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Executive Summary 

Upon completion of our second year of development in a 3-year development cycle, we have 

completed a prototype protein structure-function annotation and function prediction system:  

Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 

and are positioned to continue development in completion of our original statement of work, or a 

reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical 

countermeasures research and development. 

Introduction 

The Protein Function Prediction (PFP) platform is a multi-scale computational modeling system for 

protein structure-function annotation and function prediction. As of this writing, PFP is the only 

existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation 

platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP 

modules perform protein functional annotations at the sequence, systems biology, protein 

structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide 

orthogonal means of characterizing proteins and suggesting protein function, PFP processing 

maximizes the protein functional information that can currently be gained by computational means. 

Comprehensive annotation of pathogen genomes is essential for bio-defense applications in 

pathogen characterization, threat assessment, and medical countermeasure design and 

development in that it can short-cut the time and effort required to select and characterize protein 

biomarkers.  

mailto:zhou4@llnl.gov
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Fig. 1. Comparison of Protein Function Prediction (PFP) platform to like capabilities. PFP is currently the most 

comprehensive genome annotation system. 
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Fig. 2.  Overview of Protein Function Prediciton (PFP) platform process flow. PFP is a multi-scale whole-

proteome structure-function annotation platform combining results from four software modules:  sequence 

annotation, systems biology, structure prediction and analysis, and mechanistic modeling. 

PFP was originally funded by DTRA’s TMT Program for a 3-year development cycle. Our charter 

was to fill an informatics gap between genomic sequencing and computer-aided drug design, and to 

support TMT performers in identifying and characterizing potential drug targets. Design and 

development of the PFP platform has been a highly non-trivial endeavor. PFP comprises a mix of 

open-source codes, licensed codes, and original codes developed at LLNL based on novel 

algorithms; processing is supported by integration of more than 20 external data sets (Fig. 3). In 

this document we summarize our progress in PFP development at the end of Year 2, and propose 

additional features for which we respectfully request FY13 funding for development of a full-

featured PFP platform in support of biomarker discovery and characterization. 

 

Fig. 3.  PFP databases. Squares = flat-file databases; drums = relational databases; blue arrows = external data 
sources imported to PFP and managed by PFPmain (central system) or the respective modules; blue oval in 
center encloses data sources managed by PFPmain. 

This report summarizes technical progress in the design and development of the PFP platform, and 

contains the following sections: 

 Overview of the PFP System Integration Module – p.4 

 Overview of the Sequence Annotation Module – p.5 

 Overview of the Systems Biology Module – p.5 
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 Overview of the Structure Prediction and Analysis Module – p.8 

 Overview of the Mechanistic Modeling Module – p.12 

 Hardware – p. 16 

 Future Directions and Request for Continued Funding – p.16 

 

For detailed descriptions of PFP software system requirements and design specifications, please 

refer to the Software Requirements Specification (SRS; v.2.0) and Software Design Document (SDD; 

v.1.0) documents previously submitted to DTRA management. 

Overview of the PFP System Integration Module (PFPmain) 

The Integration module (PFPmain) is responsible for the execution of system components 

(software modules) and for management of system data flows. Upon job creation, PFPmain 

constructs a module workflow and calls each module, in turn, passing it the data it needs to perform 

its function. Once a module has been initiated, PFPmain monitors the progress of the module, and 

when the module has finished executing, it collects the results, loads the data into a central 

database, and calls the next module, until the workflow is complete.  

Year 2 status: Summary of PFPmain 

Job Submission:  PFPmain provides a prototype user interface (UI) that allows users to submit, 

monitor, and view job results. User input data is uploaded through the UI. Required data for 

analysis of bacterial genomes includes:  genome sequence and an annotation file with gene calls. 

For all other taxa, or for sets of proteins with or without taxonomic association, the minimal user 

input comprises a fasta file of protein sequences. 

Job Processing:  Three of the four module pipelines are managed by PFPmain in a fully automated 

fashion (Table I). Communications between PFPmain and each subordinate module are achieved by 

means of a client-server paradigm, which facilitates processing in a distributed processing 

environment and accommodates modules that run on different hardware configurations and 

different operating systems. Currently, the mechanistic modeling module (MM) is running on a high 

performance computing (HPC) system that cannot be accessed directly (programmatically) by 

PFPmain due to LLNL security constraints; thus, data packages between PFPmain and MM are 

transferred manually to and from this module. 

The PFPmain process flow first uploads the user input and inserts the proteins into the central 

database, then creates a new job with a default execution flow. This job is then processed by the job 

manager, which carries out the following process for each of the modules:  prepare the input data 

by selecting out data from the database and packaging it for the module, call the module and pass it 

the necessary input data and run parameters, check the status of the module’s processing, 

download the results when they are ready, load the results into the central database. Each protein 

is tracked through the PFP platform by a unique database identifier assigned by PFPmain. 

Job Analysis:  Once analysis is complete, users view preliminary results via the UI. At this time only 

a few simple user interface pages have been constructed.  
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Table 1.  Job processing status for PFP system modules. 

Distributed Module Send  and 

receive data 

to and from 

pfpi 

Check 

module 

status from 

pfpi 

Send cancel 

request to 

the module 

from pfpi 

Data 

processing,  

loading, and 

validation 

Data 

selection 

and 

packaging 

Sequence Annotation Complete Complete Complete Complete Complete 

Systems Biology Complete Complete Complete Complete Complete 

Structural Prediction Analysis Complete Complete Hardware 

dependent 

Complete Complete 

Mechanistic Modeling 
 

Hardware 

dependent 

Hardware 

dependent 

Hardware 

dependent 

Complete Complete 

Overview of the Sequence Annotation Module (SA) 
The Sequence Annotation (SA) module runs at the beginning of PFP processing in the default 

workflow.   SA currently comprises several protein functional annotation tools, which were selected 

or created based on their support of the down-stream systems biology and structure-based 

analyses, or based on their relevance to the goals of medical countermeasures research. These tools 

include EFICAz (enzyme prediction), KEGG (database of metabolic proteins) Blast, Interproscan 

(functional motifs), Brenda (database of known enzymes) Blast, Virulence (LLNL MvirDB) Blast, 

SignalP (signal peptide prediction), and BEOracle (immune epitope prediction).  SA functions as a 

stand-alone pipeline and is also fully integrated into the PFP platform; the user can send a job 

request either through the PFPmain portal, or directly through the SA website. PFPmain accesses 

SA by means of an HTTP URL call. SA processing is fully automated and runs at whole-proteome 

scale.  SA manages the underlying annotation tool processing using a multi-threaded approach, with 

a configurable default number of process threads.   SA performs ‘start a job’, ‘stop a job’, ‘check job 

status’, and ‘get result’.  When a job completes, SA returns the results to PFPmain in a pre-defined 

XML format, which is subsequently parsed by PFPmain and loaded to the central database. If 

desired, the raw output from the annotation tools can be manually retrieved from the SA web 

interface.   

Overview of the PFP Systems Biology Module (SB) 

The function of a protein is not merely determined by its behavior at the atomistic level, but also by 

its wider role within the organism. The higher-level context of a protein within the organism (e.g., 

adjacent genes, pathway structure, regulons, protein interactions, protein localization) provides 

vital clues to its function that could not be achieved by studying the protein in isolation. The 

Systems Biology (SB) module enables rapid, genome-scale analysis of sequenced bacteria, 
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integration of functional clues from a variety of sequence- and structure-based analyses, and 

prioritization of proteins and pathways for further investigation (Fig. 4).  

 

Fig. 4.  Schematic of the process and data flows of the Systems Biology (SB) module. The elements outlined in 

orange are part of the existing Pathway Tools platform. The elements outlined in blue are new codes 

developed by LLNL researchers and developers, along with all codes necessary to integrate them. 

SB was constructed using the SRI International Pathway Tools (PT) platform as a basis to which 

PFP developers added a novel modularity tool for functional clustering of interacting proteins. SB 

functions as a stand-alone pipeline, and PT processing is also fully integrated into the PFP platform; 

the user can send a job request either through the PFPmain portal, or directly through the SB web 

portal. PFPmain accesses SB by means of an HTTP URL call. Pathway genome databases (PGDBs) 

generated by PT can be explored interactively within SB using the PT UIs, and further data products 

can be derived automatically from within the PT system. SB processing is fully automated and runs 

at whole-genome scale for bacterial genomes. The PT package includes a standalone web server 

that provides a well-developed user interface for browsing and querying pathway genome 

databases, including visualization of the complete metabolic network, an omics viewer, cross-

species comparisons, complex database queries, separate webpages for each gene, protein, 

compound, and pathway (with different levels of detail). 

Year 2 Status:  Summary of SB pipeline processing 
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SB processes genomic sequence and annotation data (RAST or Genbank) to infer metabolic 

pathway predictions and enzymatic functions related to the metabolism of a bacterium. This is done 

by processing through a local instance of the Pathway Tools (PT) platform, followed by further 

analyses through a Modularity Tool (MT) that was designed and developed by LLNL researchers.  In 

addition to the input data provided by the user, PFPmain provides SB with annotation data 

produced by SA. SB combines the SA and user-provided annotation data sets, resolves and 

documents disagreements in enzymatic annotations, updates out-of-date controlled vocabulary 

terms (thereby improving initial draft annotations based on user guidance or expert-derived 

defaults), and re-formats the resulting merged data for loading to PT. Upon completion of PT 

processing, results are automatically loaded into an SRI (Ocelot Lisp-object) database. SB then 

queries the PT results by means of programmed Lisp objects, and subsequently loads the results 

into a relational database within the SB module proper. Data are then queried out and formatted for 

input into the Modularity Tool (MT). The MT predicts protein associations using rapid homology-

based methods, driven by a curated database of known associations (STRING). This information is 

extracted and combined with pathway and operon predictions to construct an annotated, multi-

layered network view of the bacterium’s interactome. Functional subunits of the combined 

networks arising from modularity analysis are generated, which can aid in filling gaps in metabolic 

pathways and can help elucidate function of poorly annotated proteins. Finally, functional 

information, along with reliability metrics, are derived from the PT and MT analyses, and results 

are formatted in a pre-defined XML format for return to PFPmain. 

SB Components 

The Pathway Tools core engine:  Our main pathway inference engine and systems biology query 

and exploration system is based on SRI International’s Pathway Tools (PT) software. The PT system 

is integrated within the SB module, allowing fast and automated metabolic modeling of an 

annotated microbial genome. A built-in pathway hole-filling capability can be used to generate 

additional enzyme function assignments that are missing in the genome annotation. To interact 

with results, we are integrating PT’s extensive Web-accessible UI into the larger PFP UI; to date, a 

few of the web links to SB have been incorporated into the PFP UI.  

Annotation merge tool:  We have recently completed a merge and resolution tool that can take 

genome-wide enzyme annotations from a range of different sources and tools, including EFICAz, 

RAST, EC numbers, and InterPro results (generated by SA); derive a user customizable, weighted 

consensus annotation from all of these; and produce output that can be fed directly into PT for 

metabolic inference. This approach to annotation resolution also produces a series of logs, 

including incomplete or low-quality enzyme annotations that are not included in the metabolic 

network model, but that may provide useful protein function hypotheses testable by further 

structure-based analyses. 

Modularity and pathway membership analysis:  Each protein may be associated with other 

proteins in a variety of different ways, including membership in metabolic pathway regulatory 

networks or operons, involvement in protein interactions and similar functional categories. By 

mapping each of these different types of functional association evidence to a common standard 

(e.g., membership in the same KEGG metabolic pathway), it is possible to derive an integrated 
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genome-wide gene association network. Our modularity analysis tool augments metabolic pathway 

inference predictions by including non-metabolic interactions (including many virulence factors), 

and discovers clusters in this network that may correspond to specific pathways, protein 

complexes, and functional systems. Starting from a set of proteins of interest, our modularity tool 

may be used to discover the underlying substructure of the set (e.g., distinct sub-pathways of a 

metabolic pathway). Conversely, the modularity tool may also be used to expand a set, discovering 

additional members of a pathway. The pathway modularity tool lays part of the groundwork for a 

structure-based pathway hole-filling tool (to be developed) 

Flux Balance Analysis:  We have also been working to include Flux Balance Analysis (FBA) 

modeling to the SB module. FBA can be used to predict enzymes that are essential to the growth of a 

bacterium; such enzymes might therefore make useful drug targets. FBA can be used to predict 

secreted pathogen-specific metabolites that could serve as biomarkers of its activity. We have 

developed a tool that allows us to rapidly develop draft FBA models using genome annotations from 

the KEGG database.  In addition, SRI International has recently released an FBA toolkit for use in 

conjunction with Pathway Tools, and we are working directly with the developers to integrate this 

capability into PFP’s SB module. Although FBA is not currently incorporated into PFP, the central 

database was designed to accommodate FBA results, and the independent FBA development is 

sufficiently mature to begin incorporation of this module should there be sponsor interest and 

funding to support the work. 

Overview of the PFP Structure Prediction and Analysis (SPA) Module 
Protein structure can be highly informative in terms of elucidating protein function. Unfortunately, 

high cost and technical difficulties often preclude the ability to obtain experimental structures for 

many proteins. Although the Structure Genomics Initiative has greatly increased the number and 

diversity of protein structures in the PDB, there remains a need for protein structure modeling. 

Indeed, even experimentally solved structures do not tell a complete story; it is essential to perform 

a variety of computational analyses to derive functional information from a protein structure.   

LLNL computer scientists have developed a suite of codes that perform quantitative analyses on 

protein structures, including high-quality models, to identify function in multiple structural 

dimensions.  

PFP’s Structure Prediction and Analysis (SPA) module itself comprises a multi-scale modeling 

system, which begins with structure modeling and follows with structure-fragment-based homolog 

identification, sequence variability analysis, and domain-based clustering. These analyses provide 

structure-function annotations at the residue/sequence, structure-motif, domain, and whole-

protein levels. (A future release of PFP may include codes for detecting protein-protein interactions 

and modeling quaternary structure.) These codes are incorporated into a fully automated analysis 

pipline, which functions in stand-alone mode, yet is also fully integrated into the PFP platform; the 

user can send a job request either through the PFPmain portal, or directly through the SPA website. 

PFPmain accesses SPA by means of an HTTP URL call. SPA processing runs at whole-proteome scale 

and is configurable, based on the user’s requirements for speed vs. accuracy. 
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A schematic of the SPA module is shown in Fig. 5. Once complete, SPA will comprise five sub-

modules: Model Builder, StralSV, StralCP, StralDF (in development), and StralFN (in development).  

 

Fig. 5.  Schematic of the Structure Prediction and Analysis (SPA) module. Blue solid boxes denote processes or 

algorithms that have already been developed and are in place; blue dotted boxes are processes that are 

situated outside SPA, but are part of the PFP system; green boxes indicate important information, and their 

arrows direction of flow. 

Year 2 Status:  Summary of SPA pipeline processing 

The SPA pipeline workflow currently consists of a sequential execution of three sub-modules:  

AS2TS Model Builder high-throughput protein structure homology modeling, StralSV structure-

based sequence variability analysis, and StralCP structure-based protein clustering. Currently, input 

to SPA comprises a fasta file containing protein sequences. 

SPA generates protein structure models for whole proteomes by means of LLNL’s structure 

modeling code, AS2TS (Zemla et al. 2005). Draft models can be generated for entire proteomes 

within hours (affording rapid turnaround of preliminary results), while more detailed, experiment-

quality models can be generated for a whole proteome in about one week. “Best” models are 

generated based on several quality metrics (e.g., sequence identity to primary template, e-value, 

coverage at N- or C- terminus, secondary structure similarity), and those that pass a pre-defined 

quality filter are forwarded for further processing. 
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 The StralSV code identifies structurally similar fragments using an algorithm that is sensitive and 

captures structural matches even for rare structure conformations. This is accomplished by 

searching structure libraries (typically PDB or user-defined) for homologous structure fragments 

that have tight local alignments that fit within a larger structure context (Zemla et al. 2011). The 

StralSV algorithm functions in “linear” and “spherical” modes, whereby  structure fragments 

comprise contiguous residues and residues that locate within a given spatial radius, respectively. 

StralSV analysis yields position-specific sequence variability profiles for the protein of interest. An 

addendum to StralSV is a new code, SeqalSV, which is a sequence-based alignment code that 

combines sequences of related proteins with data from StralSV to provide an enriched data set for 

scoring sequence variability for individual residue positions. Currently StralSV is executed only in 

“linear” mode for automated processing within PFP. 

The structure clustering code, StralCP (Zemla et al 2007), is used in SPA to predict function by 

transference of functional annotations to the protein of interest from co-clustered structure 

templates. This analysis enables an approach to annotation transfer at a finer level of granularity 

than mere association with SCOP domains, and facilitates localization of active-site residues by 

means of structure-based sequence alignment, when active site residues are identified in one or 

more co-clustered templates. Currently active-site residues are not extracted from structure 

alignments in an automated fashion. 

Output from the above described analyses are packaged into two tarballs for transfer back to 

PFPmain, comprising a results file written in a pre-defined XML format and a directory of PDB-

formatted model files. PFPmain retrieves, unpacks, parses, and loads the SPA results data to the 

central database; model files are stored on disk with pointers, only, stored in the database 

SPA Components 

AS2TS Model Builder:  Model Builder implements AS2TS structure prediction in high-throughput. 

The raw output from Model Builder, viewable through the SPA model-browsing UI, provides 

voluminous structure and function information to the user. A sample interface to Model Builder is 

shown in Fig. 6. 
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Fig. 6.  Sample UI generated by SPA. Salient results are indicated by red ovals and labels at right:  model grade 

(‘A’, ‘B’, ‘C1’, ‘C2’, or ‘C3’), list of “best” models (depending on various criteria), and structure alignment of the 

“top” model to structurally similar proteins. 

Structure-sequence variation with StralSV:  To assign enzymatic and functional annotations 

using structural comparisons of known structures against an AS2TS-generated model, we employ 

the StralSV submodule. StralSV is capable of assigning protein function annotation from structural 

(as opposed to sequence) homology even in cases where overall fold conformations between two 

structures are dissimilar. StralSV output includes a sequence-structure profile from the 

comparisons, and we use this data, and data from SeqalSV (below) to measure the level of 

structural conservation of various regions (spans) along the structure or structure model. This 

information can be particularly important for mechanistic modeling experiments, as highly 

conserved regions may be indicative of important binding sites; conversely, less conserved regions 

may comprise distinguishing structural features of a novel protein. Sequence variability statistics 

are written into each structure model forwarded from SPA by PFPmain to the Mechanistic Modeling 

(MM) module. 

Structural clustering and annotation with StralCP:  Additional structure comparisons are 

performed using the StralCP algorithm, which, like StralSV, is used to generate functional and 

enzymatic protein annotations. However, whereas StralSV relies on a fragment-based search for 

substructure homology, StralCP compares whole protein chains, thus providing a complementary 

aspect of protein annotation. Annotations from StralCP are detected by cluster, and clusters under 

which the model (or its template) claims membership are evidence of shared function between 

members of the cluster. 
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Sequence variation with SeqalSV:  Similar to StralSV, we use the recently developed SeqalSV 

algorithm to measure sequence variability and conservation at a sequence-based level. Sequence-

based variation is combined with structure-based variation from StralSV and reported as part of the 

model files created by AS2TS and exploited by MM for prioritizing analyses in specific regions of a 

protein.  

Overview of the Mechanistic Modeling (MM) Module 
The goal of mechanistic modeling is to predict the function of a protein from its chemistry. The 

mechanistic modeling (MM) module addresses certain protein details (such as catalytic function 

and the knowledge about which metabolite binds to a specific protein) to predict function.  Fig. 7 

illustrates the high-level MM workflow and the types of analyses performed in the module.  Input to 

MM comprises high-quality protein structure models arising from SPA. MM uses a suite of modeling 

algorithms and inputs structural and function information to predict biochemical function; MM 

combines an understanding of the biochemistry, chemical and biological informatics, and physical 

chemistry of a given protein. The features of a protein both in terms of its physical properties and 

its structural similarity to proteins with known function are examined.  MM results are then 

packaged in a pre-defined XML format and returned to PFPmain, which records the results of the 

module in the PFP central database. 

 

Fig. 7. Simplified MM Workflow.  Input to the module is a protein structure of unknown function, and output is a prediction of 

protein function, along with a list of potential substrates and refined protein structures. Each box represents one or more codes 

(LLNL original, open-source, and licensed) applied in the given analysis. 

The Design Concept 

Function predictions generated by MM processing include enzyme classification (EC) numbers, the 

names of substrates and products (metabolites) associated with a protein, and structural 

representations of the binding interactions between relevant metabolites and the protein. Our 

novel approach to protein function prediction relies heavily on the biophysical properties of both 

the protein and the metabolites of interest. The workflow depicted in Fig. 7 is constructed using 

LLNL custom software to manage data flow between each software component and differential 

processing of proteins through the pipeline.   
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MM Components 

Protein Preparation:  The starting point of any structural study begins with a standard cadre of 

preparatory steps.  Regardless of the quality of a protein structure model provided for MM 

processing—indeed, even if a crystal structure is provided, each still needs to be prepared for MM 

processing.  First we determine that the structure is complete with no missing side-chains or loop 

regions (some missing residues at the N- and C- termini are usually acceptable), and assign 

hydrogen positions, with appropriate pH considerations.  We also determine whether hetero-

atomic and/or ion coordinates are needed for a complete structural description, and which of those 

are necessary to be included in molecular docking (described below).  These preparatory steps are 

fully automated in the current version of the MM module. Considerable effort has been invested at 

the interface between the Structure Modeling group and the Mechanistic Modeling group to assure 

that data flows seamlessly through this preparatory step, and this has proven to be a robust 

procedure in the context of the present workflow.  The output of this module is a protein that can 

be read by virtually any molecular modeling package.  We currently use many of the default settings 

of the Schrodinger software package to accomplish this task. 

 

Fig. 8.  Binding Site Identification within MM. This component comprises existing software packages 

(SiteMap) as well as novel approaches coded by LLNL researchers (CSA Search, SPA Conserved Residues) 

combined into a component workflow.  

Binding Site Identification:  The binding site identification steps are intended to provide as much 

knowledge about the protein binding site as possible prior to performing the computationally 

intensive down-stream tasks.  This component of the MM module incorporates many new in-house 

methodological and algorithmic developments.  Two key elements of binding site characterization 

are a) the location and size of the functional binding site, and b) the location and function of the 

catalytic residues.  Item a) is accomplished using the SiteMap (Schrodinger package; Halgren 2007; 

Halgren 2009), which identifies the best binding site in a protein automatically by studying the 

biophysical properties and geometry of the protein and all possible positions that a binding site 

may occupy.  This approach has been shown to be very reliable at identifying binding sites and is a 
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completely automated procedure, which is essential for large scale studies. Item b) relies on 

annotated structural information about catalytic sites.  Currently, this data comes from the Catalytic 

Site Atlas (Porter 2004).  We have developed in-house code to rapidly screen databases of binding 

sites to identify those which are most similar to the protein of interest.  A number of metrics, 

including the proximity to the SiteMap prediction, are employed to further confirm the hypothetical 

binding site prediction.  The resulting predictions include an EC number and putative catalytic 

residues.  Since an EC number is associated with a known substrate, we can use this knowledge to 

inform our docking predictions (described in the next section).   

Molecular Docking:  Molecular docking takes a prepared protein and a library of chemical 

compounds as inputs, and determines which compounds fit best in the predicted binding site.  The 

current docking procedure uses a library of metabolites, under the hypothesis that the best fitting 

molecules will be the true metabolic substrates.  Because a substrate is associated with an EC 

number, the substrate itself provides useful annotation information.  More importantly, detailed 

information about the biophysics of the interaction of ligand and protein (specifically, in the 

coordinates and energetics of the metabolite poses) are obtained.  This provides insight into 

interactions that are unavailable through any other means, and as a result is often considered the 

workhorse of any computational effort.  Due to the complexity of these calculations, well-validated 

and widely accepted software tools are required.   

Software platforms currently used for MM docking are the Schrodinger Glide (Friesner 2004; 

Halgren 2004) and Autodock (Goodsell 1996) programs, which run on high performance platforms 

through the DOVIS (Jiang 2008) software package.  Glide is a commercial package with documented 

performance, and the Autodock/Dovis suite is open source, with well established protocols for high 

performance computing.  Our strategy is to use Autodock for large-scale calculations of the full 

metabolite library, while using Glide for more refined and targeted calculations with library 

subsets.  

Simulation Studies:  While molecular docking studies are the mainstay of a protein-ligand 

interaction study, they are an approximate approach to calculating and understanding binding.  A 

better binding affinity calculation will account for the motion of a protein in an explicit solvation 

environment and for fluctuations between the protein and ligand, which may affect stability in 

unforeseen ways.  Simulation studies allow detailed questions to be answered in a rigorous (yet 

automated) way.  Since a simulation requires substantially more compute resources than does a 

docking study, a manually selected subset of docking outputs are subjected to simulations.  From 

among numerous available software packages, we selected Amber (Case 2008), and NAMD (Phillips 

2005) because they are scalable to thousands of processors. 

Algorithmic and Methodological Advances Achieved in Years 1 and 2 of MM 

Development 

Catalytic Site Atlas (CSA) Search Program:  The Catalytic Site Atlas (CSA) Search program uses 

the CSA database of the Thornton group (Cambridge, UK).  A new code was developed at LLNL for 

this purpose. The method comprises a novel search algorithm, which has been extensively tested 

and validated.  The code scales linearly, and has been adapted to run on multiple processors on 
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Livermore Computing (LC) resources.   This method has shown significant promise in automatically 

characterizing binding sites, and a publication describing the methodology is currently in 

preparation.  We have found that this procedure is very useful for identifying gene mis-annotations, 

and an additional publication reporting this study is expected to follow.  As the utility of this 

method is established through peer review, an expanded curation of the CSA will allow for more 

complete studies, and additional publications resulting from this line of research are expected. 

Novel Docking and Rescoring Strategies:  We are testing additional docking methodologies that 

may leverage the large-scale resources available through LC.  We are nearly finished with the 

incorporation of the Autodock/Dovis docking suite into the MM pipeline, and will likely implement 

a related open source program (Vina[11]) in order to generate comparative studies.   

Much work is being done on both the pre- and post-processing sides of the docking protocols to 

best interpret the results.  For pre-processing, we will try to develop additional fitness metrics 

based on our acquired knowledge of enzymatic function in order to predict docking performance 

prior to running full-scale docking procedures.  On the post-processing side, we are exploring the 

utility of various rescoring procedures available through the Amber molecular modeling package, 

including the widely used MMGBSA procedure and the LMOD flexible docking procedure.  

Additionally, we intend to incorporate knowledge about the known binding modes to evaluate 

docking protocol fitness on subsets of chemical libraries. 

Summary of Current Open-source and Licensed Software Packages Used in MM: 

 Schrodinger (Protein Preparation, SiteMap, Glide) 

 Autodock/Dovis (Docking) 

 Amber(Docking and rescoring) 

 Desmond, Amber, NAMD (Molecular Dynamics) 

Most of the above packages are open source, or (in the case of Amber) require a one-time purchase 

fee.  The Schrodinger package, however, uses token-based licensing, whereby each process uses a 

number of tokens during runtime.  This limits the number of processes that can be run 

simultaneously to the number of tokens that are purchased. 

Hardware and Memory Requirements for MM Processing:  There are no special RAM 

requirements for many of the MM processes, as they are usually designed to run easily on 

commodity CPUs.  A typical requirement of about 2G of RAM per CPU should be sufficient for most 

processes described. Protein preparation has nominal requirements; the current procedure runs in 

minutes on a commodity CPU. However, it is a token-limited license and therefore highly parallel 

processing is cost prohibitive. Binding site characterization currently takes about 2 hours on 16 

CPUs running on LC. Many algorithmic and coding advances should reduce this time. About 0.5G of 

storage per protein is required. Docking studies are limited by available Glide software token 

availability, which will far outweigh memory or CPU requirements. Autodock currently takes about 

6 hours per protein for a compound library of approximately 30,000 metabolites. These wall-clock 

times are estimated from typical runs using 192 CPUs on LC (hera cluster). This is readily scalable 

to larger numbers of processors per protein, thus decreasing wall-clock time linearly. Simulation 
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studies can include a variety of molecular mechanics approaches up to and including a fully flexible 

solvated complex simulation. For software packages such as Amber, many calculations of 

intermediate complexity can be carried out, resulting in memory and CPU requirements 

somewhere between a docking study and a full simulation. For a fully solvated protein-ligand 

complex, a single simulation typically requires a few days on 100 CPUs and storage exceeding 5G. In 

general, an allotment (excluding simulation data at present) of 0.5G to 1G per protein should 

provide adequate storage. For a 4,000 protein dataset, this is roughly 2 to 4 Tb. We could dedicate 

resources to optimizing storage and reduce this requirement to 1 Tb if necessary. 

Database Dependencies and Curation Issues:  Our chemical library of metabolites is derived 

from the Kegg database and uses the Kegg identifier naming convention.  The full database, after 

preparation using Schrodinger software, contains approximately 37,000 metabolite entries.  We 

also rely on the database of information provided by Kegg to map substrate and product identifiers 

to EC numbers. We currently use the Catalytic Site Atlas, which provides a list of PDB identifiers, 

catalytic residues, and associated EC numbers.  The remainder of the database, which is comprised 

primarily of distance matrix files, is generated from this table and the protein files downloaded 

from the Protein Databank.   

Hardware 

In anticipation of serving DTRA performers in the area of medical countermeasures, we purchased 

new hardware to replace a small development machine and aging shared systems that are currently 

housing PFP v.0.5.  This hardware consists of two “cluster master” nodes (one for development, one 

for production), each consisting of dual Intel Xeon X5690 6-core 3.46GHz processors with 12MB 

cache, 6.4GT/s QPI; eight Silicon Mechanics “cluster” nodes (1 for development and 7 for 

production), each consisting of a Rackform iServe R331.v2, dual Intel Xeon X5690 6-core with 

3.46GHz processors, 12MB cache, 6.4GT/s QPI, 96GB DDR3-1333 ECC registered DIMMS, and a 1TB 

drive (6Gb/s); a database server, consisting of a Rackform iServ R346.v.2.1 with dual Intel Xeon 

X5660 6-core 2.8GHz processors, 12MB cache, 6.4GT/s QPI, 24GB DDR3-1333 ECC registered 

DIMMS, mirrored 500GB drives for the operating system, and 10TB RAID6 storage for the database; 

an enclosure RAID expansion for external storage to be connected to the database server, consisting 

of 26TB RAID6 storage to be used for shared data that will be NFS mounted on clusters. Once set 

up, this hardware configuration is intended to be used for development and deployment of PFP. In 

addition, LLNL’s LC systems can eventually also be used for very high-throughput processing. 

Future Directions and Request for Continued Funding 

Our original mission goals under the TMT Program were to provide bioinformatics support to 

performers involved in design and development of therapeutic reagents. In this regard, we 

designed and partially built the PFP platform to be not only state-of-the-art with respect to 

bioinformatics analysis, but also modular, configurable, and expandable, to suit the needs of an 

evolving Program. Our Year 3 development was slated to complete platform development and to 

create user tools in service to the Program. When TMT performers were transitioned to DTRA’s 

Diagnostics Division, we proposed to tailor our Year 3 development for identification and 
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characterization of biomarkers for diagnostics. We maintain that this is a suitable outcome of PFP 

development, and we propose the following tasks, which we believe would enable a bioinformatics 

resource that would benefit multiple DTRA programs in medical countermeasures: 

1. Port existing modules to new hardware (see above) to increase scale and performance of 

processing, and to allow for full automation to and from all the PFP subordinate modules. 

We have developed the prototype system (PFP v.0.5) on older, smaller hardware, and the 

full-scale capabilities of PFP will be realized only when the system is installed on new 

hardware that we purchased for service to DTRA medical countermeasure programs.  

2. Perform thorough testing of all current PFP capabilities, including process control, modules, 

components, data flows, and UIs. Perform further testing of capabilities to be added in Year 

3 development (see below). 

3. Implement configurable and iterative workflow capabilities and differential processing of 

proteins through the PFP workflow, and improve user job control and system error 

recovery and reporting. 

4. Design and implement automated updaters for PFPmain and all subordinate modules. 

5. Complete integration of SB and SPA user interfaces with those of PFPmain; some of these 

links have been incorporated, but a more comprehensive, seamless integration between 

PFPmain and the UIs of the subordinate modules needs to be achieved.  

6. Expand biomarker discovery capabilities within the SA, SB, and SPA modules, and develop 

post-processing logic within PFPmain to assist users in selecting biomarkers for further 

workup. SA: incorporate additional immunology tools (e.g., T- and additional B-cell epitope 

prediction codes; immune data sets; antigen identification algorithm currently under 

development via other funding). Design and develop post-processing codes for evaluation of 

antigenic characteristics, including structural overlay (SPA) on sequence-based predictions. 

SB: incorporate FBA modeling into PFP, and create post-processing logic for automated 

selection of potential therapeutic biomarkers based on identification of putatively essential 

genes; develop in silico default growth parameters, scale automated FBA modeling and 

analysis, link with SB module; incorporate alternative FBA modeling tools (i.e., SRI, Kegg, 

SEED) for automated comparison and scoring of likely biomarker candidates. 

 

7. Integrate annotations being generated from all Structure Prediction and Analysis 
algorithms (StralSV, SeqalSV, StralCP and StralDF) to produce a scored and ranked 
consensus-based annotation for proteins of interest. 

 
8. Achieve higher resolution modeling of protein-ligand interactions.  Once a docking study 

has been run and a set of candidate substrates is identified, it is often the case that more 

detailed modeling will be needed to fully predict the binding properties.  Current 

capabilities allow for molecular dynamics studies, but not yet on a scale that provides 

genome level utility.  We propose to perform the research and development to scale this 

predictive capability. 
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9. Expand the SB module to include human metabolism and virus-host interaction data. Fully 

exploit virulence information (MvirDB) for identification of virulence-related biomarkers in 

systems biology context. 
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