
LLNL-CONF-555973

A User Perspective of
High-Performance Computing on
the Cloud

A. Marathe, D. Lowenthal, B. Rountree, X. Yuan,
M. Schulz, B. de Supinski

May 7, 2012

SC2012
Salt Lake City, UT, United States
November 10, 2012 through November 16, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A User Perspective of High-Performance
Computing on the Cloud

Aniruddha Marathe∗, David K. Lowenthal∗, Barry Rountree†, Xin Yuan‡, Martin Schulz†, Bronis de Supinski†
∗Department of Computer Science, The University of Arizona

†Lawrence Livermore National Laboratory
‡Department of Computer Science, Florida State University

Abstract—Cloud computing has increased greatly in popularity
in recent years. However, many HPC users do not believe that the
cloud is a viable alternative for executing all but embarrassingly
parallel scientific applications. In this paper, we show that, while
by execution time the cloud is sometimes not a viable alternative,
this view is narrow. A more general view has to consider, from
the user’s point of view, turnaround time and cost.

We evaluate raw performance of HPC applications on the
top-of-the-line cluster offered by Amazon EC2, and comparethe
results to high-end clusters at Lawrence Livermore National Lab-
oratory (LLNL). We confirm prior results that the performanc e
gap between EC2 and high-end clusters stems primarily from
limited bandwidth. However, we find, interestingly, that (1) EC2
can be better than using the LLNL clusters when considering
turnaround time and (2) the cost effectiveness of differentEC2
clusters varies based on the application.

I. I NTRODUCTION

In recent years, the cloud has had significant success in the
commercial arena, but the story for high-performance com-
puting (HPC) has been rather disappointing. While “success”
stories appear in the popular press periodically, most of them
feature an embarrassingly parallel program being run on tens
of thousands of cloud machines [7], [8]. A more complicated
question is: how well does the cloud do on more tightly-
coupled applications? The prevailing opinion is that the cloud
is more-or-less useless for such applications [19], [29].

Many reasons justify skepticism of the cloud for tightly-
coupled, more traditional HPC applications. First, the latency
and bandwidth of the network used by the cloud is usually
inferior to that of a traditional cluster (e.g., Ethernet vs.
Infiniband). Second, cloud nodes are virtualized, which causes
concerns in terms of virtualization overhead as well as virtual
machine co-location. Finally, system noise when executingon
the cloud, which may be a direct result of interference from
node virtualization, is a concern.

However, to compare the cloud, which provides a fee-for-
service model in which access is essentially available 24/7,
to traditional HPC clusters on only the axis of traditional
execution time is unfair. This comparison ignores, for example,
the sometimes significant queue wait time that occurs on HPC
clusters, which typically use batch scheduling. Of course,it
also ignores factors such as cost, where HPC clusters have
a significant advantage (they are “free” to the user). These
properties hold not only for the Lawrence Livermore National
Laboratory (LLNL) on which we experiment but also for HPC

clusters hosted, for example, at a company or university as well
as government laboratories.

We evaluate the cloud against traditional HPC clusters but
with a more generalized evaluation scheme. We compare the
Amazon EC2 cloud to two LLNL HPC clusters for a typical set
of HPC benchmarks. Our work differs from prior work, such as
Zhai et al. [32], in that we evaluate not just execution time,but
also total turnaround time and cost; i.e., the factors of interest
to the user. We also compare the various cloud instances—
specifically, Cluster Compute Quadruple Extra Large, Cluster
Compute Eight Extra Large, and High-CPU—against each
other and argue that applications should be mapped to the
most appropriate cluster, which is not necessarily the highest
performing one.

The contributions of this paper are:

• An evaluation of EC2 and HPC clusters along the axis
of execution time at reasonable scales (over 1000 cores).

• An evaluation of EC2 and HPC clusters along more
general axes, including total turnaround time and cost,
providing, for the first time to the best of our knowledge,
a user perspective of HPC on the cloud (prior work
studies the data center perspective [29], [32]).

• An execution time and cost comparison of EC2 instances.

Our results show that the choice of EC2 versus HPC clusters
is more complicated and nuanced than previously thought.
First, EC2 nodes are high end and, thus, execution time
is better on EC2 for some applications that incur modest
communication. For example, at 1024 tasks, the top EC2
cluster executed LAMMPS 21% faster than the top-end LLNL
cluster. However, we confirm prior results showing that com-
munication intensive applications are typically inefficient on
EC2 [29].

Second and more importantly, while HPC clusters usually
provide the best execution time, queue wait time on these
frequently oversubscribed resources can lead to much larger
turnaround time. For example, when the wait time exceeds its
median, total turnaround time on the LLNL machines is often
larger than that on EC2 (by more than a factor of 2) even
though the application may execute several times faster.

Finally, we show that it may cost less to use an inferior
EC2 cluster. For example, using the least-cost EC2 cluster
with certain time bounds is nearly 10% less expensive than the
highest-cost, most capable EC2 cluster. Further, this difference

can increase as the number of tasks scales or if the EC2 price
structure more closely matched cluster quality.

The rest of this paper is organized as follows. Section II
provides background of EC2 and motivates our comparison
of EC2 to HPC clusters. Section III describes the machines,
provides our experimental setup, and discusses how we derive
wait queue times. Section IV contains our evaluation, and
Section V discusses the implication of our results. We provide
related work and our conclusions in Sections VI and VII.

II. BACKGROUND AND MOTIVATION

The termcloud computing is somewhat difficult to define
precisely. A traditional definition is that it provides, at an
actual monetary cost to the end-user, computation, software,
data access, and storage that requires no end-user knowledge
about physical location and system configuration [28]. From
a high-performance computing (HPC) perspective, the cloud
provides a choice of different clusters. Each cluster potentially
provides different resources: number and type of cores, amount
of memory, storage, and network latency and bandwidth. In
this paper, we assume homogeneous computing, though we
realize that certain cloud providers may not always make this
guarantee for all of their clusters.

A. EC2 Basics

We focus on the most popular cloud platform, which is
Amazon EC2 [5]. Amazon sells several kinds ofvirtual
machine instances (VMs), which comprise cluster nodes. A
virtual machine is an isolated, guest operating system that
exists within the host operating system (often called the hy-
pervisor). There can be many virtual machines in one physical
machine, and so a virtual machine hasresources, as defined by
an instance, that can be up to, but not exceeding, the resources
on the physical machine.

Amazon EC2 markets three “regular” instances (small,
large, and extra large), one micro instance, three “high mem-
ory” instances (extra large, double extra large, and quadruple
extra large), two “high CPU” instances (medium and extra
large), and three “cluster compute” instances (one quadruple
extra large, one eight extra large, and one with a GPU).
These instances differ in their computational and network
capabilities.

Amazon EC2 also markets several kinds of ways of purchas-
ing time on their systems. One way is called “on-demand”, in
which the user pays money for each VM instance and receives
access to the purchased node immediately. Another option is
called “reserved”, in which the user pays a yearly fee, but then
when the user purchases time, the rate is lower than that of on-
demand1. Finally, there is the “spot market”, where users can
bid on nodes and potentially pay much less. The spot market
model is nontrivial and has been explained elsewhere [30].
In this paper we investigate only on-demand instances, while
noting that the other options are quite interesting and may be
superior in certain situations. For the purposes of this paper,

1There are multiple types of reserved instances, depending on the user’s
expected machine utilization over time.

the key is that on-demand instances have a given cost (see
below) and zero queue wait time (unlike batch schedulers) in
most circumstances2.

Other researchers have found (in the past) that EC2 does not
provide any locality guarantees, which is often an important
property to achieve efficient performance for HPC applica-
tions. In particular, if a user of EC2 requestsN nodes to create
a cluster, there is in general no guarantee of whichN nodes the
user receives [15]. This can be critically important in tightly-
coupled HPC applications, and it is why batch systems such
asMoab [4] may increase queue wait time in order to return
a more desirable set of nodes. However, EC2 does allow this
sort of physical proximity through aplacement group on their
highest-end clusters (the Cluster Compute family). However,
it is not clear how this is implemented (in other words, it is an
open question how many nodes in a placement group a user
can acquire without wait times similar to batch systems). In
our experiments, we did not have any delay due to placement
groups, but we did not use more than 128 nodes. For most
systems, batch systems cannot guarantee physically proximate
nodes either (they perform best effort) [20].

B. Comparing EC2 to HPC Clusters

This paper compares EC2 clusters with two clusters that
reside at Lawrence Livermore National Laboratory (LLNL):
Hera and Sierra (discussed more in the next section). These
are typical high-end clusters that use Infiniband networking.
They serve as an example of what we denote “HPC clusters”,
that are owned and operated by an organization to solve
key problems for individuals in the organization and their
collaborators. Generally speaking, the clusters are well utilized
(otherwise they would not be cost effective). We will use the
terms “LLNL clusters” and “HPC clusters” interchangeably in
the rest of this paper.

Considering that the HPC clusters are assumed here to be
“free” and have better network infrastructure, one may ask
why one would ever execute an HPC application on a cloud
cluster as opposed to an HPC cluster (which, again, we assume
runs a batch scheduler).

1) The application may be compute intensive, and some of
the nodes offered by EC2 may execute such applications
faster than HPC nodes, since cloud providers typically
can afford a faster upgrade/refresh cycle for their ma-
chine park.

2) The application may execute faster from actual start time
to finish on an HPC cluster, but the total turnaround time
on the cloud may be less because of wait queue delay
on the HPC clusters.

3) A given user may not have access to an HPC cluster
(e.g., security issues at a national laboratory). We do not
consider this further in the paper, as it is fairly obvious
if one has access only to EC2, then there is nothing to
study aside from comparing different EC2 clusters.

2Of course, there are a finite number of EC2 machines, so there exists a
number of nodes that would cause the user to wait until more capacity exists.

The second point above must be tempered by cost. That is,
if we expand our notion of execution time to a less traditional
metric such as total turnaround time, we cannot ignore the
cost difference between an EC2 node (significant) and an HPC
node (“free”). On the other hand, the HPC node is not really
“free”. There obviously is some operational cost that couldbe
passed on to the user, but it is certainly much less than what
Amazon, as a for-profit company, charges.

Thus, there is a tradeoff if one evaluates an EC2 cluster
versus an HPC cluster on the basis of cost and performance. It
depends on many factors, including the application, the current
cluster utilization, and the cost per node. The goal of this paper
is to try to characterize these factors and to better understand
in which situations using EC2 for traditional HPC apps makes
sense.

We do not make any judgments about the relative impor-
tance of turnaround time and cost. Such an ordering depends
on the relative importance of these quantities to the user. It
is also possible that the user operates under a time (or cost)
bound, and wishes to minimize the cost (or time) such that the
constraint is honored. In this paper, we will merely presentand
analyze data, but our eventual goal is to be able to determine,
without exhaustive execution, the best configuration (which
type of machine plus number of nodes).

III. E XPERIMENTAL SETUP

This section describes our experimental setup First, we
provide a description of all test systems and benchmarks used
in our evaluation. Second, we describe how we set up the
experiments. Third, we discuss how we evaluate wait queue
times.

A. Machine and benchmark descriptions

Table I shows configurations for our test systems. Two of
our systems reside at Lawrence Livermore National Labora-
tory (LLNL). Sierra is one of the newer systems and has 1849
Intel Xeon 5660 nodes, 12 cores per node, clock speed of
2.8 GHz, 12 MB cache, memory size of 24 GB/node, and
Infiniband QDR inter-node connectivity. Hera is a somewhat
older system; it has 800 quad-core Opteron nodes, 16 cores
per node, clock speed of 2.3 GHz, 512 KB cache, memory size
of 32 GB/node, and Infiniband DDR inter-node connectivity.

We used three different EC2 clusters: Cluster Compute
Quadruple Extra Large “CC1”, Cluster Compute Eight Extra
Large “CC2”, and High-CPU Extra Large (“HC”). A CC1
node is a Xeon X5570 processor, with two quad-cores, clock
speed of 2.93 GHz, 8 MB cache, memory size of 23 GB/node,
and 10 Gb Ethernet inter-node connectivity. A CC2 node is
a Xeon Sandy Bridge processor, with two oct-cores, clock
speed of 2.59 GHz, 20 MB cache, memory size of 60.5
GB/node, and 10 Gb Ethernet inter-node connectivity. An HC
node is a Xeon E5410 processor, with two quad-cores, clock
speed of 2.33 GHz, 6 MB cache, memory size of GB/node,
and 1 Gb Ethernet inter-node connectivity. Currently, Amazon
has two kinds of HC nodes and returns them arbitrarily; the
other type is also a Xeon but 2.13 GHz. Because we assume

homogeneous computing in this paper, we discarded any 2.13
GHz node. Obviously, this incurs a cost (Amazon has no return
policy), but for long-running computations, this one-timecost
will be amortized; so, we do not count the cost of discarding
in our results.

The relative computational power of CC1 and CC2 (accord-
ing to Amazon), relative to HC, is 1.68 and 4.40, respectively.
The costs per hour for CC1, CC2, and HC, respectively, are
$1.30, $2.40, and $0.66. As mentioned earlier, all EC2 clusters
are virtualized, though CC1 and CC2 have hardware support
to reduce overhead.

The benchmarks we used are from the NAS Parallel [6],
ASC Sequoia [2], and ASC Purple [1] benchmark suites.
Specifically, we ran CG, EP, BT, LU and SP from the
NAS suite; Sweep3D and LAMMPS from ASC Sequoia,
and SMG2000 from ASC Purple. We did not execute all of
the programs from a given suite because we wanted some
diversity, and executing all of the benchmarks from each suite
would have taken several extra hours. The cost per hour at
scale (128 nodes/1024 tasks) on CC2 is over $300.

For all programs, we configured the benchmarks so that they
would run for between 30 and 120 seconds on EC2 across
all scales; For the NAS programs, we editednpbparams.h
directly; the benchmark sizes were close to class C (sometimes
smaller, sometimes larger). For SMG2000, we used a size of
65x65x65 at 1024 tasks, and then adjusted sizes accordinglyat
lower scales to convert it to a strongly scaled application.For
Sweep3d, we used themakeinput utility and modified the
sizes. For LAMMPS, we used the Lennard-Jones input deck.
In this paper, we use strong scaling, so in each set of results,
all of the benchmark sizes were identical across different MPI
task counts.

The benchmarks we used had a variety of message charac-
teristics. Many were communication intensive (BT, CG, LU,
and SP), sending, per MPI rank, at least 100K messages
totaling at least 1 GB. (SP sent over 2 GB per rank.) SMG2000
sent about 400 MB per rank. LAMMPS sent about 200 MB
per rank, but did so over far fewer messages (only about 1000
per rank), and has far less time spent in MPI communication
than BT, CG, LU, SMG2000, or SP. Finally, EP is computation
intensive, sending only about 1 KB per rank.

B. Program setup

We used MVAPICH-1.7 (for the LLNL clusters) and
MPICH2 (for the EC2 clusters). We compiled all benchmarks
using the-O2 option. Also, all experiments use half of the
available cores on a node (except on Sierra, where we use
8 out of the 12 available cores because of the power-of-two
nature of the benchmarks). This is because currently the EC2
systems pin all interrupts on to core 0. For communication
intensive programs, this causes severe load imbalance on core
0 and significant performance degradation. Separate tests show
as much as a 500% overhead on such programs. Personal
communication with Amazon indicates that in the near future
interrupt handling will be spread throughout the cores [25].
We would expect that this problem will then cease to exist.

Cluster CPU Cache Memory Cores/Node Interconnect Cost
speed size size Technology
(GHz) (MB) (GB) ($/Hour)

Sierra 2.8 12 24 12 Infiniband QDR —
Hera 2.3 0.5 32 16 Infiniband DDR —
Cluster Compute Quadruple (CC1) 2.93 8 23 8 10 GigE 1.3
Cluster Compute Eight (CC2) 2.59 20 23 16 10 GigE 2.4
High-CPU (HC) 2.33 6 23 8 1 GigE 0.66

TABLE I
SYSTEM SPECIFICATION FOR OUR TEST SYSTEMS

Performance interference arising from pinning interruptsto
core 0 is a known problem, first reported by Petrini [23] and
can be addressed easily by simply leaving core 0 unused.
However, this would lead to an uneven core distribution (e.g.,
64 cores spread over 6 nodes with 15 utilized cores each and
one node with 4 cores). This can cause additional communi-
cation and imbalances in the applications due to the particular
topology mapping chosen by individual MPI implementations
(which are different between the LLNL clusters and the
EC2 clusters). Our experiments show that on a core-to-node
mapping that is a power-of-two, this additional communication
is minimized. To level the playing field, we therefore chose to
leave half the cores unused. We also disabled hyperthreading
on the EC2 clusters. This is because we found that hyper-
threading most often degrades performance.

C. Wait queue times

Part of the next section is concerned with comparing total
turnaround times, which is the time between submission of
the job and completion of the program. Sierra and Hera
(and all oversubscribed machines that use batch submission)
are optimized for execution time. On the other hand, EC2
optimizes for turnaround time [25].

To measure turnaround time, we need to know wait queue
time. This is difficult to measure, because wait queue time is
not constant. On EC2, using on-demand instances with non-
excessively-sized requests, there is no wait queue time. Sierra
and Hera, however, are well utilized by a large number of
users and hence can have significant wait queue time. In our
at-scale experiments, we always asked for 128 nodes. Because
Sierra and Hera have 1849 and 800 nodes, respectively, this
allowed us to examine two situations, one of which will likely
have much lower wait queue time than the other. We also ran
tests at 32 and 64 nodes, which on average incur less wait
queue time.

Estimating wait time is particularly tricky because (1) the
batch submission algorithm used is opaque, and (2) wait queue
time may not be linear. To estimate the wait time, we submitted
jobs to both Sierra and Hera at 10am and 10pm every day for
a month. We set the maximum job time (the time at which, the
program, if still executing, is killed) to 2 minutes or 5 hours.
We choose the latter (somewhat arbitrarily) as a “typical”
supercomputing job, and the former acts as a lower bound
for queue wait time and also investigates how wait queue time
varies with the requested maximum job time. The actual “job”

Job Size in Nodes

Q
ue

ue
 T

im
e

in
 S

ec
on

ds

Sierra 2−minute job
Sierra 5−hour job

Hera 2−minute job
Hera 5−hour job

8 16 32 64 128 256 512 1024

1
10

10
0

10
00

10
00

0
1e

+
05

Fig. 1. Boxplot showing comparison of queue wait times at different node
counts on Sierra and Hera

we ran simply recorded the time at which the “job” started
and then exited. We did this for a minimum of 8 nodes and a
maximum of 1024 nodes on Sierra (and 256 nodes on Hera,
which is the maximum obtainable in normal operating mode).

The results are shown in Figure 1 as a series of boxplots,
which shows the median in addition to the ranges of each
quartile. Wait queue times increase with an increase in maxi-
mum job execution time, as long as a node request is below a
significant percentage of the available nodes (which is roughly
64 nodes on Hera and 512 or 1024 nodes on Sierra). In
addition, the data shows that even for the two-minute jobs,
there are potentially significant wait times.

IV. EVALUATION

This section describes our evaluation. First, we present
results of microbenchmarks on EC2 and LLNL machines to
evaluate their network latency and bandwidth as well as com-
putation power. Second, we provide our results of comparing
EC2 to LLNL clusters in terms of execution time, turnaround

Hera Sierra CC1/CC2 HC

Latency 5.3µs 3.7 µs 110µs 256µs
Bandwidth 4.1 Gb/s 6.9 Gb/s 1.4 Gb/s 0.2 Gb/s

TABLE II
NETWORK LATENCY AND BANDWIDTH FOR HERA, SIERRA, CC1, CC2,

AND HC.

Hera Sierra CC1 CC2 HC

Relative performance 1.00 2.21 2.19 2.28 1.51

TABLE III
RELATIVE SEQUENTIAL PERFORMANCE(NORMALIZED TO HERA) FOR

SIERRA, CC1, CC2,AND HC.

time, and cost on the strongly-scaled benchmarks described
previously with 256, 512, and 1024 MPI tasks using both
execution time and total turnaround time. Third, present cost
analysis across the different EC2 clusters (Cluster Compute
Quadruple Extra Large [CC1], Cluster Compute Eight Extra
Large [CC2], and High-CPU Extra Large [HC].

A. Microbenchmarks

We use a set of simple microbenchmarks to measure per-
formance of individual system parameters. Our tests cover
network latency and bandwidth as well as relative single node
computation performance.

First, we present the results of network latency and band-
width. We developed our own synthetic MPI benchmark that
measures the round-trip time for various data sizes using a
data size of 1 byte. For bandwidth tests, we used a data size
of 100K. Table II shows the ranges of times collected on the
test clusters. The experiments showed that Sierra has the least
inter-node latency and the fastest bandwidth. This is due to
the Infiniband QDR technology used for interconnection. CC1
and CC2 (which use identical networks) show low variance
in network bandwidth; however, the latency is about 30 times
higher than Sierra. These times are consistent with what others
have found [32], [29]. The 1 Gb/s network used by HC causes
its bandwidth to be lower (by a factor of about 7), and latency
is likely higher than CC1/CC2 (by a little more than a factor
of 2) because of the lack of guaranteed physical proximity of
the allocated nodes.

Importantly, the network variance on HC was larger than
that on CC1/CC2; in particular, bandwidths varied up to 50%
in our experiments in HC, compared to only 10% in CC1/CC2.
This is, again, likely because of the physical proximity of the
nodes on CC1/CC2.

We did not specifically perform tests to try to characterize
the virtualization overhead, because we do not have iden-
tical, non-virtualized nodes with which to compare. Also,
the network overhead on EC2 machines dominates all other
overheads. However, as shown earlier, sequential performance
on CC1 and CC2 nodes is quite good, even if virtualization
overhead exists (plus, there is hardware support to reduce it).

Table III shows the result of executing all of our benchmarks
on one MPI task, so there is no communication. Each machine

is expressed in terms of average speedup over Hera, which is
the slowest node. The CC2 node is the highest performing
one, and likely the difference could be larger in cases where
there is significant memory pressure, as the CC2 cache, at 20
MB, is much larger than any of the other nodes we used.

Also, EC2 does not co-locate virtual machines on CC1, or
CC2 [25]. Finally, we have already discussed the noise issue;
when omitting core 0, there is not a significant noise overhead.

B. Execution Time at Scale

In this section, we first present results of our MPI bench-
marks that allow us to compare CC2, Sierra, and Hera. We
use 128 nodes and a total of 1024 MPI tasks (8 cores per
node). Second, we provide scaling results from 256 tasks to
1024 tasks.

We first consider the difference in execution time for the
various systems, i.e., the elapsed time from program start to
program end. Figure 2 shows the median values collected
during at least three runs on the systems (normalized to
CC2 times, with a breakdown of relative computation and
communication time shown also). For the most part, our results
here are similar to execution time measurements collected by
others [32], [19], in the sense that communication-intensive
applications have significant overhead on the cloud. BT and
CG performed significantly worse on CC2 than Sierra or Hera
(nearly an order of magnitude compared to Sierra, and a factor
of 3-4 on Hera), primarily due to communication overhead.
LU, SP, and SMG2000 perform 3-4 times worse on CC2 than
Sierra, but are generally less than a factor of 2 slower on CC2
than Hera. On EP and Sweep3d, CC2 is slightly slower than
Sierra (4.6% and 9.2%, respectively), while Hera is slower by
51% and 44%.

Somewhat surprisingly, CC2 outperforms both Hera and
Sierra on LAMMPS. While these two codes do have nontrivial
communication at 1024 tasks, the superiority of the CC2
nodes more than compensates for the inferior communication
infrastructure. Again, this is because CC2 is comprised of
newer nodes than Sierra or Hera. We would expect this
difference to evaporate were we to compare to the newest
clusters that LLNL has acquired, which, like CC2, have Intel
Xeon dual-socket, oct-core nodes.

We also note that Hera is significantly slower than Sierra,
commonly running between two and three times slower. This
is because Hera is a much older machine, and has much slower
processors. The point is that people use Hera; as will be seen
in the next subsection, it is quite oversubscribed. Thus, there
is at least some reason to believe thatsome tightly-coupled
parallel computing applications could be run in the Cloud,
even with its inferior communication latency and bandwidth.

C. Turnaround Time

In this section, we focus on the same three machines (CC2,
Sierra, and Hera), but turn our attention to total turnaround
time. Figure 3 (page 7) presents a statistical representation
of total turnaround time on both Sierra and Hera at three
different MPI task counts: 256, 512, and 1024. (For CC2,

Benchmarks ordered by normalized Sierra execution time

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.
0

0.
5

1.
0

1.
5

CG SP SMG2000 EP
BT LU Sweep3D LAMMPS

Computation (Amazon CC2)
Computation (Hera)
Computation (Sierra)
Associated Communication

Fig. 2. Comparison of execution times on Sierra, Hera and CC2clusters (128 nodes/1024 tasks). Times are normalized to those of CC2, and the relative
percentage spent in computation and communication is shown.

total turnaround time is identical to execution time.) The data
is presented as follows. We took the execution time of Sierra
(Hera) and normalized it to the CC2 execution time and then
placed it on a 5 hour scale. (For practical reasons, we had to
run short jobs because of the overwhelming cost we would
have incurred to run for 5 hours on CC2.) We then add to the
5-hour normalized execution time to the queue wait time to
achieve total turnaround time. Because queue wait time is a
distribution, so we use a boxplot to represent it the resultswe
collected for the 5-hour wait times.

The results show two broad things. First, in many cases, the
CC2 execution time is better at lower scales. In such situations,
of course, total turnaround will be much better on CC2, as
queue wait time is an additive penalty on Sierra and Hera.
However, as we increase the number of MPI tasks, Sierra and
Hera scale better than CC2; again, this is not surprising as
(1) we are using strong scaling, and (2) Sierra and Hera use
Infiniband and CC2 uses 10 Gb Ethernet.

Second, consider the most interesting comparison, which is
Sierra (the more powerful LLNL cluster) and CC2 at 1024
MPI tasks. Clearly, the queue wait time governs turnaround
time. That is, for all applications other than LAMMPS, if the
queue wait time on Sierra falls within the first quartile, Sierra
is superior (due to the difference in execution time). On the
other hand, if the queue wait time falls in the fourth quartile,
then CC2 is clearly better. If the queue wait time falls in the
second or third quartile, which system is better depends on (1)

Application Hera Sierra

BT 50% 55%
CG 55% 55%
EP — 20%
LAMMPS — —
LU 25% 55%
SMG2000 — 50%
SP 45% 55%
Sweep3d — 25%

TABLE IV
PERCENTAGE OF TIME THATHERA AND SIERRA ARE EXPECTED TO HAVE

LOWER TURNAROUND TIME THAN CC2.

where in the quartile the wait time falls, along with (2) the
relative superiority of the execution time on Sierra. As before,
if the execution time is superior on CC2 (as for LAMMPS),
then the turnaround time is always lower on CC2.

We can also view the expected wait time using existing
methods such as QBETS [22]. With QBETS, a binomial is
used to determine a confidence level that a given percentage
of jobs will have lower wait time than one of the values from
the pool of measured wait time samples. Prediction accuracy
of the binomial method in QBETS has been shown to be
quite good (close to the actual time on average). We used a
confidence level of 95%, and we found, for each application,
the percentage of time that Hera and Sierra are expected to
have lower turnaround time than CC2 at 1024 tasks. Table IV

Benchmarks ordered by normalized Sierra execution time

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

5
ho

ur
s

(none) BT CG SP LU SMG2000 EP Sweep3d LAMMPS

256−task execution time normalized to 5−hour at Amazon CC2
Sierra Hera

Distribution of queue wait time assuming 5−hour job
Sierra Hera

Benchmarks ordered by normalized Sierra execution time

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

5
ho

ur
s

(none) BT SP SMG2000 CG LU EP Sweep3d LAMMPS

512−task execution time normalized to 5−hour at Amazon CC2
Sierra Hera

Distribution of queue wait time assuming 5−hour job
Sierra Hera

Benchmarks ordered by normalized Sierra execution time

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

5
ho

ur
s

(none) CG BT SP LU SMG2000 Sweep3d EP LAMMPS

1024−task execution time normalized to 5−hour at Amazon CC2
Sierra Hera

Distribution of queue wait time assuming 5−hour job
Sierra Hera

Fig. 3. Comparison of total turnaround times on Hera and Sierra on 256, 512, and 1024 tasks. The figure shows execution times, normalized to the CC2
time on a 5 hour scale, along with a boxplot of the queue wait time.

shows that on Sierra, the expectation ranges from 20% to
55%. With Hera, the expectation ranges from 25% to 55%.
However, on Hera, there is no percentage to compute for EP,
LAMMPS, SMG2000, and Sweep3d, as CC2 executes faster
and therefore is always better in turnaround time. This only
occurs with LAMMPS on Sierra.

Of course, the cost to the user of Sierra and Hera (techni-
cally, “free”) is much less than the cost of CC2. It is up to
the user to determine whether the cost of renting a cluster is
worth the certainty of avoiding any queue wait time. Even if
we assume the user pays to use the LLNL machines at cost
(others have derived these costs, per node-hour, as 3 cents
on the low end [29] and 26 cents on the higher end [10],
depending on the assumed utilization and other factors), the
lower cost and faster communication performance mean that
EC2 will always be a more expensive alternative than will a
reasonably utilized HPC cluster.

The next subsection discusses incorporating cost for differ-
ent EC2 clusters.

D. EC2 Cost/Performance Comparison

In this section we study the differences between three EC2
clusters: CC1, CC2, and HC, from a cost and performance
perspective. While we will continue to use turnaround time
as our terminology, it is the same as execution time for on-
demand EC2 instances. The purpose of this section is to
answer the following questions. First, what is the tradeoff
between turnaround time and cost at various scales. Second,if
the user has a turnaround time bound (e.g., “finish the weather
prediction for tomorrow before the evening newscast at 7pm”),
is the most cost-effective way to do that always to use CC2, or
might using a less powerful cluster be better? In this section
we use smaller scales (16, 32, and 64 tasks); this is because
of financial reasons, but we did lower the problem sizes from
the previous subsections to maintain similar computation-to-
communication ratios.

It is important to note that CC2 is priced much better than
CC1 or HC. Keep in mind that CC2 is nearly 3 times more
powerful than CC1, yet costs less than twice as much; also,
CC2 is nearly 4.5 times more powerful than HC, yet costs less
than 4 times as much. In other words, users can get more for
their money with CC2, even though traditionally one receives
less for their money with the highest-end systems. Thus, it is
entirely possible that although HC and CC1 are cheaper per-
node-hour than CC2, CC2 may be both fasterand cheaper
than either—considering that users are charged for usage.

Figure 4 shows the tradeoff between cost and turnaround
time. The figure is displayed as a scatterplot of cost (x-axis)
and turnaround time (y-axis), with the points representingthe
same cluster connected to show scalability of each cluster.

In general, computational scientists execute large programs
for large amounts of time. For practical reasons (again, our
cost on EC2), we had to execute short programs. This does
not map well to the hour billing granularity used by EC2.
Therefore, to calculate cost, we take the hourly rate and divide

it by the actual time spent. (Essentially, we are assuming the
billing function is continuous instead of discrete.)

Armed with these graphs, we can consider the question of
whether the best performance and cost is universally achieved
with CC2—as CC2 nodes provide the best price/rated perfor-
mance. Figure 4 shows that this is not the case. In fact, the
least cost is achieved with HC on four of our eight applications
(EP, LAMMPS, LU, and Sweep3d, on either 16 or 64 tasks,
depending on the particular application). (In the figure, we
show only six of the eight graphs due to space limitations.)
The lowest cost sometimes occurs on HC because despite the
difference in the rated raw core-specific performance of the
CC1, CC2, and HC, the actual relative difference in turnaround
time is often much smaller. This can be either because the
actual computation does not map to benchmarks that EC2
used to determine the performance difference between their
node types, or because communication time is significant (or
both). The latter point is visible primarily in comparing CC1
and CC2, as they share identical network infrastructure.

Still, CC2 is generally fastest. We next answer the question
posed above about whether in cases in which a turnaround
time bound exists, the lowest cost occurs with CC1 or HC.
If we consider a time bound (horizontal line) in Figure 4 at
various points, we see that this indeed can occur. For relative
turnaround time bounds (normalized, as the graphs are, to CC2
at 64 tasks) of 1.73, and 5.95, respectively, LU (at 64 tasks)
and LAMMPS (at 16 tasks) have least cost on HC (by between
1.7% and 8.5%) compared to the corresponding least costs of
CC2. This difference can be larger if there is a larger variety
of task counts. However, unsurprisingly, there are many cases
where the clear best choice is to use CC2. An example is
Sweep3d, where no matter what time bound is chosen, CC2
is the right choice (with as many tasks as needed to satisfy
the time bound).

Because CC2 compared to CC1 has twice as many cores,
the same network infrastructure, and costs less than twice,
CC2 essentially dominates CC1. By the same token, CC2 and
HC differ by approximately a factor of 5 in computation and
7 in bandwidth, yet CC2 costs 3.6 as much. If the systems
had “true” prices, selecting the best cluster would be a much
more complicated and interesting problem.

Still, there exists no case in which CC2 dominates; in other
words, there is no single configuration (type of node and
number of nodes) that is always better in turnaround time
and cost. For this to happen, it would be necessary to have
linear scalingand a performance gap between CC2 and the
other two that is relatively larger than the cost difference.
So, the least-cost cluster depends on the application and time
bound. Obviously, the key is to determine this ahead of time
as opposed to after the fact through exhaustive executions.

V. D ISCUSSION

Our evaluation has revealed several interesting items. First,
we have established that the choice of which cluster to use
is dependent on the application, queue wait time, and price.
Obviously, the user does not have the luxury of exhaustively

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: BT

Normalized cost

N
or

m
al

iz
ed

 ti
m

e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: CG

Normalized cost
N

or
m

al
iz

ed
 ti

m
e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: LAMMPS

Normalized cost

N
or

m
al

iz
ed

 ti
m

e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: LU

Normalized cost

N
or

m
al

iz
ed

 ti
m

e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: Sweep3D

Normalized cost

N
or

m
al

iz
ed

 ti
m

e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

0 1 2 3 4

0
2

4
6

8
10

Cost/Time Tradeoff: SMG2000

Normalized cost

N
or

m
al

iz
ed

 ti
m

e

CC2
CC1
HC

16
32
64

Amazon
Cluster

Node
Count

Fig. 4. Cost versus turnaround time comparison for CC1, CC2,and HC.

trying all clusters and then deciding which was best after
the fact. In our opinion, this motivates designing software
systems that perform cluster selection automatically, which has
also been discussed by Li et al. [21]. While this is certainly
not a simple task, an effective software system could save
users a significant amount of money. (Also, while we did not
investigate cost bounds in this paper, given such a bound,
presumably a software system could save the user time.) In
general, a user could, for example, be choosing between a
desktop machine, a department cluster, a university-owned
cluster, a national-lab-owned cluster, and the cloud (even
though we studied only the last two kinds of systems). Each
has its own performance and cost tradeoff.

Second, the cost-performance tradeoff seems to us fairly
likely to become more interesting going forward. Currently,
for example, CC2 is priced attractively, causing it to be the
best option in many cases. Amazon already lowered the price
of CC1 from $1.60 to $1.30 upon the arrival of CC2, and
we would not be surprised if that price drops further with the
natural migration of users to the highest-end cluster available.

Third, in order to develop systems that decide between HPC
clusters such as those at LLNL and EC2, it is necessary for
the HPC systems to provide wait queue data—likely both
historical and current. This would allow analysis to determine
the expected wait time on the HPC clusters, which is clearly
a critical factor in which cluster to choose. However, there
are clear security concerns. These can probably be alleviated
by anonymizing some queue data. On the positive side, there
should be an incentive for organizations like LLNL to provide
this data, as it could reduce some demand.

Finally, the sort of results shown in this paper could motivate
owners of HPC clusters to use the cloud for overflow capacity.
Obviously, this depends on the particular organization andthe
importance and timeliness of jobs.

VI. RELATED WORK

There is a large body of work related to this paper. Broadly
speaking, it falls into three categories. First, others have
analyzed performance of standard HPC benchmarks on public
clouds. Second, there has been work in comparative usability

and cost analysis of running real scientific codes on small,
medium and large scale HPC clusters against pay-as-you-go
public clouds. Finally, there has been work in performance,
energy and cost optimization for software components on
infrastructure-as-a-service (IaaS) platforms. We focus on the
first two types.

The introduction of virtualization technologies has opened
up interesting possibilities for running HPC applications, such
as increasing resource utilization, sandboxing and ability to
customize. Youseff et al. analyzed performance of MPI ap-
plications on virtualization technologies such as Xen [31].
Ibrahim et al. studied the impact of resource customization
and utilization for various virtualization techniques [18]. Cloud
computing platforms incorporated these techniques to vir-
tualize computing resources for various computation needs
of individuals to enterprise scale users. Platforms such as
Amazon EC2[5], FutureGrid [3] and OpenCirrus [9] make
it possible to configure HPC scale resources for MPI-based
distributed applications. Amazon EC2 provides a wide range
of virtualized computational resources at a hourly cost per
resource. FutureGrid and OpenCirrus provide medium-scale
test beds for virtualized computational resources at no cost,
but performance can be an issue.

Amazon EC2 has become increasingly popular with sci-
entific HPC users due to high availability of computational
resources at large scale. Several researchers have benchmarked
EC2 using MPI programs. Previous work [26], [16], [24],
[13], [17], [19], [12], [11], [14] has focused on extensively
benchmarking currently available EC2 cluster types with stan-
dard MPI benchmarking suites such as NAS [6] and Sequoia
[2]. Our work uses both large task counts and takes a user
perspective, which has not been studied simultaneously. Also,
we investigate the cost/performance tradeoff at differentscales
on EC2, which to our knowledge has not been investigated.

Several attempts have been made to formalize and compare
the cost of running standard HPC benchmarks as well as
real applications on Amazon EC2 and standard cluster sys-
tems. Formalizing the cost of a standard HPC cluster is not
straightforward due to the manner in which the computational
resources are charged per user. Walker et al. attempt to
formalize the cost of leasing CPU in HPC clusters [27].
Work on comparing the cost of resources on medium-scale
university-owned cluster with Amazon EC2 Cluster Compute
(CC) instance has been carried out ([10]). Cost estimation of a
large-scale cluster presented by Yelick et al. involved a detailed
modeling of cost of ownership, support, and hardware and
software upgrades [29]. The work showed that other factors in
total cost include amortized cost of a cluster, utilizationrate
and job execution times and input sizes. Because resources
are charged on an hourly basis, attempts have been made
to execute applications cost-effectively. Li et al. presented a
comparative study of public cloud providers for different real
HPC applications [21]. Again, our work differs in the use of
turnaround time and cost/performance analysis at scale.

The work most closely related to our work [32] compares
the cost of renting virtual machines in the cloud against

hosting a cluster. The authors present a detailed analysis of
MPI applications on CC1. Also, a cost comparison between
CC1 and an HPC cluster is presented with amortized cost
calculations.

Our work differs from that above in several ways. Most
importantly, our work studies turnaround time and cost; i.e.,
the perspective of the user, as opposed to the cost of running
a supercomputer center. From the point of view of the owner
of the center, operating an HPC cluster is always better as
long as the system is reasonably well utilized, and supercom-
puter centers easily fit that characteristic, as they tend tobe
oversubscribed.

Other differences also exist with our work. First, the scale
at which benchmarks were studied is typically quite small in
number of cores/nodes and problem sizes. Second, most of the
work employed small and medium instance types provided
by Amazon EC2 that are not specifically intended for HPC
applications. We present benchmarking results on the recently
introduced CC2. Third, most conclusions present network
latency and bandwidth, and virtualization overhead as the
factors causing application performance degradation. We show
that system noise is not significant compared to HPC clusters,
so long as core 0 is not utilized. Finally, we present a cost-
benefit comparison between different Amazon EC2 clusters
influenced by application scalability characteristics.

VII. C ONCLUSION

This paper evaluated the cloud against traditional high-
performance clusters along multiple dimensions. These in-
cluded execution time, turnaround time, and cost. We found
that from a user perspective, there are multiple considerations
in choosing a cluster to run on, including raw performance,
but also including the expected queue wait time along with
the actual cost.

Determining a cluster on which to run is a task that we
argue should be abstracted from the typical user. Our end goal
is to develop tools and techniques for directing diverse sets
of applications and users to the most appropriate cluster ina
particular situation.

ACKNOWLEDGMENTS

Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. (LLNL-
CONF-555973).

REFERENCES

[1] ASC purple benchmarks. https://asc.llnl.gov/computing resources/
purple/archive/benchmarks/, 2002.

[2] ASC sequoia benchmarks. http://asc.llnl.gov/sequoia/benchmarks/,
2009.

[3] Futuregrid project. https://portal.futuregrid.org/, 2009.
[4] Using Moab. https://computing.llnl.gov/tutorials/moab/, 2012.
[5] Amazon. Amazon web service elastic compute cloud (EC2).http://aws.

amazon.com/ec2.
[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS parallel
benchmarks - summary and preliminary results. InProceedings of the
1991 ACM/IEEE Conference on Supercomputing (SC), Nov. 1991.

[7] J. Brodkin. $1,279-per-hour, 30,000 core cluster builton
Amazon EC2 cloud. http://arstechnica.com/business/news/2011/09/
30000-core-cluster-built-on-amazon-ec2-cloud.ars, 2011.

[8] J. Brodkin. $4,829-per-hour supercomputer built on amazon cloud to
fuel cancer research. http://arstechnica.com/business/news/2012/04/
4829-per-hour-supercomputer-built-on-amazon-cloud-to-fuel-cancer-research.
ars, 2012.

[9] R. Campbell, I. Gupta, M. Heath, S. Y. Ko, M. Kozuch, M. Kunze,
T. Kwan, K. Lai, H. Y. Lee, M. Lyons, D. Milojicic, D. O’Hallaron,
and Y. C. Soh. Open cirrus cloud computing testbed: federated data
centers for open source systems and services research. InProceedings
of the 2009 conference on Hot topics in cloud computing, 2009.

[10] A. G. Carlyle, S. L. Harrell, and P. M. Smith. Cost-effective HPC: The
community or the cloud? InProceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science,
pages 169–176, 2010.

[11] J. Ekanayake and G. Fox. High performance parallel computing with
clouds and cloud technologies. InCloud Computing, pages 20–38. 2010.

[12] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar. Exploringthe
performance fluctuations of HPC workloads on clouds. InProceedings
of the Second International IEEE Conference on Cloud Computing
Technology and Science (CloudCom), pages 383–387, Nov. 2010.

[13] C. Evangelinos and C. Hill. Cloud computing for parallel scientific HPC
applications: feasibility of running coupled atmosphere ocean climate
models on Amazon’s EC2. InProceedings of the 2008 NSF/DOE
Conference on Cloud Computing and its Applications (CCA), Oct. 2008.

[14] M. Fenn, J. Holmes, and J. Nucciarone. A performance andcost analysis
of the amazon elastic compute cluster compute instance. http://rcc.its.
psu.edu/education/whitepapers/cloudreport.pdf, 2011.

[15] Y. Gong, B. He, and J. Zhong. An overview of CMPI: network
performance aware MPI in the cloud. InProceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 297–298, 2012.

[16] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. Case study
for running HPC applications in public clouds. InProceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, pages 395–401, 2010.

[17] Z. Hill and M. Humphrey. A quantitative analysis of highperformance
computing with Amazon’s EC2 infrastructure: the death of the local
cluster? InInternational Conference on Grid Computing, Oct. 2009.

[18] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu. Characterizingthe performance
of parallel applications on multi-socket virtual machines. In Proceedings
of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pages 1–12, 2011.

[19] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,

J. Shalf, H. J. Wasserman, and N. J. Wright. Performance analysis of
high performance computing applications on the Amazon web services
cloud. In Second International IEEE Conference on Cloud Computing
Technology and Science (CloudCom), Nov. 2010.

[20] S. H. Langer, B. Still, P.-T. Bremer, D. Hinkel, B. Langdon, J. Leviney,
and E. Williams. Cielo full-system simulations of multi-beam laser-
plasma interaction in nif experiments. InCray Users Group Meeting,
May 2011.

[21] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing
public cloud providers. InProceedings of the 10th annual conference
on Internet measurement, pages 1–14, 2010.

[22] D. Nurmi, J. Brevik, and R. Wolski. Qbets: Queue bounds estimation
from time series. InWorkshop on Job Scheduling Strategies for Parallel
Processing, jun 2007.

[23] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q. InProceedings of the ACM/IEEE
Conference on Supercomputing, 2003.

[24] F. Schatz, S. Koschnicke, N. Paulsen, C. Starke, and M. Schimmler.
MPI performance analysis of Amazon EC2 cloud services for high per-
formance computing. InAdvances in Computing and Communications,
pages 371–381. 2011.

[25] D. Singh. personal communication, Mar. 2012.
[26] E. Walker. Benchmarking Amazon EC2 for high-performance scientific

computing.Login, 33(5):18–23, Oct. 2008.
[27] E. Walker. The real cost of a cpu hour. pages 35–41, 2009.
[28] Wikipedia. Cloud computing wikipedia page. http://en.wikipedia.org/

wiki/Cloud computing, 2011.

[29] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon. The magellan report
on cloud computing for science. http://science.energy.gov/∼ /media/
ascr/pdf/program-documents/docs/MagellanFinal Report.pdf, Decem-
ber 2011.

[30] S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spotinstances
via checkpointing in the amazon elastic compute cloud. InProceedings
of the 2010 IEEE 3rd International Conference on Cloud Computing,
pages 236–243, 2010.

[31] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Evaluating the perfor-
mance impact of xen on MPI and process execution for HPC systems.
In Proceedings of the 2nd International Workshop on Virtualization
Technology in Distributed Computing, 2006.

[32] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud versus in-house
cluster: evaluating amazon cluster compute instances for running MPI
applications. InProceedings of the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(Supercomputing), pages 11:1–11:10, Nov. 2011.

