

€ 

hν ≤ 0.4T . These spectral lines are overwhelmed by inverse 

bremsstrahlung and contribute little to the Rosseland mean average. The intrinsic line profiles 

include Doppler broadening and a Lorentz-type profile with a frequency dependent collisional 

width [23]. The calculations are performed with the TOPAZ opacity code [35] with the bound-

bound spectrum modified by the models described below in Sections 4.1 through 4.3. 

4.1 DLA and UTA models 

There are two standard line-by-line calculations: one with intermediate coupling (DLA) and 

the other with pure LS coupling (DLA-LS). For the present comparisons, the former is 

considered the best result and used as reference for the other calculations. There is also a 

calculation using the UTA model [2] (UTA-LS). 

4.2 Hybrid PRTA and R-PRTA models 

Calculations are done using either the PRTA or the R-PRTA models to complement DLA 

calculations with intermediate coupling using the following recipe. Firstly, since the primary 

purpose of the PRTA based models is to improve on the UTA approximation whenever the DLA 
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method is deemed impractical, transition arrays with a small number of lines are done explicitly 

with DLA in intermediate coupling; hence, the terminology hybrid PRTA and hybrid R-PRTA. 

Here the limit is set at 

€ 

N limit = 3 ×104 lines for individual transition arrays. 

Secondly, the active subshells are always included in the main group. Furthermore, the 

maximum number of subshells in the main group is limited by 

 

€ 

MK = Min M − 2,4[ ] (4.2.1) 

where 

€ 

M  is the total number of open subshells. For 

€ 

MK ≥ 3 , the first passive subshell included 

in the main group is the one with the largest contribution to the variance, 

 

€ 

α3 g3 −α3( )ΩLS
2 λ3η1 →λ3η2( ) = Max αm gm −αm( )ΩLS

2 λmη1 →λmη2( ){ }
m=3

M
 (4.2.2) 

If a fourth subshell is to be included in the main group it is the subshell with the next largest 

variance. Note that a fourth subshell is included if 

 

€ 

α4 g4 −α4( )ΩLS
2 λ4µ1 →λ4µ2( )

α3 g3 −α3( )ΩLS
2 λ3µ1 →λ3µ2( )

> 0.1 (4.2.3) 

and 

 

€ 

σK
2 3 subshells( )

σLS
2 > 0.3 (4.2.4) 

otherwise only 3 subshells define the main group. The selection of the main group follows that 

used in JJ coupling calculations [9]. 

4.3 Hybrid UTA models 

An important application of PRTA models is to make spectrum calculations more efficient 

without introducing significant uncertainties. It is then fitting to assess the PRTA models 

described in Section 4.2 by contrasting them with a hybrid scheme that complements the DLA 

method with the UTA approach. Here the line limit switch from DLA to UTA-LS [2] is set the 

same as for the hybrid PRTA models. 

4.4 Explanation of Table 3 

The total number of spectral lines, 

€ 

Ntot , in the various calculations are given in Table 3. 

Rather than giving absolute numbers for the mean opacities, the results are compared to the DLA 

with intermediate coupling. That is, 

 

€ 

κ mean =κmean model[ ] κmean DLA[ ]  (4.4.1) 
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where 

€ 

κmean model[ ]  and 

€ 

κmean DLA[ ] refer to the mean opacity (Planck or Rosseland) for a given 

model and DLA with intermediate coupling, respectively. 

The total computation times in these calculations are dominated by 

 

€ 

ttot ≈ tscf + tatm + tspec  (4.4.2) 

where 

€ 

tscf , 

€ 

tatm , and 

€ 

tspec  respectively refer to the computation time for the self-consistent field 

and radial integrals, the atomic data (line energies and strengths), and the bound-bound spectrum 

generation from the spectral lines. Since 

€ 

tscf  is identical for all calculations and not relevant to 

the present discussion, it is excluded in the comparisons. Furthermore, absolute times are not 

particularly interesting since they depend on computer related details (e.g. processor speed and 

compiler). Therefore, all reported times are scaled by 

 

€ 

time unit = tatm + tspec( ) DLA[ ]  (4.4.3) 

arbitrarily using the DLA calculation with intermediate coupling as reference. 

4.5 Discussion of results 

The Fe frequency dependent opacity calculations are displayed in Fig. 12 for DLA with 

intermediate coupling, hybrid R-PRTA, and hybrid UTA. The figure shows good agreement 

between DLA and hybrid R-PRTA except in regions of weak photon absorption; in particular, 

the energy range 

€ 

4T ≤ hν ≤ 6T . The opacity from the hybrid PRTA model is not shown but it is 

similar to the hybrid R-PRTA calculation except that the hybrid PRTA has slightly larger 

discrepancies with the full DLA spectrum in the weak absorption regions. The hybrid UTA 

spectrum is almost identical to the UTA result (not shown) except for some DLA lines 

superimposed on the background absorption from arrays computed in the UTA approximation. 

Clearly, the hybrid UTA model does not reproduce the porosity of the spectrum. 

The Rosseland opacity is a harmonic mean that is sensitive to weak photon absorption 

regions. Table 3 shows that the UTA and pure DLA-LS models respectively overestimate and 

underestimate the Rosseland opacity in cases where there is no significant line overlap. The 

hybrid PRTA and hybrid R-PRTA models are in good agreement with the DLA result for the 

Rosseland mean opacity and are ~30 and ~20 times faster, respectively. The timesaving in the 

PRTA based methods results from having about 1/2 of the transition arrays not treated with the 

full DLA (exceed 3x104 line limit). 
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There is excellent agreement for the Planck opacity in Table 3 except for the UTA models, 

which have -10% error. Since UTA type models conserve the strength of the transition arrays 

and the Planck opacity is an arithmetic mean, the disagreement is due to the assumed statistical 

population of initial levels in the UTA models. Clearly, the PRTA based models, which include 

Boltzmann weighting of the initial level populations from the small-scale DLA main group 

calculations, account for most of the spectrum dependence on initial level populations. 

The relative computation times in Table 3 show that the extra cost of the R-PRTA over the 

PRTA is the significant larger number of lines involved in the spectrum generation. Using the 

efficient FFT method [21], however, the time only increases by ~70%. In contrast, the usual 

approaches to generate the spectrum depend linearly on the number of lines and would have 

increased the computation time by over a factor of 70. 

The deficit in the number of lines in the DLA versus hybrid R-PRTA calculations in Table 3 

is not due to large errors in the estimated number of lines in the latter. It is mostly explained by 

having some transition arrays in the DLA calculation with intermediate coupling requiring more 

computer memory than available so these few arrays were computed using pure LS coupling. It 

means that the reported timesaving relative to the DLA are lower limits since the DLA 

calculation already contains some compromises. 

Finally, the switch in the calculations was set at the relatively low limit 

€ 

N limit = 3 ×104 lines 

[1]. A more conservative choice, say 

€ 

N limit =105 decreases the error in the Rosseland mean 

opacity from ~5% to ~2% in the PRTA based calculation with less than ~20% increase in 

computational effort. On the other hand, an aggressive limit, 

€ 

N limit =104 , increases the 

overestimate of the Rosseland mean opacity to ~20% in the PRTA based calculations without 

much reduction in computational effort. 

5. Conclusions 

The partially resolved transition array (PRTA) method developed for JJ coupling [9] was 

extended to intermediate coupling. The PRTA scheme uses the additive form of the variance 

formula to split the single feature in the unresolved transition array (UTA) approach into a series 

of Gaussians while conserving known properties. The method separates the open subshells in the 

transition into main and secondary groups. The main group is treated with a detail line 

accounting (DLA) method while the secondary group is treated statistically. The secondary 
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group contributes to the spectrum by assigning their portion of the variance, which is computed 

from existing analytic formulas, to each line from the small-scale DLA calculation. By 

construction the impact of the secondary group on the spectrum is relatively small, but it can 

dramatically increase the computational effort in the full DLA calculations. Thus, the PRTA 

method significantly accelerates calculations providing better accuracy than UTA type models. 

The PRTA conserves the strength-weighted energy mean and variance of the transition array. 

It also improves on the higher energy moments and corrects for initial level populations in a 

systematic manner. An important feature of the PRTA model with intermediate coupling is the 

accurate reproduction of the progressive transition from a single feature in near-LS conditions 

towards the spin-orbit split relativistic sub-arrays. 

The PRTA approach was also extended to simulate DLA calculations. Such statistical 

methods require the strength-energy distribution, which is not known and is often approximated 

by formulas containing free parameters constrained by known exact results [8,16,17]. The 

proposed random PRTA (R-PRTA) scheme starts with the small-scale DLA calculation for the 

main group. The model then splits the small-scale DLA lines using a variable line number and 

variance still conserving the known transition array properties. The procedure approximates the 

coupling of the main and secondary groups relying on general properties of transition arrays. 

Only the line splitting produced by the secondary electrons is treated randomly so that initial 

level population effects are retained. The numerical examples show that the R-PRTA 

calculations of line spectra are in good agreement with full DLA results. The R-PRTA model 

provides better fidelity of the DLA results than the PRTA model with only a small overhead in 

computational effort. In particular, the PRTA scheme does not reproduce the porosity of the 

spectrum overestimating the photon absorption in between the lines. 

The PRTA models were applied to Rosseland mean opacity calculations of Fe at conditions 

relevant to stellar envelopes. The comparison showed not only good agreement with the DLA 

calculations for the Rosseland mean opacity but also the frequency dependent photon absorption. 

It is expected; therefore, that PRTA based method should significantly accelerate opacity 

calculations without introducing large uncertainties. 

 

Acknowledgments: This work performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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Appendix 

Conservation of total array variance 

Compact formulas are available for the strength-weighted energy mean and variance for the 

array of lines produced by a dipole radiative transition linking two electronic configurations. 

[2,3]. The proposed PRTA and R-PRTA models conserves these quantities. 

A.1 PRTA model with constant variance 

Consistent with Eq. (2.3), the envelope for the line strengths generated by the small-scale 

DLA component of the PRTA model is given by 

 

€ 

IC ν( ) =
h

SKσK 2π
si exp −

h2 ν −ν i( )2

2σK
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ i=1

K

∑  (A.1.1) 

with normalization 

 

€ 

dν IC ν( )
−∞

∞

∫ =1 (A.1.2) 

The sum is over the 

€ 

K  lines from the small-scale DLA calculation with total strength 

 

€ 

SK = si
i=1

K

∑  (A.1.3) 

and 

€ 

si the strength of the 

€ 

ith  line. By construction the PRTA model has 

 

€ 

SK
−1 si hν i( )2

i=1

K

∑ +σK
2 =σ tot

2  (A.1.4) 

where without loss of generality it is assumed that the first moment vanishes (i.e. 

€ 

ν  represents 

the detuning from the mean energy of the 

€ 

K  lines). 

The variance of 

€ 

IC ν( )  is given by 

 

€ 

h2 dνν 2
−∞

∞

∫ IC ν( ) =
h3

SKσK 2π
si dνν 2 exp −

h2 ν −ν i( )2

2σK
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ −∞

∞

∫
i=1

K

∑

= SK
−1 si hν i( )2

i=1

K

∑ +σK
2 =σ tot

2

 (A.1.5) 

Thus, the PRTA model conserves the total transition variance. 

A.2 The PRTA model with variable variance 

An assumption in the PRTA model [9] is that each of the 

€ 

K  lines generated from the small-

scale DLA calculation for the main group has identical variance given by the contribution of the 
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secondary group. It is expected, however, that each of the total angular momentum levels in the 

main group yield a different variance when coupled to the secondary group, but still conserve the 

total array variance. A more general expression for the line strength envelope is given by 

 

€ 

IV ν( ) = SK
−1 si

h
σ i 2π

exp −
h2 ν −ν i( )2

2σ i
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ i=1

K

∑  (A.2.1) 

where the 

€ 

σi need not be the same. The variance for 

€ 

IV ν( ) should satisfy 

 

€ 

0 =σtot
2 − h2 dνν 2

−∞

∞

∫ IV ν( )

=σK
2 − SK

−1 siσi
2

i=1

K

∑
 (A.2.2) 

providing a constraint on the choice for the 

€ 

σi 's. 

A.3 The R-PRTA model 

The R-PRTA model makes the assumption 

 

€ 

σi
2 = C ni

si
σK
2  (A.3.1) 

with the proportionality constant 

€ 

C  a free parameter. Substituting Eq. (A.3.1) into the constraint 

(A.2.2) yields 

 

€ 

C = SK Nest  (A.3.2) 

where the results uses the normalization in Eq. (3.1.2) for the estimated total number of lines in 

the transition array. These results lead to the variable variance 

€ 

σi in Eq. (3.1.2). 
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TABLE 1 

Model comparison for 

€ 

3p→3d  
 

 DLA PRTA 

Example 

€ 

Ma  

€ 

Nb  

€ 

MK
a  

€ 

Kb  

€ 

R Speedup 

Fe4+
 0.778 

In27+
 0.741 

Ba34+ 0.737 

Tm47+ 

4 2,624,815 2 22,329 

0.731 

~1000 

 

a Number of open subshells in the full or small-scale DLA calculation. 
b Number of lines in the full or small-scale DLA calculation. 

 

 

TABLE 2 

Model comparison for 

€ 

2s→3p 
 

 DLA PRTA 

Example 

€ 

Ma  

€ 

Nb  

€ 

MK
a  

€ 

Kb  

€ 

R Speedup 

Fe5+
 0.996 

In28+
 0.979 

Ba35+ 

5 6,983,165 3 26,903 

0.956 

~1500 

 

a Number of open subshells in the full or small-scale DLA calculation. 
b Number of lines in the full or small-scale DLA calculation. 
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TABLE 3 

Fe opacity calculation 

Model 

€ 

κ R  

€ 

κ P  

€ 

Ntot  

€ 

tatm + tspec 

€ 

tatm  

€ 

tspec  

DLA 1.00 1.00 1.18x109 1.00 0.91 0.086 

DLA-LS 0.71 1.00 8.43x107 0.020 0.018 0.002 

UTA-LS 1.42 0.90 1.22x104 0.001 <0.0005 0.001 

Hybrid UTA 1.42 0.90 8.96x105 0.014 0.011 0.003 

Hybrid PRTA 1.05 1.00 1.69x107 0.030 0.014 0.015 

Hybrid R-PRTA 1.06 1.00 1.20x109 0.044 0.018 0.026 
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Figure Captions 

Fig. 1 Spectrum calculations for Fe4+ with 

€ 

T =11eV and 

€ 

Γ = 0.01eV : DLA (gray), PRTA (solid), 

SOSA (dot-dash), and UTA-LS (dash). 

Fig. 2 Same as Fig. 1 for In27+ at 

€ 

T =190eV . 

Fig. 3 Same as Fig. 1 for Ba23+ at 

€ 

T = 250eV . 

Fig. 4 Same as Fig. 1 for Tm47+ at 

€ 

T = 510eV . 

Fig. 5 Spectrum calculations for Fe5+ with 

€ 

T =11eV  and 

€ 

Γ = 0.1eV : DLA (gray), PRTA (solid), 

SOSA (dot-dash), and UTA-LS (dash). 

Fig. 6 Same as Fig. 5 for In28+ with 

€ 

T =190eV . 

Fig. 7 Same as Fig. 5 for Ba24+ with 

€ 

T = 250eV . 

Fig. 8 Spectrum calculations in In27+ for initial configuration 

€ 

[Mg]3p5 3d3 4snp  with 

€ 

n = 4, 5, and 6 at 

€ 

T =190eV : DLA (black) and R-PRTA (red) with 

€ 

Γ = 0.01eV  and 

PRTA(

€ 

σK = 0) (blue) with  

€ 

Γ = 0.1eV . The ordinate for

€ 

n = 5 and 6  are shifted for 

clarity. 

Fig. 9 Spectrum calculations for Fe4+ at 

€ 

T =11eV  and 

€ 

Γ = 0.01eV : DLA (gray) and 

R-PRTA (solid). 

Fig. 10 Same as Fig. 9 for Ba23+ at 

€ 

T = 250eV . 

Fig. 11 Same as Fig. 9 for Tm47+ at 

€ 

T = 510eV . 

Fig. 12 Fe photon absorption at 

€ 

T = 20eV and 

€ 

ρ =10−4 g cm3 : DLA (red), 

hybrid RPRTA (black), and hybrid DLA-UTA (green). 
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Fig. 1 Spectrum calculations for Fe4+ with 

€ 

T =11eV and 

€ 

Γ = 0.01eV : DLA (gray), PRTA (solid), 

SOSA (dot-dash), and UTA-LS (dash). 

 

 
Fig. 2 Same as Fig. 1 for In27+ at 

€ 

T =190eV . 
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Fig. 3 Same as Fig. 1 for Ba23+ at 

€ 

T = 250eV . 

 

 
Fig. 4 Same as Fig. 1 for Tm47+ at 

€ 

T = 510eV . 
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Fig. 5 Spectrum calculations for Fe5+ with 

€ 

T =11eV and 

€ 

Γ = 0.1eV : DLA (gray), PRTA (solid), 

SOSA (dot-dash), and UTA-LS (dash). 

 

 
Fig. 6 Same as Fig. 5 for In28+ with 

€ 

T =190eV . 
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Fig. 7 Same as Fig. 5 for Ba24+ with 

€ 

T = 250eV . 
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Fig. 8 Spectrum calculations in In27+ for initial configuration 

€ 

[Mg]3p5 3d3 4snp  with 

€ 

n = 4, 5, and 6 at 

€ 

T =190eV : DLA (black) and R-PRTA (red) with 

€ 

Γ = 0.01eV  and 

PRTA(

€ 

σK = 0) (blue) with  

€ 

Γ = 0.1eV . The ordinate for

€ 

n = 5 and 6  are shifted for 

clarity. 
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Fig. 9 Spectrum calculations for Fe4+ at 

€ 

T =11eV  and 

€ 

Γ = 0.01eV : DLA (gray) and 

R-PRTA (black). 

 

 
Fig. 10 Same as Fig. 9 for Ba23+ at 

€ 

T = 250eV . 
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Fig. 11 Same as Fig. 9 for Tm47+ at 

€ 

T = 510eV . 

 

 
Fig. 12 Fe photon absorption at 

€ 

T = 20eV and 

€ 

ρ =10−4 g cm3 : DLA (red), 

hybrid RPRTA (black), and hybrid DLA-UTA (green).\ 


