
LLNL-CONF-534493

Auto-scoping for OpenMP tasks

S. Royuela, A. Duran, C. Liao, D. Quinlan

March 1, 2012

International Workshop on OpenMP (2012)
Rome, Italy
June 11, 2012 through June 13, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Auto-scoping for OpenMP tasks

Sara Royuela, Alejandro Duran, Chunhua Liao, Daniel J. Quinlan

Lawrence Livermore National Laboratory
{royuelaalcaz1, liao6, dquinlan}@llnl.gov

Barcelona Supercomputing Center
{alex.duran}@bsc.es

Abstract. Different analysis and optimisations have been devised for OpenMP
over the years. However, as OpenMP added asynchronous parallelism in the form
of tasks several of them need to be revisited. One such analysis is auto-scoping,
the process of automatically determine the data-sharing attributes of variables.
Auto-scoping relieved the programmer of determining the data-sharing of vari-
ables used in worksharing or parallel regions. Based on the previous work for
worksharing and parallel regions, we present an auto-scoping algorithm to work
with OpenMP tasks. This is a much complex challenge due to the uncertainty of
when a task will be executed, which makes harder to determine with what other
parts of the program will be executed concurrently. We also present an implemen-
tation of the algorithm and results with a number of benchmarks showing that the
algorithm is able to correctly scope a large percentage of the variables present in
them.

1 Introduction

Parallel programming models play an important role in increasing the productivity of
high-performance systems. In this regard, not only performance is necessary but also
convenient programmability is valuable to make these models appealing to program-
mers. OpenMP provides an API with a set of directives that define blocks of code to be
executed by multiple threads. This simplicity has been a crucial aspect in the prolifera-
tion of OpenMP users.

Each application has its own specific requirements regarding to the parallel model.
Loop-centric parallel designs are useful for certain problems where the inherent paral-
lelism relies in bounded iterative constructs. This model becomes useless when deal-
ing with unbounded iterations, recursive algorithms or producer/consumer schemes,
adding excessive overhead, redundant synchronizations and therefore, getting poor per-
formance. Because of these limitations, OpenMP has evolved from its previous loop-
centric design by defining adaptative parallelism with the concept of explicit asyn-
chronous tasks. Tasks are units of work that may be either deferred or executed immedi-
ately. The use of synchronization constructs ensures the completion of all the associated
tasks. This model offers better solutions for parallelizing irregular problems as the ones
mentioned above. Furthermore, tasks are highly composable since they can appear in
parallel regions, worksharings and other tasks.

When using OpenMP task directives, one of the responsabilities left to the pro-
grammer is to determine the appropriate data-sharing attributes of the variables used
inside the task. According to the OpenMP specification, the data-sharing attributes of
the variables referenced in an OpenMP task can be one of shared, private or
firstprivate. Although OpenMP defines a default data-sharing attribute for each
variable, this might not always be the one that ensures the correctness of the code, thus
programmers still need to scope1 them manually most of the time. Due to the large
amount of variables that can potentially appear in each construct, this process is tedious
and error-prone. Rules for the automatic scope of variables in OpenMP parallel regions
have been presented and tested in the past. However, the process to analyse tasks is
quite different due to the uncertainty introduced by tasks regarding to the variable mo-
ment when they can be executed. Because of this uncertainty, the challenge is first to
determine the regions of code that execute concurrently with a task in order to be able
to find out possible race conditions, and then compute how variables are used within
the task and outside the task to assign the proper data-sharing attribute according to the
information collected.

The contributions of this paper are the following:

– A new algorithm for the automatic discovery of the data-sharing attributes of vari-
ables in OpenMP tasks to enhance the programmability of OpenMP. The algorithm
determines the code that executes concurrently with a task and the possible race
conditions of the variables within the task. Then scopes these variables with the
data-sharing that ensures the correctness of the code.

– An implementation of the proposed algorithm in the Mercurium source-to-source
compiler and the proof of the benefits of this automatic process with the test of the
implementation with several OpenMP task benchmarks. We present the results of
the variables that have been automatically scoped and those which the compiler has
not been able to determine the scope.

2 Motivation and Related Work

OpenMP data-sharing attributes for variables referenced in a construct can be prede-
termined, explicitly determined or implicitly determined. Predetermined variables are
those that, regardless their occurrences, have a data-sharing determined by the OpenMP
model. Explicitly determined variables are those that are referenced in a given construct
and are listed in a data-sharing attribute clause on the construct. Implicitly determined
variables are those that are referenced in a given construct, do not have predetermined
data-sharing attributes and are not listed in a data-sharing attribute clause on the con-
struct (See OpenMP Specifications 3.1 [6] for more details). All variables appearing
within a construct have a default data-sharing defined by the OpenMP specifications
(either are predetermined or can be implicitly determined); nonetheless, users are duty
bound to explicitly scope most of these variables changing the default data-sharing val-
ues in order to fulfill the correctness of their codes (i.e. avoiding data race conditions)
and enhance their performance (i.e., privatizing shared variables).

1 In this paper we use the word scope referring to data-sharing attributes

2

In Listing 1.1 we show a section of code from the Floorplan benchmark contained
in the BOTS [3]. In this code we find a task within a for-loop construct that requires the
manual specification of the scope of 15 variables. We aim to improve the programma-
bility of OpenMP by defining a new algorithm that can analyze the access to variables
appearing in OpenMP tasks and can automatically define the proper scope of these
variables. The compiler is capable of accurately scope the variables by analyzing a) the
immediately previous and following synchronization points of the task, b) the accesses
done to the variables appearing within the task in all the concurrent codes to the task
and c) the liveness of these variables after the task. In the cases the compiler cannot
automatically scope a variable, it warns the user to manually do this work. Due to the
effectiveness of the algorithm, we prove that the work of the manual scope of variables
can be considerably reduced and, therefore, the programmability of OpenMP can be
highly improved.

Lin et al. [5] proposed a set of rules that allows the compiler to automatically define
the appropriate scope of variables referenced in an OpenMP parallel region. They use a
data scope attribute called AUTO that activates the automatic discovery of the scope of
variables. These rules apply to variables that have not been implicitly scoped, like the
index of worksharing do-loops. Their algorithm aims to help in the auto-parallelization
process but it has some limitations such as:

– It is only applicable to parallel, parallel do, parallel sections and parallel workshare
constructs.

– It recognizes OpenMP directives, but not API function calls such as omp set lock
and omp unset lock, enabling the report of false positives in the data race condition
process.

– Their interprocedural analysis and array subscripts analyses are limited. Conserva-
tively, most of the times arrays are scoped as shared while they could be privatized.

They implemented their rules in the Sun Studio 9 Fortran 95 compiler and tested the
enhancement in the programmability with the PANTA 3D Navier-Stokes solver. They
found that OpenMP required the manual scoping of 1389 variables, rather than the 13
variables that need to be manually scoped using the process of automatic scoping. They
proved that the performance obtained by the two versions is the same.

Voss et al. [9] presented an evaluation of auto-scoping in OpenMP based on the
work of Lin et al. In this context, they observed significant limitations in the usabil-
ity of the auto-scoping method for automatic parallelization techniques. Implementing
the same AUTO data-sharing attribute as Lin et al. did, but in the Polaris parallelizing
compiler, they evaluated their implementation with a subset of the SPEC benchmark
suite. They revealed that many parts cannot be scoped by the compiler, thus disabling
the auto-parallelization of those sections of the program. Their limitations are the same
as in the work of Lin et al. [5] since the rules used in the automatic scoping process are
the same.

Oracle Solaris Studio 12.2 [7] extends the rules already implemented for the auto-
matic scope of variables in parallel regions to deal with tasks. They define a set of five
rules that helps in the automatic scope of variables. However, they do not define an al-
gorithm to find the code concurrent with a task and the way to determine the occurrence
of data race conditions. Furthermore, their implementation has several restrictions:

3

Listing 1.1. Code with OpenMP task from Floorplan BOTS benchmark
1 s t a t i c i n t a d d c e l l (i n t id , coo r FOOTPRINT , i b r d BOARD, s t r u c t c e l l ∗CELLS) {
2 i n t i , j , nn , a r ea , nnc = 0 , n n l = 0 ;
3 i b r d boa rd ;
4 coo r f o o t p r i n t , NWS[DMAX] ;
5

6 f o r (i = 0 ; i < CELLS[i d] . n ; i ++) {
7 nn = s t a r t s (id , i , NWS, CELLS) ;
8 n n l += nn ;
9 f o r (j = 0 ; j < nn ; j ++)

10 #pragma omp task untied private (board , f o o t p r i n t , a r e a) \
11 firstprivate (NWS, i , j , i d) \
12 shared (FOOTPRINT ,BOARD, CELLS , MIN AREA , MIN FOOTPRINT , N, BEST BOARD, nnc)
13 {
14 s t r u c t c e l l c e l l s [N+ 1] ;
15 memcpy (c e l l s , CELLS , s i z e o f (s t r u c t c e l l)∗ (N+ 1)) ;
16 c e l l s [i d] . t o p = NWS[j] [0] ;
17 c e l l s [i d] . b o t = c e l l s [i d] . t o p + c e l l s [i d] . a l t [i] [0] − 1 ;
18 c e l l s [i d] . l h s = NWS[j] [1] ;
19 c e l l s [i d] . r h s = c e l l s [i d] . l h s + c e l l s [i d] . a l t [i] [1] − 1 ;
20 memcpy (board , BOARD, s i z e o f (i b r d)) ;
21

22 i f (! lay down (id , board , c e l l s))
23 goto end ;
24

25 f o o t p r i n t [0] = max (FOOTPRINT [0] , c e l l s [i d] . b o t + 1) ;
26 f o o t p r i n t [1] = max (FOOTPRINT [1] , c e l l s [i d] . r h s + 1) ;
27 a r e a = f o o t p r i n t [0] ∗ f o o t p r i n t [1] ;
28

29 i f (c e l l s [i d] . n e x t == 0) {
30 i f (a r e a < MIN AREA) {
31 #pragma omp critical
32 i f (a r e a < MIN AREA) {
33 MIN AREA = a r e a ;
34 MIN FOOTPRINT [0] = f o o t p r i n t [0] ;
35 MIN FOOTPRINT [1] = f o o t p r i n t [1] ;
36 memcpy (BEST BOARD, board , s i z e o f (i b r d)) ;
37 }
38 }
39 } e l s e i f (a r e a < MIN AREA) {
40 #pragma omp a t om ic
41 nnc += a d d c e l l (c e l l s [i d] . nex t , f o o t p r i n t , board , c e l l s) ;
42 }
43 end : ;
44 }
45 }
46

47 #pragma omp taskwait
48 b o t s n u m b e r o f t a s k s = nnc + n n l ;
49 }

– The rules are restricted to scalar variables, not dealing with arrays.
– The set of rules is not applicable to global variables.
– The algorithm cannot handle nested tasks or untied tasks.
– It recognizes OpenMP directives, but not API function calls such as omp set lock

and omp unset lock enabling the report of false positives in the data race condition
process.

The analysis of data race conditions in OpenMP programs is needed for many anal-
ysis purposes, such as auto-scoping and auto-parallelization. Y. Lin [10] presented a
methodology for the static race detection. His method distinguishes between general

4

races (the order of two accesses, where at least one is write, to the same memory lo-
cation is not enforced by synchronizations) and data races (a general race where the
access to the memory is not guarded by a critical section). We have based our detec-
tion of data race situations in the method presented by Lin, taking account only of data
race conditions, because are the only ones that can affect the correctness of OpenMP
programs.

We base our work on the increasing need of using asynchronous parallelism and
the good results obtained with algorithms that auto-scope variables in OpenMP parallel
regions. Since there is no existing work with an exhaustive definition of auto-scoping
rules in OpenMP tasks, we define a new algorithm that accurately determines the scope
of variables in task regions. The algorithm differs from the previous proposals because
it has a methodology based on a parallel control flow graph with synchronizations that
discovers all regions executing concurrently with a task. Furthermore, our algorithm
takes into account API functions to determine data race situations and it can deal with
arrays and global variables.

3 Proposal

Our proposal is to extend the clause default used with OpenMP task directive in
order to accept the keyword AUTO. The clause default(AUTO) attached to a task
construct will launch the automatic discovery of the scope of variables in that task. In
Algorithm 1 we present the high-level description of the proposed algorithm. For each
variable referenced inside the task region, which is not local to the task, the algorithm
returns one of the following results:

– UNDEFINED: The algorithm is not able to determine the behavior of a variable.
This variable will be reported to the user to be manually scoped.

– PRIVATE: The variable is to be scoped as private.
– FIRSTPRIVATE: The variable is to be scoped as firstprivate.
– SHARED: The variable is to be scoped as shared.
– SHARED OR FIRTSPRIVATE: The variable can be scoped as either shared or
firstprivate without altering the correctness of the results. It is an implemen-
tation decision to scope them as SHARED or FIRSTPRIVATE.

Algorithm 1 High-level description of the auto-scoping algorithm for OpenMP tasks

1.Define the regions of code that execute concurrently with a given task. This regions
are defined by the immediately previous and following synchronizations of the task
and belong to:

–Other tasks scheduled in the region described above.
–Other instances of the task if it is scheduled within a loop or in a parallel region.
–Code from the parent task between the task scheduling point and the synchro-

nization of the task.
2.Scope the variables within the task depending on the use of these variables in all

regions detected in the previous step and the liveness properties of the variables
after the execution of the task.

5

The algorithm works under the hypothesis that the input code is correct and that
the input code comes from an original sequential code that has been parallelized with
OpenMP. Based on this, suppose the analysis of a task t, then the algorithm will proceed
as it is shown in the Algorithm 2.

Algorithm 2 Detailed algorithm for the auto-scoping of OpenMP tasks

1.Determine the regions of code that execute concurrently with t, referred to as con-
current regions in this paper. These regions can be other tasks, other instances of
the same task and code from the parent task. In order to do that, we first define the
following points:
Scheduling The task scheduling point of t as defined in the OpenMP specification.

Any previous code in the parent task is already executed before the task starts
its execution.

Next sync The point where t is either implicitly or explicitly synchronized with
other tasks in execution. Any code after this point will be executed after the
completion of t.

Last sync The immediately previous synchronization point to the Scheduling point
of t. If this synchronization is a taskwait, then we take into account the
previous nested tasks because they may not be finished.

With these points, we can define the concurrent regions to be the following:
–The region of code of the parent task that runs concurrently with t, bounded by

Scheduling and Next sync.
–The regions defined by the tasks that run concurrently with t, bounded by

Last sync and Next sync. Other instances t’ of t are concurrent with t when
t is scheduled within a parallel construct or within a loop construct.

2.For each variable s, that is a scalar, appearing within t, apply the following rules in
order:

(a)If s is a parameter passed by reference or by address in a call to a function that
we do not have access to, then s is scoped as UNDEFINED. s is also scoped as
UNDEFINED if it is a global variable and t contains a call to a function that
we do not have access to.

(b)If s is not used in the concurrent regions, then:
i.If s is only read within t, then s is scoped as SHARED OR FIRSTPRIVATE.

ii.If s is written within t, then:
A.If s is a global variable and/or s is alive after the exit of t (that means af-

ter the point where t reaches a synchronization point), then s is scoped
as SHARED.

B.If s is dead after the exit of the task, then:
–If the first action performed in s is a write, then s is scoped as PRI-

VATE.
–If the first action performed in s is a read, then s is scoped as
SHARED OR FIRSTPRIVATE.

(c)If s is used in the concurrent regions, then:
i.If s is only read in both the concurrent regions and within the task, then s

is scoped as SHARED OR FIRSTPRIVATE.

6

ii.If s is written either in the concurrent regions or within the task, then we
look for data race conditions (data race analysis specifics are explained at
the end of the algorithm). Thus,

A.If we can assure that no data race can occur, then s is scoped as SHARED.
B.If a data race can occur, then s is scoped as RACE.

3.For each variable a, that is an array, appearing within t
(a)For each use of ai, i ∈ [0..N] of the array variable, where N is the number of

uses of a or a section of a appearing within t, apply the same methodology used
for scalars.

(b)Since OpenMP does not allow different scopes for the subparts of a variable,
we need to mix the results get in the previous step following the rules below:

i.If all ai, i ∈ [0..N] have the same scope sc, then a is scoped as sc.
ii.If there are different regions of the array with different scopes, then:

A.If some ai has been scoped as UNDEFINED or some ai is scoped as
RACE and some aj where i <> j is scoped as SHARED, then a is
scoped as UNDEFINED.

B.If at least one ai is FIRSTPRIVATE and all aj , j ∈ [0..N] where
j <> i are PRIVATE, SHARED OR FIRSTPRIVATE or RACE, then
a is scoped as FIRSTPRIVATE.

C.If at least one ai is TPRIVATE and all aj , j ∈ [0..N] where j <> i
are RACE, then a is scoped as PRIVATE.

D.If at least one ai is SHARED, and all aj , j ∈ [0..N] whre j <> i are
PRIVATE, FIRSTPRIVATE or
SHARED OR FIRSTPRIVATE, then, based on the hypothesis that the
input code is a parallelized version of a sequential code and fulfilling
the sequential consistency rules, a is scoped as SHARED.

4.For each v scalar or array variable that has been scoped as RACE in the previ-
ous steps and, based on the hypothesis that the input code is correct, we privatize
the variable as otherwise a synchronization would have existed to avoid the race
condition. Therefore,

–If the first action performed in v (or some part of v if v is an array) within the
task is a write, then v is scoped as PRIVATE.

–If the first action performed in v (or all parts of v if v is an array) within the task
is a read, then v is scoped as FIRSTPRIVATE.

Data Race conditions In the previous algorithm we need to analyze if the variables
within a task are in a data race situation. Data race conditions can appear when two
threads can access to the same memory unit at the same time and at least one of these
accesses is a write. To determine data race conditions, we have to analyze the code
appearing in all the concurrent regions and the task. Any variable appearing in two of
these regions where, at least one of the accesses is a write and none of the two ac-
cesses is protected by either and atomic construct, a critical construct or a lock routine
(omp set lock / omp unset lock), can trigger a data race situation. Under the assump-
tion we make that the code is correct and, since OpenMP defines an unexpected be-
havior for the algorithms containing race conditions, the variables scoped as RACE are
privatized. Depending on the use made of the variable within the task it will be PRI-
VATE (when it is first written) or FIRSTPRIVATE (when it is first read).

7

Limitations The algorithm has two limitations: it does not deal with aggregates and,
when the tasks contain calls to functions that are not accessible at compile time, then
all variables that can be involved in this functions cannot be scoped. This variables
are global variables and parameters to the function that are addresses or passed by ref-
erence. Regarding to the implementation, the compiler might be unable to determine
the previous synchronization point, Last sync, and/or the next synchronization point,
Next sync (i.e., the point belongs to a function that calls the function where the ana-
lyzed task is scheduled); in these cases only the variables that are local to the function
(including its parameters) where the task is scheduled can be automatically scoped.
The rest of variables must be scoped as UNDEFINED and reported to the user to be
manually scoped.

Strengths The algorithm is perfectly accurate, so it never results on false positives
and the reported results are always correct. Specific rules are defined for determine the
cases when the algorithm cannot define an specific data-sharing so these variables can
be reported back to the user. The methodology we use to determine the regions of code
that run concurrently with a task, based on the definition of the synchronization points
of the task, models an algorithm that is insensitive to the scheduling policy used in
runtime.

Example In the code presented in Listing 1.1 a task is defined within a loop construct.
The algorithm proposed will compute the following result for the variables appearing
within the task: variable cells does not need to be scoped because it is local to the task;
global variables N, MIN AREA, MIN FOOTPRINT and BEST BOARD are scoped as
UNDEFINED due to the occurrence of the system call memcpy and becausethat we do
not have access to the code of this function; the same happens to the parameter board,
passed by reference to memcpy; variable nnc is scoped as SHARED because it is written
within the task, it cannot produce a data race because the access is protected in an
atomic construct and its value is alive at the exit of the task; variables area and footprint
are PRIVATE because the algorithm detects a race condition (different instances of the
task can write to the variable at the same time) and their values are written without
being read; variables i, j, id, BOARD, CELLS, FOOTPRINT and NWS are scoped as
SHARED OR FIRSTPRIVATE because they are only read.

4 Implementation

Mercurium [2] is a source-to-source compiler for C/C++ and Fortran that has a com-
mon internal representation for the three languages. The compiler defines a pipeline of
phases that transform the input source. We have implemented the algorithm presented
in Section 3 within a new phase along with other analyses that are required for the com-
putation of the scope such as control flow analysis, use-definition chains and liveness
analysis. We define a parallel control flow graph (PCFG) [8] with edges connecting 1)
the scheduling point of the task with the task entry and 2) the task exit with the syn-
chronization point that synchronizes the task with its parent (i.e., a taskwait) or with
the threads of the team (i.e., a barrier). In Fig. 1 we show a code scheme with different

8

tasks and synchronization points. In Fig. 2 we show a simplified version of the resul-
tant PCFG. Tasks are linked with special edges representing synchronization because
they are analyzed distinctly. We take into account nested tasks (including nesting due
to recursive functions) and the semantics of the different synchronization points when
we connect the tasks in the PCFG: a barrier synchronizes any previously scheduled
task whereas a taskwait synchronizes just the previous tasks that are scheduled by the
encountered task of the taskwait (i.e., previous child tasks).

 #pragma omp task
 {
 // task A code
 #pragma omp task
 {
 // task B code
 }
 // task A code
 }

#pragma omp taskwait

#pragma omp barrier

// section 1

// section 2

// section 3

 #pragma omp task
 {
 // task C code
 }

 #pragma omp task
 {
 // task D code
 }

// section 4

// section 5

// section 6

Fig. 1. Code scheme with tasks

task A code

section 1

section 2

taskwait

section 3

section 4

section 5

Task C code

Task D code

barrier

section 3

Task B code

Fig. 2. Abstraction of the PCFG used during
the auto-scoping that shows the connections of
the tasks in Fig. 1

In Fig. 3 we show the flow chart with the analyses performed in the compiler in order
to have enough information to compute the scope of variables. The steps we follow are
showed below:

1. Create a PCFG as it is defined previously.
2. Compute the Use-Definition chains: the sets of variables that are read before than

defined (UPPER EXPOSED) and the variables that are defined (KILLED) in each
node; variables that have an undefined behavior are classified as UNDEFINED
(Function calls to methods that are not defined in the same file as the function
being analyzed will cause global variables and the parameters passed by reference
or with pointer type from the function to have an unexpected behavior).

9

3. With this information, we then perform Liveness analysis. This analysis computes
the sets of variables that are alive at the entry of each node (LIVE IN) and the
variables that are alive at the exit of each node (LIVE OUT).

4. Apply the algorithm showed in Section 3 for the automatic discovery of the scope
of variables in OpenMP tasks. In our implementation we have decided to further
specify the variables scoped as SHARED OR FIRSTPRIVATE as follows:

– All scalar variables are defined as FIRSTPRIVATE because the cost of the pri-
vatization should be comparable to the cost of one access to a shared variable.
In the worst case (s is only used once), we do not loose performance and, in
the best case (s is used more than once) we improve the performance.

– All array variables are defined as SHARED because the cost of privatizing an
array is usually high. Only in cases when the positions of the array are accessed
many times may be advantageous to privatize the array.

PCFG	

Use-­‐Def	

Liveness	

Auto-­‐scoping	
 	

	

	

	

	

	

q Upper Exposed

q Killed

q Undefined

q Live in

q Live out

q Private
q  Firstprivate
q Shared
q Shared_or_private
q Race
q Undefined

Fig. 3. Flow chart of the Mercurium analyses used in the Auto-Scoping process

5 Evaluation

For the evaluation of the proposed algorithm, we have used the Barcelona OpenMP
Tasks Suite [3] (BOTS) and other benchmarks, all developed in the Barcelona Comput-
ing Center. Table 1 presents the benchmarks used in our evaluation. Since we want to
evaluate the enhancement of programmability, we have computed the number of vari-
ables that have been automatically scoped. A summary of the results is shown in Table
2. The table shows the amount of variables that have been automatically scoped orga-
nized depending on their scope, the amount of variables that the algorithm has been
unable to scope and the percentage of successfulness for each benchmark.

The overall result is that a significant amount of variables, more than the 70%, can
be automatically and correctly scoped by our algorithm. Most of the cases where some
variables cannot be automatically scoped correspond to global variables in benchmarks
where either the tasks contain calls to functions without accessible source code or the
previous synchronization point of the tasks cannot be specified; therefore, the compiler
cannot determine the accesses done to variables defined in an outer scope to the scope
of the function that schedules the task (most of them global variables). In the case of
the Health benchmark, we obtain a poor result because the variables used in tasks are
aggregates and the algorithm does not yet deal with this kind of variables. In some cases

10

Benchmark Description
Alignment Dynamic programming algorithm that aligns sequences of proteins.
FFT Spectral method that computes the Fast Fourier Transformation.
Fib Recursive version of the Fibonacci numbers computation.
Health Simulation method for a country health system.
Floorplan Optimization algorithm for the optimal placement of cells in a floor plan.
NQueens Search algorithm that finds solutions for the N Queens problem.
Sort Integer sorting algorithm that uses a mixture of sorting algorithms to sort a vector.
SparseLU Linear algebra algorithm that computes the LU factorization of a sparse matrix.
UTS Search algorithm that computes the number of nodes in an Unbalanced Tree.
Stencil Stencil algorithm over a matrix structure.
Cholesky Linear algebra algorithm that computes the Cholesky decomposition of a matrix.

Table 1. Short description of the benchmarks used in the evaluation

as in the Alignment or the Cholesky benchmarks, the algorithm is able to find data race
conditions and privatize the variables; or, as in the case of the Floorplan benchmark,
the algorithm dismiss data races, and keeps variables as shared.

SHARED PRIVATE FIRSTPRIVATE UNDEF (%) success
Alignment 0 4 5 12 42.86%

FFT 5 0 249 96 72.57%
Fib 2 0 2 0 100.00%

Health 0 0 1 2 33.00%
Floorplan 2 1 3 7 46.15%
NQueens 0 0 5 0 100.00%

Sort 0 0 26 9 74.29%
SparseLU 0 0 7 3 70.00%

UTS 2 1 2 2 71.43%
Stencil 0 0 3 1 75%

Cholesky 0 0 16 0 100.00%

TOTAL 11 6 319 132 71.79%

Table 2. Results from the automatic scoping algorithm for different benchmarks

We have seen that the main difficulty when trying to automatically define the data-
sharing of variables are the global variables. We have to improve the implementation in
order to be able to define the previous and next synchronization points in some cases.
This means to inline the PCFG to have enough context information. If we are able to
define these two points, all variables that in the current results are undefined (but the
case of the Health benchmark) will be automatically scoped.

11

6 Conclusions and Future work

We have developed an automatic mechanism to improve the programmability of OpenMP
by relieving the programmer from the tedious work of manually scoping variables
within tasks. The mechanism consists of a new algorithm based on compiler analyses
such as use-definition chains and liveness analysis, and the OpenMP synchronization
points. This algorithm scopes automatically the variables appearing in OpenMP tasks
with the use of the clause default(AUTO). We have proved the benefits of this new
method implementing the algorithm in the Mercurium compiler and testing it with a
set of benchmarks. Our results show the majority of variables can be scoped by the
compiler. The variables that cannot be automatically scoped are reported to the user to
proceed to manual scoping.

In the future we want to extend the algorithm presented in this paper in order to
deal with aggregates. We also plan to implement the algorithm in the ROSE [4] source-
to-source compiler and take advantage of its features of dealing with multiple files and
system calls. We want to enable the compiler to recognize the most common system
calls, such as memory allocation methods, in order to avoid the incapacity of auto-
scoping global variables and address parameters in the occurrence of such calls. The
automatic scoping of variables is part of the solution to other problems of compiler
analyses and optimizations. This analysis can, for example, lead us to enhance auto-
parallelizing tools and help with OpenMP correctness tools. We plan to use the auto-
scoping analysis to automatically define data-dependencies between tasks[1].

References
1. A. Duran and E. Ayguadé and R.M. Badia and J. Labarta and L. Martinell and X. Martorell

and J. Planas. OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architec-
tures. Parallel Processing Letters, 21(2):173–193, 2011.

2. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler.
http://nanos.ac.upc.edu/mcxx.

3. A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé. Barcelona OpenMP Tasks
Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In
38th International Conference on Parallel Processing (ICPP ’09), page 124–131, Vienna,
Austria, September 2009. IEEE Computer Society.

4. D. Quinlan et al. Rose compiler infrastructure. http://http://rosecompiler.org.
5. Y. Lin, C. Terboven, D. an Mey, and N. Copty. Automatic Scoping of Variables in Parallel

Regions of an OpenMP Program. In Barbara M. Chapman, editor, WOMPAT, volume 3349
of Lecture Notes in Computer Science, pages 83–97. Springer, 2004.

6. OpenMP ARB. OpenMP Application Program Interface, v. 3.1, September 2011.
7. Oracle. Oracle Solaris Studio 12.2: OpenMP API User’s Guide, 2010.
8. S. Royuela. Compiler Analysis and its Application to OmpSs. Master’s thesis, Technical

University of Catalonia, 1012.
9. M. Voss, E. Chiu, P.M.Y. Chow, C. Wong, and K. Yuen. An Evaluation of Auto-Scoping

in OpenMP. In Barbara M. Chapman, editor, WOMPAT, volume 3349 of Lecture Notes in
Computer Science, pages 98–109. Springer, 2004.

10. Y. Lin. Static Nonconcurrency Analysis of OpenMP Programs. In M.S. Müller, B. Chapman,
B. de Supinski, A. Malony, and M. Voss, editors, IWOMP, volume 4315 of Lecture Notes in
Computer Science, pages 36–50. Springer, 2005.

12

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344

