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Chapter 1

Reaction mechanisms of pair transfer

Ian Thompson

Lawrence Livermore National Laboratory,
PO Box 808, L-414, Livermore, CA 94551, USA

B. Alex Brown

NSCL, Michigan State University, East Lansing, MI 58824

1. Introduction

Much of the evidence for nucleonic pairing in nuclei comes from energy ex-
pectation values, but important further information comes from the transfer
of pairs of nucleons to or from another nucleus of known structure. Indeed,
much of what we have learned about nuclear properties have been derived
from experiments involving the collision, or reaction, between two nuclei.
In this regard, a more fundamental understating of nuclear reactions has
been, and will continue to be (especially in the FRIB era), crucial to the
nuclear physics community. This chapter focuses on the theory, calculation
and model results for the reactions mechanisms of par transfer.

Here we consider the reaction mechanisms for pair transfer between two
nuclei, for reactions that we can describe as A(B+2, B)A+2. Here, the two
nucleons may be two neutrons, two protons, or a proton and a neutron, and
are transferred from core B to core A. The nucleons may transfer either in
one simultaneous step, or one after the other sequentially. If a distinguish-
able proton and a neutron are transferred, then both proton-then-neutron
and neutron-then-proton routes need to be considered. Furthermore, these
sequential and simultaneous routes contribute amplitudes that all add to-
gether coherently. This feature enables us to probe the nature of coherent
two-nucleon superpositions in nuclei. Conversely, these superpositions, cou-
pling orders and phase conventions have all to be defined consistently in a
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good calculation.
Subsequent sections will therefore consider the definition of two-

nucleon overlap functions, their coordinate transformations, the definition
of transfer matrix elements along with zero-range approximations and non-
orthogonality corrections. Finally, some results are shown to illustrate the
coherence effects in the reaction mechanisms of pair transfers.

In the last 50 years, a significant number of papers have been presented
in which absolute differential cross sections have been calculated, and com-
pared with experimental results.1–19 Traditionally, for example in,9 the
theory predictions have fallen well below the experimental data. This ratio
has been called the ‘unhappiness factor’.20,21 Most previous calculations
modeled the transfer of a dineutron as a single cluster. Only from Charl-
ton8 were sequential transfer contributions considered. We see now that
modern calculations are in considerably better agreement with experiment.

2. Bound states and vertex functions

The general theory of nucleon pair bound states defines the overlap function
φJI (r,ρ) = 〈ΦA(I)|ΦA+2(J)〉 in terms of the Jacobi coordinates r between
the two nucleons, and ρ between their center of mass (cm) and the core A.
The core spin is I and the spin of the A+2 composite state is J . When
intrinsic spins s1, s2 are also included in a particular coupling order such as
|{L, (`, (s1s2)S)j}J12, I; J〉, we have the partial wave expansion

φJI (r,ρ) =
∑

L`SjJ12I

φIµI
(ξc)φσ1

s1 φ
σ2
s2 Y

Λ
L (r̂)Y µ` (ρ̂)

1
rρ
u12(r, ρ)〈J12M12IµI |JM〉

〈LΛjm12|J12M12〉〈`µSΣ|jm12〉〈s1σ1s2σ2|SΣ〉 (1)

for some radial wave function u12(r, ρ) that can be given either as a cluster
product of single-particle wave functions u12(r, ρ) = ΦL(r)φ`(ρ), input di-
rectly as a two-dimensional distribution e.g. from a Faddeev bound-sate cal-
culation, or calculated from the correlated sum of products of single-particle
states with independent coordinates. These two-nucleon wave functions
will in general be the eigenstates of a three-body bound state Schrödinger
equation

[Tr + Tρ + V1A + V2A + V12 − ε]φJI (r,ρ) = 0 , (2)

where the ViA are the potentials between nucleon i and the core, and V12

is the pairing interaction between the two nucleons.
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Such two-particle states that come from shell-model calculations or from
Sturmian-basis calculations22 are usually described by means of the |r1, r2〉
coordinates, and then transformed internally into the centre-of-mass coor-
dinates |r,ρ〉 of Eq. (1) using ri = xir + yiρ. For equal mass particles,
x1 = x2 = 1, and y1 = −y2 = 1

2 . This describes a pair state as

ϕ12(r1, r2) =
∑
i

ci |(`1(i), s1)j1(i), (`2(i), s2)j2(i); J12〉 (3)

The coefficients ci for correlated basis states i and the single-particle wave
functions ϕ`sj(r) contain all the physics information about the bound state
needed to do a transfer calculation. Shell model codes can produce the
coefficients ci needed here in terms of previously calculated eigenstates of
the A and the A+ 2 systems.

The vertex functions of these bounds states are defined to be these
bound state wave functions φJI (r,ρ) multiplied by the potentials which
have zero effects after the transfer step is performed and all exit channel
nuclei have completely separated. These potentials are therefore the sum V

of the binding potentials V sp
i = V`sj(ri) to give V = V sp

1A +V sp
2B . (These are

the individual potentials that should appear in the bound-state equation
[Tr + V`sj(r) − ε]ϕ`sj(r) = 0.) The vertex function does not include the
nucleon-nucleon pair interaction V12(r1−r2), since this potential produces
binding effects in both the initial and final bound states. We denote by
V φJI (r,ρ) the vertex function after transformation into Jacobi coordinates
by the same method used to transform the wave function itself.

3. Post and prior coupling forms

We now consider the Hamiltonian H for the whole system of A+B+2 nu-
cleons and described by system wave function Ψ. Let the various A+2 and
B+2 bound states be denoted by Φi for various i. Then we may expand Ψ
in terms of the Φi with some coefficients ψi(Ri) depending on the two-body
separation vectors Ri, as Ψ =

∑
i ψi(Ri)Φi.

The model Schrödinger’s equation [H− E]Ψ = 0 when projected sepa-
rately onto the different basis states Φj , yields the set of equations

[Ej −Hj ]ψj(Rj) =
∑
i6=j

〈Φj |H − E|Φi〉ψi(Ri). (4)

which couple together the unknown wave functions ψi(Ri). The channel
Hamiltonians are defined by Hj − Ej = 〈Φj |H − E|Φj〉 such that the Ej
are the asymptotic kinetic energies in channel j.
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The matrix element 〈Φj |H − E|Φi〉 has two different forms, depending
on whether we expand

H− E = Hj − Ej + Vj (the ‘post’ form)

= Hi − Ei + Vi (the ‘prior’ form).

The name (post or prior) is determined by whether it is the initial or final
channel whose Hamiltonian is used. The above Eq. (4), as set up, has i
as the initial channel and j as the final channel for the indicated coupling.
Thus

〈Φj |H − E|Φi〉 = V post
ji + [Hj − Ej ]Kji (post) (5)

or = V prior
ji +Kji[Hi − Ei] (prior)

where

V post
ji ≡ 〈Φj |Vj |Φi〉, V prior

ji ≡ 〈Φj |Vi|Φi〉, Kji ≡ 〈Φj |Φi〉. (6)

The overlap function Kji = 〈Φj |Φi〉 in Eq. (5) arises from the non-
orthogonality between the basis states Φi and Φj if these are in different
mass partitions. The Kji are non-local operators that go to zero asymp-
totically. (Within the same partition, the Φi are inelastic states, and form
an orthogonal set.)

The first-order DWBA matrix element use entrance ψi and exit ψj chan-
nel wave functions satisfying [Hi − Ei]ψi = 0 and [Hj − Ej ]ψj = 0 respec-
tively. Its matrix element is

T
(1)
ji = 〈ψ(−)

j Φj |H − E|Φiψ(+)
i 〉 (7)

The prior form of this is

T
(prior)
ji = 〈ψ(−)

j Φj |Hi − Ei + Vi|Φiψ(+)
i 〉

= 〈ψ(−)
j Φj |Vi|Φiψ(+)

i 〉+ 〈ψ(−)
j Φj |Φi[Hi − Ei]ψ(+)

i 〉

= 〈ψ(−)
j Φj |Vi|Φiψ(+)

i 〉+ 0

= 〈ψ(−)
j |V

prior
ji |ψ(+)

i 〉 . (8)

Similarly, the equivalent post form is

T
(post)
ji = 〈ψ(−)

j Φj |Hj − Ej + Vj |Φiψ(+)
i 〉

= 〈ψ(−)
j Φj |Vi|Φiψ(+)

i 〉+ 〈ψ(−)
j [Hj − Ej ]Φj |Φiψ(+)

i 〉

= 〈ψ(−)
j Φj |Vj |Φiψ(+)

i 〉+ 0

= 〈ψ(−)
j |V

post
ji |ψ(+)

i 〉 . (9)
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Thus the non-orthogonality term disappears in first-order DWBA. Post
and prior first-order DWBA matrix elements can be made to exactly agree
numerically, if sufficient care is taken to ensure convergence of the non-local
form factors.

Let a second-order DWBA matrix element use entrance channel i, exit
channel k, and some intermediate channel j, as i → j → k. The propaga-
tion in the intermediate channel may be described in terms of the Greens
function Gj , or equivalently within an iterated coupled-channels set. The
two-step DWBA matrix element is

T
(2)
ki = 〈ψ(−)

k | 〈Φk|H−E|Φj〉Gj〈Φj |H−E|Φi〉 |ψ
(+)
i 〉 . (10)

Now there are four matrix elements that may be calculated, according to
the first and the second Hamiltonian form chosen: post-post, post-prior,
prior-post, and prior-prior. The terms prior and post for each step are used
to refer to the initial or final channels of that step, not the overall incoming
or outgoing channels. In ‘prior-post’, the prior refers to the first step, and
the post refers to the second step.

The post-post form of this, for example, is

T
(post,post)
ki = 〈ψ(−)

k | 〈Φk|Hk−Ek+Vk|Φj〉Gj〈Φj |Hj−Ej+Vj |Φi〉 ψ(+)
i 〉 . (11)

Here the [Hk − Ek] can operate on the final ψk to give zero, but little can
simplify the [Hj − Ej ] since [Hj − Ej ]Gj 6= 0 always. Thus

T
(post,post)
ki = 〈ψ(−)

k |V
post
kj GjV

post
ki |ψ

(+)
i 〉+

〈ψ(−)
k |V

post
kj Gj [Hj − Ej ]Kji| ψ(+)

i 〉 (12)

This second term is called a ‘non-orthogonality term’ since it involves the
bound-state non-orthogonality overlaps Kji = 〈Φj |Φi〉, which is significant
when Ri and Rj are both within the range of the bound states.

Similar analyses for post-prior and prior-prior two-step DWBA expres-
sion also have non-orthogonality terms in the final form. The prior-post
form, however, is

T
(prior,post)
ki = 〈ψ(−)

k | 〈Φk|Hk−Ek+Vk|Φj〉Gj〈Φj |Hi−Ei+Vi|Φi〉 ψ(+)
i 〉 . (13)

Here the [Hi − Ei] can also operate on the initial ψi, to give zero, as well
as [Hk − Ek] on the ψk, so we have the simplest form

T
(prior,post)
ki = 〈ψ(−)

k |V
post
kj GjV

prior
ji |ψ(+)

i 〉 (14)

The non-orthogonality terms can thus be made to disappear in second-order
DWBA if the first and second steps use the prior and post interactions
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respectively. When they are included as necessary, the results should be
the same whatever post or prior forms are used.

In third and higher-order transfer calculations, some non-orthogonality
terms will always be present, but most pair transfer mechanisms can be
well modeled as two-step processes.

4. Two-nucleon transfer interaction

We now consider the specific transfer matrix element V prior
ji = 〈Φj |Vi|Φi〉.

Given an expression for this prior form, we may calculate the post inter-
action easily as V post

ji = (V prior
ij )†. Take Φj to refer to the bound states of

nucleus A+2 outside core A, and Φi analogously for nucleus B.
The transfer interaction has therefore the non-local matrix element

Vji(Rj ,Ri) = 〈φJA

IA
(r,ρA)|V sp

1B + V sp
2B + UAB − Ui|φJB

IB
(r,ρB)〉. (15)

As is usual in transfer operators, there are three kinds of potentials appear-
ing here. First there are the binding potentials V sp

1B(r1B)+V sp
2B(r2B). Since

these binding potentials always appear while multiplied by there bound
state wave functions, we need only store and use the vertex functions de-
fined in section 2. Second there is the ‘core-core’ potential UAB(RAB) be-
tween the core nuclei A and B. Finally is subtracted an optical potential.
In this prior form we subtract the optical potential in the initial channel,
Ui(Ri). The difference UAB −Ui of the two optical potentials is called the
remnant term, and is sometimes taken to be small.

The integrals in Eq. (15) include integrating over the two-nucleon sep-
aration r as well as over their cm distance ρA from the core A. The r coor-
dinate appears in both the initial and final states, and so is not labeled by
A or B. This has the important consequence that neither the distance nor
the angle of the r coordinate is changed in the transfer. Neither, therefore,
is their relative angular momentum `, and, for similar reasons, nor their
spin couplings S and total angular momentum j. The two neutron transfer
can hence be viewed as the transfer of a ‘structured particle’ (`, (s1s2)S)j,
and then becomes similar to single-particle transfers of above. This means
that when we also integrate over the coordinates ρA and ρB , we can use
the standard procedures already developed for one-particle transfer inter-
actions.
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5. Coordinate transformations

The transfer mechanism requires the pair wave function to be expressed in
the form of Eq. (1), so independent-particle forms of Eq. (3) have to be
transformed in their coordinates as

ϕ12(r1, r2) =
∑
u

ci
∑
L`Sj

|L, (`, (s1s2)S)j; J12T 〉φJ12T,i
L(`S)j(r, ρ) (16)

A particular basis state i in the (r, ρ) coordinates is

φJ12,i
L(`S)j(r, ρ) = 〈L, (`, (s1s2)S)j; J12| (`1(i), s1)j1(i), (`2(i), s2)j2(i); J12〉(17)

×〈[YL(r̂)Y`(ρ̂)]λ | [ϕ`1s1j1(r1)ϕ`2s2j2(r2)]J12T
〉 (18)

where (suppressing the i indices for clarity)

〈L, (`, (s1s2)S)j; J12T |(`1, s1)j1, (`2, s2)j2; J12T 〉 =
∑
λ

λ̂Ŝĵ1ĵ2

×

 `1 `2 λ

s1 s2 S

j1 j2 J12

 1 + (−1)`+S+T√
2(1 + δ`1,`2δj1,j2)

ĵλ̂W (L`J12S;λj)(−1)`+L−λ.(19)

The radial overlap integral can be derived by means of harmonic-oscillator
expansions,23 with the Bayman-Kallio expansion24 or using the Moshinsky
solid-harmonic expansion.25 This last method gives

Kλ
`L:`1`2(r, ρ) (20)

= 〈[YL(r̂)Y`(ρ̂)]λ | [ϕ`1(r1)ϕ`2(r2)]λ〉

=
∑
n1n2

(
2`1+1
2n1

) 1
2
(

2`2+1
2n2

) 1
2

(x1r)`1−n1(y1ρ)n1(x2r)n2(y2ρ)`2−n2

×
∑
Q

qQ`1`2(r, ρ) (2Q+1) ˆ̀
1

ˆ̀
2`̂1−n1`̂2−n2 L̂ˆ̀

×
∑
Λ1Λ2

(
`1−n1 n2 Λ1

0 0 0

)(
`w−n2 n1 Λ2

0 0 0

)(
Λ1 L Q

0 0 0

)(
Λ2 ` Q

0 0 0

)
×(−1)`1+`2+L+Λ2(2Λ1 + 1)(2Λ2 + 1)W (Λ1LΛ2`;Qλ)

×

 `1−n1 n2 Λ1

n1 `2−n2 Λ2

`1 `2 λ

 , (21)

where
(
a

b

)
is a binomial coefficient. The kernel function qQ`1`2(r, ρ) is the

Legendre expansion of the product of the two radial wave functions in terms
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of ϕ, the cosine of the angle between r and ρ:

qQ`1,`2(r, ρ) =
1
2

∫ +1

−1

ϕ`1s1j1(r1)
r1

`1+1
ϕ`2s2j2(r2)

r2

`2+1

PQ(u)du (22)

6. Zero-range and other approximations

The coupling potentials Vji(Rj ,Ri) of Eq. (15) are non-local, in the sense
that in general the initial and final radii, Rj and Ri, will be different. They
will not only have different magnitudes, but also different directions. In the
early days of transfer modeling, the calculations became much more prac-
tical if a zero-range approximation could be found, in which the coupling
was restricted to Rj = αRi for some constant α (which need not be unity).

When the projectile is a light ion such as 3H, 3He or 4He for nucleus
B+ 2, then the binding potential sum V sp

1B +V sp
2B will have short range. We

may therefore consider approximating

[V sp
1B + V sp

2B ]φJB

IB
(r,ρB) ∼ D0δ(ρB)φBnn(r) (23)

for some nucleon-nucleon wave function φnn(r) that we are free to choose.
This a zero-range approximation. Note that it is only ρB which needs to
have zero range, not r. The constant D0 is called the zero-range constant.

If, furthermore, we can neglect the remnant term UAB − Ui, then the
transfer coupling of Eq. (15) can be simplified as

Vji(Rj ,Ri) = 〈φJA

IA
(r,ρA)|V sp

1B + V sp
2B |φ

JB

IB
(r,ρB)〉

= 〈φJA

IA
(r,ρA)|D0δ(ρB)φBnn(r)〉

= D0 〈φBnn(r)|φJA

IA
(r,ρA)〉 δ(ρB)

= D0 〈φBnn(r)|φJA

IA
(r,ρA)〉 δ(β

(
Rj −

A

A+2
Ri

)
) (24)

since

Rj −
A

A+2
Ri = ρB/β for β =

2(A+B+2)
(A+2)(B+2)

(25)

That is, we arrive at a ‘form factor’ 〈φBnn(r)|φJA

IA
(r,−Rj)〉 that is local in

Rj = A
A+2Ri = −ρA because of the delta function δ(ρB). To find the form

factor, we need to determine the average nucleon-nucleon relative wave
function φBnn(r) in the light ion, and project the heavy-nucleus two-body
wave function φJA

IA
(r,ρA) onto this relative motion. This gives a function

only of the distance ρA = Rj and the angles. The kinematics for this zero-
range approximation are identical to those for the one-body transfer of a
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Table 1. Two-neutron overlap
function for 〈122Sn|124Sn〉

1g2
7/2

0.62944

2d2
5/2

0.59927

2d2
3/2

0.71913

3s2
1/2

0.51892

1h2
11/2

–1.24399

mass-2 cluster from core B to core A. A local-energy approximation may
be used to improve the treatment of the finite range of the vertex function,
just as for one-body transfers.

This makes clear the conclusion stated at the end of section 4, namely
that transfer reactions only probe in the unknown nucleus those components
of nn relative motion that already exist in the known nucleus. Since the
known light nuclei 3H, 3He and 4He have predominantly s-wave relative
motion between the two transferred nucleons, our transfer reactions will
only probe pairing states of s-wave relative motion in the target. The
magnitude of the transfer cross section will be proportional to the form
factor overlap 〈φBnn(r)|φJA

IA
(r,ρA)〉.

Zero-range approximations can be also used for some of the sequen-
tial steps involving these light nuclei, but not all of them if we are using
‘prior-post’ couplings to avoid non-orthogonality corrections. For stripping
reactions such as (t,p), the first prior (t,d) step has no good zero-range ap-
proximation, and for pickup reactions such as (p,t), the second post (d,t)
step must be treated in full finite range for the same reason.

7. Results

In this short paper we will focus on the reaction mechanisms for the pair
transfer 124Sn(p,t)122Sn at 25 MeV, using the overlap function shown in
Table 1 we find by overlapping the shell-model wave functions for the ground
states of 122Sn and 124Sn. The theory of these overlaps was explained by
Cohen and Kurath27 for p-shell nuclei. We compare with the experimental
data of Guazzoni et al.26

We use the triton potential of Li,28 the deuteron potential of Daehnick,29

and the proton potential of Chapel Hill 89.30 All the two-neutron wave
functions are constructed within the half-separation-energy approximation.
For a triton wave function we use the pure s2 configuration found by the
product of eigenstates at the half-separation energy (4.24 MeV) in a Woods-
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Fig. 1. Simultaneous (short dash), sequential (dot-dash) and simultaneous+sequential

(solid line) cross sections for the reaction 124Sn(p,t)122Sn at 25 MeV, in comparison with
the experimental data of Guazzoni et al.26

Saxon potential with V = 77.83 MeV, R = 0.95 fm, and a = 0.65 fm. The
Sn wave functions shown in Table 1 are found at the half-separation energy
(7.219 MeV) in a WS potential with r = 1.17 fm, and a = 0.75 fm that has
the fixed spin-orbit component Vso = 6.2 MeV, r = 1.01 fm, and a = 0.75
fm.

The complete cross section prediction is shown in Fig. 1. We see the
excellent agreement between theory and experiment as already published.19

Now we see that, with good shell-model overlaps and proper finite-range
and sequential contributions, the unhappiness factors are much closer to
unity.

To see the importance of the non-orthogonality terms, and hence of
choosing ‘prior-post’ couplings if non-orthogonality terms are to be avoided,
Fig. 2 plots the different sequential cross sections for all possible combina-
tions of post and prior for the two steps. The prior-post solid curve is the
dot-dashed curve in Fig. 1. The other curves are all different from this
one, and cannot be simply added to the simultaneous amplitude to get the
correct result. This also implies that no complete calculation with only
zero-range couplings is possible.
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Fig. 2. Sequential cross sections for all possible combinations of post and prior for the

two steps.

Finally, it is instructive to look at the interference effects between the
various simultaneous and sequential contributions. To display these coher-
ence effects, I choose to plot the scattering amplitude at zero degrees for the
non-spin-flip amplitude mp = mt = 1/2 (the only non-zero amplitude at
this angle). Fig. 3 plots all the simultaneous and sequential contributions
from the different components listed in Table 1, along with their coherent
sums. We see that all the contributions to the simultaneous transfer are
constructively coherent, as are all the contributions to the total sequential
amplitude. This constructive coherence follows from the signs of the ampli-
tudes in Table 1, and reflects the significant pairing enhancement in 124Sn.
The total sequential and simultaneous amplitudes are not completely coher-
ent with each other, however. This reflects the important of the deuteron
channel with its own specific optical potential, and is also shown by their
slightly different shapes of angular distributions in Fig. 1.
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1, and the longer lines with symbols are their coherent sums.
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