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We report on a novel theoretical model for the calculation of x-ray scattering from high pressure
electride phases of magnesium. By treating interstitial electrons as effective anions forming a sub-
lattice within the crystal, we explicitly account for Bragg reflections from the sublattice as well as for
scattering interferences between the ion lattice and the anion sublattice. The additional reflections
and interferences lead to significant modifications of the static structure factor as compared to
the pure lattices. Our results are important for accurate calculations of material properties in the
high pressure phase and further allow for direct experimental verification of the electride character
through angle-resolved x-ray Thomson scattering.
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Exploration of the equation of state of matter under extreme conditions of pressure, temperature, and density is
one of the most challenging adventures of modern science . This research pushes the limits of our understanding
about matter at crucial points in the universe, e.g. closely after the big bang, in planetary and stellar interiors, and
galactic nuclei [1]. Matter at high energy density (∼ 104 J/cm

3
= 1 Mbar = 100 GPa) is produced either by direct

deposition of intense x-ray radiation (of the order 1016 W/cm
2
) in a micrometer size target using free electron lasers

[2] or by exerting high pressure (several 100s of GPa) on the target. Short pulse lengths of the order 10 fs make free
electron lasers suitable to investigate ultrashort processes [3–6], such as non-thermal melting, electronic excitations
and relaxation processes. High pressure techniques produce near equlibrium states that are sufficiently long-lived to
investigate their thermodynamic behavior, e.g. the equation of state. The highest pressures in the laboratory are
reached today by dynamical compression through interaction of matter with pulsed power in the form of laser pulses,
pinches, or explosions. A well known example is the inertial confinement fusion approach to reach conditions similar
to the interior of the sun through indirect laser drive [7].

Single shock compression is limited to the principle Hugoniot [8] of the target matter, producing high entropy states.
Typical temperatures after compression are in the range of several 1000 K, where most materials that are solid at
ambient conditions melt and/or transition to a plasma state. Multiple shock compression allows to reach high density
states off the principal Hugoniot, i.e. at lower temperature [9]. In the ideal limit of ramp compression (i.e. infinitely
many infinitesimally small shocks), the compression becomes isentropic producing superdense states of matter near
room temperature.

Such high density, low temperature phases have recently been investigated using modern ab-initio computer simu-
lation techniques, e.g. density functional theory (DFT) combined with sophisticated structure finding tools [10]. In
particular, the structure of simple metals under high pressure (several 10 to several 100 GPa) has received a lot of
attention, e.g. sodium [11] potassium [12]), magnesium, [13]) and Al [14]. Surprisingly, these studies showed that
valence electrons, instead of becoming increasingly delocalized and Fermi degenerate, as one might naively expect,
pair and localize in interstitial cages formed by the still persisting ion lattice [15, 16]. This phenomenon is explained
in terms of Coulomb repulsion between valence and core electrons and orthogonality between these states. It was
also found that these systems still exhibit metalic or semimetalic conductivity, which is related to the relatively high
kinetic energy of electrons within the interstitial cages and interaction effects between the Brillouin zone boundary
and the Fermi edge [14, 17].

The existence of such “electride” states of matter was known previously only from certain complex organic and
inorganic compounds, see e.g. [18]. Initially, electrides seemed to be of limited practical interest until the first thermally
and chemically stable single-crystal electride substance was discovered [19]. Being an optically transparent conductor
with unusual magnetic properties, potential applications for electrides include optoelectronic devices, thermoionic
power generation, and cooling devices [20].

A direct observation of the electride character of high pressure, low temperature solids is still missing. In this
paper, we demonstrate that angle-resolved X-Ray Thomson Scattering (XRTS) is uniquely suited to a) proof the
existence of high pressure electride phases, and b) to discriminate between various predicted high pressure electride
phases, separated by a structural phase transition. We develop a model for the static structure factor S(k) for the
electride substance. We apply our model to magnesium (Mg) at several hundred GPa pressure and room temperature.
Li et al. [13] have recently predicted the high pressure phases of Mg between ambient conditions and pressures up
to 1 TPa. Between ∼ 500 and 800 GPa, fcc is found to be the most stable crystal structure. In the simulations,
valence electrons where shown to localize in the interstitial cages, forming a simple cubic (sc) sublattice. Precisely
this sublattice leads to unmistakable features in the structure factor and thus provides a criterion to experimentally
demonstrate the existence of the electride phase: A pure fcc lattice (i.e. without localized interstitial electrons) is
characterized by systematic absences at the (100) and (110) Bragg reflection. The interstitial electron sublattice is of
sc type and hence shows Bragg peaks at these positions.

Angle-resolved high-energy x-ray scattering experiments will directly measure the new structure peaks from elec-
trides. For example, electride experiments in mm-scale magnesium samples can be approached in static high-pressure
diamond anvil cell [? ] or in dynamic compression experiments on high-power lasers or pinches [21]. The latter
approach is principally capable of producing pressures exceeding those required for producing electrides and further
allow dynamic probing with laser-produced Mo K-shell radiation from the He−α transition at 18 keV. These laser-
produced plasmas sources provide sufficient photons for single shot observations with high photon energy that will
be required to penetrate through mid−Z material. In addition, new free electron laser sources will also provide the
required x-ray probe capability [2, 3], particularly when using high-harmonics.

During the x-ray scattering process, the incident photon transfers, on average, momentum ~~k with a Compton
energy of ~ω = ~2k2/2me = ~ω0 − ~ω1 to the electron, where ω1 is the frequency of the scattered radiation. For
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(~ω � ~ω0) and for small momentum transfers we have ~k = 2~k0 sin(θ/2). Thus, the scattering geometry and the

probe energy determine the scattering vector ~k

k =
∣∣∣~k∣∣∣ = 4π

E0

hc
sin(θ/2). (1)

Equation (1) determines the scale length of the electron density fluctuations measured in the scattering experiment.
Observing the (100) peak with k100 = 30 nm−1 and E = 18 keV requires forward scattering at θ = 20◦. For a He−α

bandwidth of ∆E/E = 2× 10−2 and angular resolution of ∆θ/θ = 0.25 we find ∆k/k ' 0.25 sufficient to isolate the
structural features, cf. Fig. 1.

Interstitial electrons act as anions [18] and can be treated as additional centers of the primitive cell. The Thomson
scattering signal, i.e. the absolute scattered intensity as function of scattering angle, will be dominated by narrow
peaks corresponding to Bragg reflections from the lattice planes. We write the X-ray scattering cross section as

dσ

dΩ
= σThS(~k) , (2)

Here S(~k) is the electron structure factor given by the Fourier transform of the electron-electron pair correlation
function. It can be written as

See(~k) = e−2W (k)sum~G|ne~G|
2δ(~k − ~G) +

[
1− e−2W (k)

]
+ Sce(k) + S(0)

ee (k) . (3)

Bragg peaks are located at inverse lattice vectors ~G, their amplitude is given by the Fourier component of the electron
density

ne~G =
∑

i∈basis

fi(k) exp(−i ~G · ~di) , (4)

which coherently sums over scattering amplitudes from all basis ions on sites ~di. Thermal lattice vibrations and
associated diffuse scattering are accounted for using the Debye model for crystal lattices [22], giving rise to the Debye-
Waller factor W (k) [23], which suppresses coherent scattering at high k. Here, we assume, that interstitial electrons
adiabatically follow the ion lattice vibrations, hence only one Debye-Waller factor appears to describe the thermal
motion for both lattice ions and interstitial sites. fi(k) is ionic form factor.

Contributions from bound-free (Sce(k)) and free electrons (S
(0)
ee ) will be neglected in the following. After separating

the electron density ne~G into core electrons centered around lattice ions and interstitial electrons ne~G = nI ~G + nX ~G,
we can rewrite Eq. (3) as

See(~k) = e−2W (k)
∑
~G

∣∣∣∣fI(~k)
∑

ion sites

exp(−i~k · ~di) + fX(~k)
∑

interst.

exp(−i~k · ~di)
∣∣∣∣2δ(~k − ~G) +

[
1− e−2W (k)

]
= e−2W (k)

{
|fI(~k)|2Sii(~k) + |fX(~k)|2Sxx(~k) + 2Re

[
fI(~k)f∗X(~k)

]
Sxi(~k)

}
+
[
1− e−2W (k)

]
,

(5)

fI(k) is the core electron form factor, fX(k) is the interstitial electron form factor. Scattering interferences between
lattice ions and electride anions (electrons) are explicitly taken into account via the “mixed” structure factor Sxi(k).
It will be shown that this interference term significantly alters the peak amplitudes when compared to the pure ion
lattice. Additional peaks appear when the electride sublattice belongs to a different space symmetry group than
the ion lattice. In the absence of interstitial electrons, fX(~k) = 0 and one finds the well-known result for coherent
scattering from ion lattices [23].

We apply our model to calculate the x-ray scattering profile S(k) for magnesium at pressures between 500 GPa and
800 GPa. Lattice structure parameters (space symetry group, dimensions of the unit cell, and coexistence curves) are
taken from Ref. [13]. These simulations predict that Mg undergoes a structural phase transition from bcc to fcc at
∼ 456 GPa pressure at room temperature [13]. The length of the primitive lattice vectors in the fcc phase is a = 2.1 Å.
The electron localization function (ELF) [24] assumes maximum values of ∼ 0.91 in the eight interstitial spaces of the
fcc primitive cell, forming a simple cubic (sc) lattice. The ELF measures the density distribution of electron pairs and
is normalized such that ELF≤ 1. Zeros in the ELF mark the spatial extension of the interstitial electron cloud. For
simplicity, we approximate the interstitial electron density by a spherically symmetric gaussian distribution although
the simulations predict a more cubical shape. The full width at half maximum is taken as 0.5a.
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FIG. 1: Structure of Mg at ∼ 500 GPa: (a) Partial static structure factors for the fcc electride lattice. The inset
shows the form factors for lattice ions (dashed) and interstitial electrons (solid). (b) Total elastic structure factor for

the pure fcc lattice (black) and including interstitial electrons (red). The inset shows the Debye-Waller functions
that describe the decay in Bragg intensity due to thermal lattice vibrations (solid line) and the amount of thermal

diffuse scattering (dashed).

The total structure factor and the three partial structure factors |fI |2Sii(k), |fI |2Sxx(k), and 2Re [fIf
∗
X ]Sxi(k)

are shown in Fig. 1 (a). The bottom x-axis shows the wavenumber k in units of the reciprocal lattice spacing
k0 = 2π/a = 30 nm−1, the top x-axis shows k in units of 1/nm. The lattice peaks are represented by narrow
Gaussians. The fcc ion lattice (black line) is characterized by systematic absences at the (100) (k = k0 = 30 nm−1)
and (110) (k =

√
2k0 = 42 nm−1) position. Here, the interstitial sc lattice produces notable signals. The (111) peak

(k =
√

3k0 = 52 nm−1) is slightly amplified with respect to the pure fcc lattice peak (Sii) due to the interference term
Sxi and to a small extent from electron lattice scattering. Beyond k = 2k0 = 60 nm−1, the interstitial form factor
fX(k) practically vanishes and sc lattice and interference terms are suppressed. The form factors are shown in the
inset in Fig. 1 (a).

Fig. 1 (b) shows the total scattering profile for fcc Mg with (red) and without (black) interstitial electrons, taking
into account the Debye-Waller prefactor (exp(−2W (k))) and the incoherent contribution (1 − exp(−2W (k)) (shown
in the inset). Bragg peaks at (100) and (110) positions are clearly identified.

At ∼ 756 GPa, Mg transitions to the simple hexagonal (sh) phase with interstitial electrons between the honeycomb
lattices. The total structure factor and the partial structure factors are shown in Fig. 2. No additional reflections
are observed in the total structure compared to the ion-ion structure. Instead, being of the same order as the Sii(k),
the interference term Sxi(k) strongly affects the total signal. In the vicinity of the first Bragg peak (k = k0), the
interference term is negative, hence this peak is reduced in intensity by ∼ 30%. Conversely, the second peak is slightly
enhanced through the interference term by ∼ 10%.

In conclusion, we have presented a model for the calculation of static structure factors for high pressure electride
systems. Application of the model to predicted high pressure structures for Mg have shown that the existence of
such phases is to be demonstrated unambigiously through angle resolved scattering of multi keV x-rays from ramp
compressed targets, generated e.g. by a sequence of laser shocks. The additional correlation peaks in the fcc phase due
to electron-electron correlations as well as the qualitative change in relative peak amplitudes in the sh phase due to
electron-ion interference provide clearly detectable criteria that allow for a decisive experiment to verify the existence
of high pressure electride phases in Mg and to show the structural phase transition between fcc and sh electride phase.
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FIG. 2: Static structure factors for Mg at 800 GPa.

The presented model can easily be applied to other materials, e.g. Li or Al to predict and to analyse x-ray scattering
data from high pressure electrides.
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