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Abstract—Cloud computing has increased greatly in popularity
in recent years. However, many HPC users do not believe thahe
cloud is a viable alternative for executing all but embarrasingly
parallel scientific applications. In this paper, we show th while
by execution time the cloud is sometimes not a viable altertize,
this view is narrow. A more general view has to consider, from
the user’s point of view, turnaround time and cost.

We evaluate raw performance of HPC applications on the
top-of-the-line cluster offered by Amazon EC2, and comparehe
results to high-end clusters at Lawrence Livermore NationLab-
oratory (LLNL). We confirm prior results that the performanc e
gap between EC2 and high-end clusters stems primarily from
limited bandwidth. However, we find, interestingly, that (1) EC2
can be better than using the LLNL clusters when considering
turnaround time and (2) the cost effectiveness of differenEC2

clusters hosted, for example, at a company or universityedls w
as government laboratories.

We evaluate the cloud against traditional HPC clusters but
with a more generalized evaluation scheme. We compare the
Amazon EC2 cloud to two LLNL HPC clusters for a typical set
of HPC benchmarks. Our work differs from prior work, such as
Zhai et al. [32], in that we evaluate not just execution tilng,
also total turnaround time and cost; i.e., the factors afrimt
to the user. We also compare the various cloud instances—
specifically, Cluster Compute Quadruple Extra Large, @lust
Compute Eight Extra Large, and High-CPU—against each
other and argue that applications should be mapped to the

most appropriate cluster, which is not necessarily the dsgh
performing one.

The contributions of this paper are:

clusters varies based on the application.

I. INTRODUCTION
An evaluation of EC2 and HPC clusters along the axis
of execution time at reasonable scales (over 1000 cores).
o An evaluation of EC2 and HPC clusters along more
general axes, including total turnaround time and cost,
providing, for the first time to the best of our knowledge,
a user perspective of HPC on the cloud (prior work
studies the data center perspective [29], [32]).
« An execution time and cost comparison of EC2 instances.

In recent years, the cloud has had significant success in thé
commercial arena, but the story for high-performance com-
puting (HPC) has been rather disappointing. While “success
stories appear in the popular press periodically, most ernth
feature an embarrassingly parallel program being run os ten
of thousands of cloud machines [7], [8]. A more complicated
question is: how well does the cloud do on more tightly-
coupled applications? The prevailing opinion is that treudl
is more-or-less useless for such applications [19], [29]. Our results show that the choice of EC2 versus HPC clusters

Many reasons justify skepticism of the cloud for tightlyis more complicated and nuanced than previously thought.
coupled, more traditional HPC applications. First, thenay First, EC2 nodes are high end and, thus, execution time
and bandwidth of the network used by the cloud is usually better on EC2 for some applications that incur modest
inferior to that of a traditional cluster (e.g., Ethernet vsommunication. For example, at 1024 tasks, the top EC2
Infiniband). Second, cloud nodes are virtualized, whichseau cluster executed LAMMPS 21% faster than the top-end LLNL
concerns in terms of virtualization overhead as well asigirt cluster. However, we confirm prior results showing that com-
machine co-location. Finally, system noise when execuimg munication intensive applications are typically ineffigieon
the cloud, which may be a direct result of interference frolaC2 [29].
node virtualization, is a concern. Second and more importantly, while HPC clusters usually

However, to compare the cloud, which provides a fee-foprovide the best execution time, queue wait time on these
service model in which access is essentially available ,24ffequently oversubscribed resources can lead to muchrlarge
to traditional HPC clusters on only the axis of traditionalurnaround time. For example, when the wait time exceeds its
execution time is unfair. This comparison ignores, for eglan median, total turnaround time on the LLNL machines is often
the sometimes significant queue wait time that occurs on HFegger than that on EC2 (by more than a factor of 2) even
clusters, which typically use batch scheduling. Of couise,though the application may execute several times faster.
also ignores factors such as cost, where HPC clusters hav€inally, we show that it may cost less to use an inferior
a significant advantage (they are “free” to the user). TheB&€2 cluster. For example, using the least-cost EC2 cluster
properties hold not only for the Lawrence Livermore Nationavith certain time bounds is nearly 10% less expensive than th
Laboratory (LLNL) on which we experiment but also for HPChighest-cost, most capable EC2 cluster. Further, thismiffce



can increase as the number of tasks scales or if the EC2 ptive key is that on-demand instances have a given cost (see
structure more closely matched cluster quality. below) and zero queue wait time (unlike batch schedulers) in
The rest of this paper is organized as follows. Section mhost circumstancés
provides background of EC2 and motivates our comparisonOther researchers have found (in the past) that EC2 does not
of EC2 to HPC clusters. Section Il describes the machingsovide any locality guarantees, which is often an impdrtan
provides our experimental setup, and discusses how weedefivoperty to achieve efficient performance for HPC applica-
wait queue times. Section IV contains our evaluation, anibns. In particular, if a user of EC2 requegfsnodes to create
Section V discusses the implication of our results. We gtevi a cluster, there is in general no guarantee of wiichodes the
related work and our conclusions in Sections VI and VII. user receives [15]. This can be critically important in tigh
coupled HPC applications, and it is why batch systems such
asMbab [4] may increase queue wait time in order to return
The termcloud computing is somewhat difficult to define 53 more desirable set of nodes. However, EC2 does allow this
precisely. A traditional definition is that it provides, ah a ggrt of physical proximity through placement group on their
actual monetary cost to the end-user, computation, saftwakighest-end clusters (the Cluster Compute family). Howeve
data access, and storage that requires no end-user kn@wlgdg not clear how this is implemented (in other words, itiis a
about physical location and system configuration [28]. FrOBben question how many nodes in a placement group a user
a high-performance computing (HPC) perspective, the clogdn acquire without wait times similar to batch systems). In
provides a choice of different clusters. Each cluster f@#y  oyr experiments, we did not have any delay due to placement
provides different resources: number and type of corespamo roups, but we did not use more than 128 nodes. For most
of memory, storage, and network latency and bandwidth. §ystems, batch systems cannot guarantee physically pateim

this paper, we assume homogeneous computing, though yeRjes either (they perform best effort) [20].
realize that certain cloud providers may not always make thi

guarantee for all of their clusters. B. Comparing EC2 to HPC Clusters

Il. BACKGROUND AND MOTIVATION

A. EC2 Basics This paper compares EC2 clusters with two clusters that
eside at Lawrence Livermore National Laboratory (LLNL):
era and Sierra (discussed more in the next section). These
re typical high-end clusters that use Infiniband netwaykin

% ey serve as an example of what we denote “HPC clusters”,

at are owned and operated by an organization to solve

y problems for individuals in the organization and their

collaborators. Generally speaking, the clusters are wiited

I{é)therwise they would not be cost effective). We will use the

terms “LLNL clusters” and “HPC clusters” interchangeabily i

pe rest of this paper.

' Considering that the HPC clusters are assumed here to be
ree” and have better network infrastructure, one may ask

extra large), two “high CPU” instances (medium and extr\%hy one would ever execute an HPC applicatior_w on a cloud
large), and three “cluster compute” instances (one quzhelrli? uster as opposed to an HPC cluster (which, again, we assume
extra large, one eight extra large, and one with a GPUYNS @ batch scheduler).
These instances differ in their computational and network 1) The application may be compute intensive, and some of
capabilities. the nodes offered by EC2 may execute such applications
Amazon EC2 also markets several kinds of ways of purchas- ~ faster than HPC nodes, since cloud providers typically
ing time on their systems. One way is called “on-demand”, in ~ can afford a faster upgrade/refresh cycle for their ma-
which the user pays money for each VM instance and receives chine park.
access to the purchased node immediately. Another option i®?) The application may execute faster from actual start time
called “reserved”, in which the user pays a yearly fee, beihth to finish on an HPC cluster, but the total turnaround time
when the user purchases time, the rate is lower than thatof on ~ 0n the cloud may be less because of wait queue delay
demand. Finally, there is the “spot market”, where users can ~ On the HPC clusters.
bid on nodes and potentially pay much less. The spot markeB) A given user may not have access to an HPC cluster
model is nontrivial and has been explained elsewhere [30].  (€.9., Security issues at a national laboratory). We do not

We focus on the most popular cloud platform, which i
Amazon EC2 [5]. Amazon sells several kinds wifrtual
machine instances (VMs), which comprise cluster nodes.
virtual machine is an isolated, guest operating system th
exists within the host operating system (often called the h
pervisor). There can be many virtual machines in one phlysi
machine, and so a virtual machine mesources, as defined by
an instance, that can be up to, but not exceeding, the resou
on the physical machine.

Amazon EC2 markets three “regular” instances (smaF
large, and extra large), one micro instance, three “high men
ory” instances (extra large, double extra large, and quadru

In this paper we investigate only on-demand instances,ewhil  consider this further in the paper, as it is fairly obvious
noting that the other options are quite interesting and neay b if one has access only to EC2, then there is nothing to
superior in certain situations. For the purposes of thisepap study aside from comparing different EC2 clusters.

1There are multiple types of reserved instances, dependinthe user’s 20f course, there are a finite number of EC2 machines, so thésts @
expected machine utilization over time. number of nodes that would cause the user to wait until mgoaaty exists.



The second point above must be tempered by cost. Thatlismogeneous computing in this paper, we discarded any 2.13
if we expand our notion of execution time to a less tradition&Hz node. Obviously, this incurs a cost (Amazon has no return
metric such as total turnaround time, we cannot ignore tipelicy), but for long-running computations, this one-tigmst
cost difference between an EC2 node (significant) and an HR@ be amortized; so, we do not count the cost of discarding
node (“free”). On the other hand, the HPC node is not realiy our results.

“free”. There obviously is some operational cost that ccadd  The relative computational power of CC1 and CC2 (accord-
passed on to the user, but it is certainly much less than wiiag to Amazon), relative to HC, is 1.68 and 4.40, respediivel
Amazon, as a for-profit company, charges. The costs per hour for CC1, CC2, and HC, respectively, are

Thus, there is a tradeoff if one evaluates an EC2 clust®t.30, $2.40, and $0.66. As mentioned earlier, all EC2 efsst
versus an HPC cluster on the basis of cost and performanceark virtualized, though CC1 and CC2 have hardware support
depends on many factors, including the application, theeciir to reduce overhead.
cluster utilization, and the cost per node. The goal of thisgy The benchmarks we used are from the NAS Parallel [6],
is to try to characterize these factors and to better uralest ASC Sequoia [2], and ASC Purple [1] benchmark suites.
in which situations using EC2 for traditional HPC apps make&pecifically, we ran CG, EP, BT, LU and SP from the
sense. NAS suite; Sweep3D and LAMMPS from ASC Sequoia,

We do not make any judgments about the relative impoand SMG2000 from ASC Purple. We did not execute all of
tance of turnaround time and cost. Such an ordering depetigls programs from a given suite because we wanted some
on the relative importance of these quantities to the user.diversity, and executing all of the benchmarks from eactesui
is also possible that the user operates under a time (or costuld have taken several extra hours. The cost per hour at
bound, and wishes to minimize the cost (or time) such that teeale (128 nodes/1024 tasks) on CC2 is over $300.
constraint is honored. In this paper, we will merely presemt For all programs, we configured the benchmarks so that they
analyze data, but our eventual goal is to be able to determimeuld run for between 30 and 120 seconds on EC2 across
without exhaustive execution, the best configuration (Whiall scales; For the NAS programs, we editggbpar ans. h

type of machine plus number of nodes). directly; the benchmark sizes were close to class C (sorestim
smaller, sometimes larger). For SMG2000, we used a size of
Il EXPERIMENTAL SETUP 65x65x65 at 1024 tasks, and then adjusted sizes accordihgly

This section describes our experimental setup First, W@ver scales to convert it to a strongly scaled applicatteor.
provide a description of all test systems and benchmarks usweep3d, we used theakei nput utility and modified the
in our evaluation. Second, we describe how we set up thezes. For LAMMPS, we used the Lennard-Jones input deck.
experiments. Third, we discuss how we evaluate wait quelrethis paper, we use strong scaling, so in each set of results
times. all of the benchmark sizes were identical across differeRt M
task counts.

The benchmarks we used had a variety of message charac-
Table | shows configurations for our test systems. Two @dristics. Many were communication intensive (BT, CG, LU,
our systems reside at Lawrence Livermore National Laborand SP), sending, per MPI rank, at least 100K messages
tory (LLNL). Sierra is one of the newer systems and has 184&taling at least 1 GB. (SP sent over 2 GB per rank.) SMG2000

Intel Xeon 5660 nodes, 12 cores per node, clock speedgaint about 400 MB per rank. LAMMPS sent about 200 MB
2.8 GHz, 12 MB cache, memory size of 24 GB/node, angker rank, but did so over far fewer messages (only about 1000
Infiniband QDR inter-node connectivity. Hera is a somewhgker rank), and has far less time spent in MPI communication
older system; it has 800 quad-core Opteron nodes, 16 cotiean BT, CG, LU, SMG2000, or SP. Finally, EP is computation
per node, clock speed of 2.3 GHz, 512 KB cache, memory siirgensive, sending only about 1 KB per rank.
of 32 GB/node, and Infiniband DDR inter-node connectivity.

We used three different EC2 clusters: Cluster Compufe Program setup
Quadruple Extra Large “CC1", Cluster Compute Eight Extra We used MVAPICH-1.7 (for the LLNL clusters) and
Large “CC2", and High-CPU Extra Large (“HC"). A CC1 MPICH2 (for the EC2 clusters). We compiled all benchmarks
node is a Xeon X5570 processor, with two quad-cores, cloaking the- Q2 option. Also, all experiments use half of the
speed of 2.93 GHz, 8 MB cache, memory size of 23 GB/nodavailable cores on a node (except on Sierra, where we use
and 10 Gb Ethernet inter-node connectivity. A CC2 node & out of the 12 available cores because of the power-of-two
a Xeon Sandy Bridge processor, with two oct-cores, clociature of the benchmarks). This is because currently the EC2
speed of 2.59 GHz, 20 MB cache, memory size of 60%stems pin all interrupts on to core 0. For communication
GB/node, and 10 Gb Ethernet inter-node connectivity. An HiGtensive programs, this causes severe load imbalanceren co
node is a Xeon E5410 processor, with two quad-cores, clo@kand significant performance degradation. Separate tests s
speed of 2.33 GHz, 6 MB cache, memory size of GB/nodas much as a 500% overhead on such programs. Personal
and 1 Gb Ethernet inter-node connectivity. Currently, Aoraz communication with Amazon indicates that in the near future
has two kinds of HC nodes and returns them arbitrarily; theterrupt handling will be spread throughout the cores [25]
other type is also a Xeon but 2.13 GHz. Because we assutiie would expect that this problem will then cease to exist.

A. Machine and benchmark descriptions



Cluster CPU | Cache| Memory | Cores/Node| Interconnect Cost
speed | size size Technology
(GHz) | (MB) (GB) ($/Hour)
Sierra 2.8 12 24 12 Infiniband QDR —
Hera 2.3 0.5 32 16 Infiniband DDR —
Cluster Compute Quadruple (CC1) 2.93 8 23 8 10 GigE 1.3
Cluster Compute Eight (CC2) 2.59 20 23 16 10 GigE 2.4
High-CPU (HC) 2.33 6 23 8 1 GigE 0.66
TABLE |

SYSTEM SPECIFICATION FOR OUR TEST SYSTEMS

Performance interference arising from pinning interrupts
core 0 is a known problem, first reported by Petrini [23] and
can be addressed easily by simply leaving core 0 unused.
However, this would lead to an uneven core distribution.(e.g
64 cores spread over 6 nodes with 15 utilized cores each and : Sierra Z:hminut_e tJ'Job g Hera Z:hminut_e ti)Ob
one node with 4 cores). This can cause additional communi- Sterra 57hourjo iera 57hourjo
cation and imbalances in the applications due to the péaticu
topology mapping chosen by individual MPI implementations,
(which are different between the LLNL clusters and the&‘:;>
EC2 clusters). Our experiments show that on a core-to-noge
mapping that is a power-of-two, this additional commurniaat <
is minimized. To level the playing field, we therefore chose t E
leave half the cores unused. We also disabled hyperthngeadlg w
on the EC2 clusters. This is because we found that hyp%
threading most often degrades performance.
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C. Wait queue times i
Part of the next section is concerned with comparing total
turnaround times, which is the time between submission of ‘ | | | | | | ‘
the job and completion of the program. Sierra and Hera 8 16 32 64 128 256 512 1024
(and all oversubscribed machines that use batch submjssion
are optimized for execution time. On the other hand, EC2
optimizes for turnaround time [25].
To measure turnaround time, we need to know wait quebig- 1. Boxplot showing comparison of queue wait times afiedént node
time. This is difficult to measure, because wait queue time &S on Sierra and Hera
not constant. On EC2, using on-demand instances with non-

excessively-sized requests, there is no wait queue tineereSi e ran simply recorded the time at which the “job” started
and Hera, however, are well utilized by a large number @fd then exited. We did this for a minimum of 8 nodes and a
users and hence can have significant wait queue time. In @y4ximum of 1024 nodes on Sierra (and 256 nodes on Hera,
at-scale experiments, we always asked for 128 nodes. Becapfich is the maximum obtainable in normal operating mode).
Sierra and Hera have 1849 and 800 nodes, respectively, thighe results are shown in Figure 1 as a series of boxplots,
allowed us to examine two situations, one of which will likel \yhich shows the median in addition to the ranges of each
have much lower wait queue time than the other. We also rgQartile. Wait queue times increase with an increase in maxi
tests at 32 and 64 nodes, which on average incur less Waim job execution time, as long as a node request is below a
queue time. significant percentage of the available nodes (which is bug
Estimating wait time is particularly tricky because (1) thg4 nodes on Hera and 512 or 1024 nodes on Sierra). In

batch submission algorithm used is opaque, and (2) wait€jugigdition, the data shows that even for the two-minute jobs,
time may not be linear. To estimate the wait time, we submhittghere are potentially significant wait times.

jobs to both Sierra and Hera at 10am and 10pm every day for

a month. We set the maximum job time (the time at which, the IV. EVALUATION

program, if still executing, is killed) to 2 minutes or 5 heur  This section describes our evaluation. First, we present
We choose the latter (somewhat arbitrarily) as a “typicafesults of microbenchmarks on EC2 and LLNL machines to
supercomputing job, and the former acts as a lower bouadaluate their network latency and bandwidth as well as com-
for queue wait time and also investigates how wait queue tirpatation power. Second, we provide our results of comparing
varies with the requested maximum job time. The actual “jo2C2 to LLNL clusters in terms of execution time, turnaround

Job Size in Nodes



| | _Hera | Siera | CC1/CC2] HC | is expressed in terms of average speedup over Hera, which is
Latency 5.3us 3.7 us 110 us 256 us

Bandwidih T 21 Gb/s 69 Gbis| 14 Gb/s 1 02 Gbis the slowest node. The CC2 node is the highest performing
one, and likely the difference could be larger in cases where
TABLE 1| L
NETWORK LATENCY AND BANDWIDTH FOR HERA, SIERRA, CC1, CC2, there_ is significant memory pressure, as the CC2 cache, at 20
AND HC. MB, is much larger than any of the other nodes we used.
Also, EC2 does not co-locate virtual machines on CC1, or
CC2 [25]. Finally, we have already discussed the noise jssue
when omitting core 0, there is not a significant noise ovethea

| | Hera [ Sierra| CC1 [ CC2 | HC |
| Relative performancd 1.00 | 2.21 [ 219 2.28 ] 1.51]

TABLE Il B. Execution Time at Scale
RELATIVE SEQUENTIAL PERFORMANCE(NORMALIZED TO HERA) FOR . . .
° SIERRA. CC1 CCZ(,/-\ND HC. ) In this section, we first present results of our MPI bench-

marks that allow us to compare CC2, Sierra, and Hera. We
use 128 nodes and a total of 1024 MPI tasks (8 cores per
node). Second, we provide scaling results from 256 tasks to
time, and cost on the strongly-scaled benchmarks descrildéiP4 tasks.
previously with 256, 512, and 1024 MPI tasks using both We first consider the difference in execution time for the
execution time and total turnaround time. Third, preserst covarious systems, i.e., the elapsed time from program sgart t
analysis across the different EC2 clusters (Cluster Coenpyrogram end. Figure 2 shows the median values collected
Quadruple Extra Large [CC1], Cluster Compute Eight Extrduring at least three runs on the systems (normalized to
Large [CC2], and High-CPU Extra Large [HC]. CC2 times, with a breakdown of relative computation and
communication time shown also). For the most part, our tesul
here are similar to execution time measurements collegted b
We use a set of simple microbenchmarks to measure pethers [32], [19], in the sense that communication-intemnsi
formance of individual system parameters. Our tests cowgpplications have significant overhead on the cloud. BT and
network latency and bandwidth as well as relative singleeno€G performed significantly worse on CC2 than Sierra or Hera
computation performance. (nearly an order of magnitude compared to Sierra, and arfacto
First, we present the results of network latency and banof 3-4 on Hera), primarily due to communication overhead.
width. We developed our own synthetic MPI benchmark thau, SP, and SMG2000 perform 3-4 times worse on CC2 than
measures the round-trip time for various data sizes usingSerra, but are generally less than a factor of 2 slower on CC2
data size of 1 byte. For bandwidth tests, we used a data sizan Hera. On EP and Sweep3d, CC2 is slightly slower than
of 100K. Table Il shows the ranges of times collected on ti&ierra (4.6% and 9.2%, respectively), while Hera is slower b
test clusters. The experiments showed that Sierra hasdbe 161% and 44%.
inter-node latency and the fastest bandwidth. This is due toSomewhat surprisingly, CC2 outperforms both Hera and
the Infiniband QDR technology used for interconnection. CC3ierra on LAMMPS. While these two codes do have nontrivial
and CC2 (which use identical networks) show low varianammmunication at 1024 tasks, the superiority of the CC2
in network bandwidth; however, the latency is about 30 timemdes more than compensates for the inferior communication
higher than Sierra. These times are consistent with wharsthinfrastructure. Again, this is because CC2 is comprised of
have found [32], [29]. The 1 Gb/s network used by HC causeewer nodes than Sierra or Hera. We would expect this
its bandwidth to be lower (by a factor of about 7), and latendajifference to evaporate were we to compare to the newest
is likely higher than CC1/CC2 (by a little more than a factoclusters that LLNL has acquired, which, like CC2, have Intel
of 2) because of the lack of guaranteed physical proximity dfeon dual-socket, oct-core nodes.
the allocated nodes. We also note that Hera is significantly slower than Sierra,
Importantly, the network variance on HC was larger thacommonly running between two and three times slower. This
that on CC1/CC2; in particular, bandwidths varied up to 50% because Hera is a much older machine, and has much slower
in our experiments in HC, compared to only 10% in CC1/CCarocessors. The point is that people use Hera; as will be seen
This is, again, likely because of the physical proximity leét in the next subsection, it is quite oversubscribed. Thusteth
nodes on CC1/CC2. is at least some reason to believe tlaine tightly-coupled
We did not specifically perform tests to try to characterizgarallel computing applications could be run in the Cloud,
the virtualization overhead, because we do not have idesven with its inferior communication latency and bandwidth
tical, non-virtualized nodes with which to compare. Also
the network overhead on EC2 machines dominates all otfher Turnaround Time
overheads. However, as shown earlier, sequential perfarena In this section, we focus on the same three machines (CC2,
on CC1 and CC2 nodes is quite good, even if virtualizatidBierra, and Hera), but turn our attention to total turnatbun
overhead exists (plus, there is hardware support to reduce itime. Figure 3 (page 7) presents a statistical representati
Table Il shows the result of executing all of our benchmarlaf total turnaround time on both Sierra and Hera at three
on one MPI task, so there is no communication. Each machidiéferent MPI task counts: 256, 512, and 1024. (For CC2,

A. Microbenchmarks



Computation (Amazon CC2)
Computation (Hera)
Computation (Sierra)
Associated Communication

::jm e ul Hﬂﬁ ﬂ lﬂ

CG SP SMG2000
BT LU Sweep3D LAMMPS

15

Normalized execution time
1.0

Benchmarks ordered by normalized Sierra execution time

Fig. 2. Comparison of execution times on Sierra, Hera and €lG&ers (128 nodes/1024 tasks). Times are normalizedogetbf CC2, and the relative
percentage spent in computation and communication is shown

Application | Hera | Sierra |

total turnaround time is identical to execution time.) Ttegad

is presented as follows. We took the execution time of Sierra (B:I; ggzﬁ ggzﬁ
(Hera) and normalized it to the CC2 execution time and then EP — | 20%
placed it on a 5 hour scale. (For practical reasons, we had to LAMMPS — —
run short jobs because of the overwhelming cost we would ;L,\JAGZOOO 23/0 ggzﬁ
have incurred to run for 5 hours on CC2.) We then add to the Sp 25% | 55%
5-hour normalized execution time to the queue wait time to Sweep3d — | 25%
achieve total turnaround time. Because queue wait time is a TABLE IV

distribution, so we use a boxplot to represent it the resudtS PERCENTAGE OF TIME THATHERA AND SIERRA ARE EXPECTED TO HAVE
collected for the 5-hour wait times. LOWER TURNAROUND TIME THAN CC2.

The results show two broad things. First, in many cases, the
CC2 execution time is better at lower scales. In such sanafi
of course, total turnaround will be much better on CC2, as
queue wait time is an additive penalty on Sierra and Herahere in the quartile the wait time falls, along with (2) the
However, as we increase the number of MPI tasks, Sierra aietative superiority of the execution time on Sierra. Asdvef
Hera scale better than CC2; again, this is not surprising ighe execution time is superior on CC2 (as for LAMMPS),
(1) we are using strong scaling, and (2) Sierra and Hera uben the turnaround time is always lower on CC2.

Infiniband and CC2 uses 10 Gb Ethernet. We can also view the expected wait time using existing
Second, consider the most interesting comparison, whichnethods such as QBETS [22]. With QBETS, a binomial is
Sierra (the more powerful LLNL cluster) and CC2 at 1024sed to determine a confidence level that a given percentage

MPI tasks. Clearly, the queue wait time governs turnarourmd jobs will have lower wait time than one of the values from
time. That is, for all applications other than LAMMPS, if thethe pool of measured wait time samples. Prediction accuracy
gueue wait time on Sierra falls within the first quartile,i&e of the binomial method in QBETS has been shown to be
is superior (due to the difference in execution time). On ttguite good (close to the actual time on average). We used a
other hand, if the queue wait time falls in the fourth quartil confidence level of 95%, and we found, for each application,
then CC2 is clearly better. If the queue wait time falls in ththe percentage of time that Hera and Sierra are expected to
second or third quartile, which system is better depend4d.pn bave lower turnaround time than CC2 at 1024 tasks. Table IV



256-task execution time normalized to 5-hour at Amazon CC2
B Sierra @ Hera
Distribution of queue wait time assuming 5-hour job
© 0O Sierra O Hera
£
<
8
5
(%
&
@
°
Q
N
©
£
s 2
z 3 |
<
[Te}
i
(none) BT CG SP LU SMG2000 EP Sweep3d LAMMPS
Benchmarks ordered by normalized Sierra execution time
512-task execution time normalized to 5-hour at Amazon CC2
B Sierra @ Hera
Distribution of queue wait time assuming 5-hour job
© 0O Sierra O Hera
£
<
8
5
(%
&
@
°
Q
N
©
£
s 2
z 3 |
<
o H
Q T
(none) BT SP SMG2000 CG LU EP Sweep3d LAMMPS
Benchmarks ordered by normalized Sierra execution time
1024-task execution time normalized to 5-hour at Amazon CC2
B Sierra @ Hera
Distribution of queue wait time assuming 5-hour job i i
o O Sierra O Hera M .
£ : ;
s : : H :
8 !
= :
(%] ' T
g ]
@ -
° ! ;
@ , H
N :
® :
£ .
s 2 LT
z 3 |
< '
) H

(none) CG BT SP LU SMG2000 Sweep3d EP LAMMPS

Benchmarks ordered by normalized Sierra execution time

Fig. 3. Comparison of total turnaround times on Hera andr&ien 256, 512, and 1024 tasks. The figure shows executiors,tincemalized to the CC2
time on a 5 hour scale, along with a boxplot of the queue waieti



shows that on Sierra, the expectation ranges from 20% itdy the actual time spent. (Essentially, we are assumieg th
55%. With Hera, the expectation ranges from 25% to 55%illing function is continuous instead of discrete.)
However, on Hera, there is no percentage to compute for EPArmed with these graphs, we can consider the question of
LAMMPS, SMG2000, and Sweep3d, as CC2 executes fastenether the best performance and cost is universally aetiiev
and therefore is always better in turnaround time. This onlyith CC2—as CC2 nodes provide the best price/rated perfor-
occurs with LAMMPS on Sierra. mance. Figure 4 shows that this is not the case. In fact, the
Of course, the cost to the user of Sierra and Hera (techigast cost is achieved with HC on four of our eight applicagio
cally, “free”) is much less than the cost of CC2. It is up tdEP, LAMMPS, LU, and Sweep3d, on either 16 or 64 tasks,
the user to determine whether the cost of renting a clusterdigpending on the particular application). (In the figure, we
worth the certainty of avoiding any queue wait time. Even ghow only six of the eight graphs due to space limitations.)
we assume the user pays to use the LLNL machines at cdbe lowest cost sometimes occurs on HC because despite the
(others have derived these costs, per node-hour, as 3 celifference in the rated raw core-specific performance of the
on the low end [29] and 26 cents on the higher end [10[C1, CC2, and HC, the actual relative difference in turnacbou
depending on the assumed utilization and other factors), time is often much smaller. This can be either because the
lower cost and faster communication performance mean tl@atual computation does not map to benchmarks that EC2
EC2 will always be a more expensive alternative than will ased to determine the performance difference between their

reasonably utilized HPC cluster. node types, or because communication time is significant (or
The next subsection discusses incorporating cost forrdiffé@oth). The latter point is visible primarily in comparing €CC
ent EC2 clusters. and CC2, as they share identical network infrastructure.
Still, CC2 is generally fastest. We next answer the question
D. EC2 Cost/Performance Comparison posed above about whether in cases in which a turnaround

time bound exists, the lowest cost occurs with CC1 or HC.
In this section we study the differences between three EG2ye consider a time bound (horizontal line) in Figure 4 at
clusters: CC1, CC2, and HC, from a cost and performanggrious points, we see that this indeed can occur. For velati
perspective. While we will continue to use turnaround timg,rnaround time bounds (normalized, as the graphs are, & CC
as our terminology, it is the same as execution time for 0gt 64 tasks) of 1.73, and 5.95, respectively, LU (at 64 tasks)
demand EC2 instances. The purpose of this section is 484 L AMMPS (at 16 tasks) have least cost on HC (by between
answer the following questions. First, what is the tradeoff 704 and 8.5%) compared to the corresponding least costs of
between turnaround time and cost at various scales. Seong;c2. This difference can be larger if there is a larger variet
the user has a turnaround time bound (e.qg., “finish the weathg task counts. However, unsurprisingly, there are mangsas
prediction for tomorrow before the evening newscast at Jpmyyhere the clear best choice is to use CC2. An example is
is the most cost-effective way to do that always to use CC2, g{yeep3d, where no matter what time bound is chosen, CC2
might using a less powerful cluster be better? In this sactigs the right choice (with as many tasks as needed to satisfy
we use smaller scales (16, 32, and 64 tasks); this is becagetime bound).
of financial reasons, but we did lower the problem sizes from gecause cc2 compared to CC1 has twice as many cores,
the previous subsections to maintain similar computalien- the same network infrastructure, and costs less than twice,
communication ratios. CC2 essentially dominates CC1. By the same token, CC2 and
It is important to note that CC2 is priced much better thanc differ by approximately a factor of 5 in computation and
CC1 or HC. Keep in mind that CC2 is nearly 3 times morg in bandwidth, yet CC2 costs 3.6 as much. If the systems
powerful than CC1, yet costs less than twice as much; alsgad “true” prices, selecting the best cluster would be a much
CC2 is nearly 4.5 times more powerful than HC, yet costs lefifore complicated and interesting problem.
than 4 times as much. In other words, users can get more foistill, there exists no case in which CC2 dominates; in other
their money with CCZ, even thOUgh traditionally one reCBiVQN()rdS’ there is no Sing|e Configuration (type of node and
less for their money with the highest-end systems. Thus, ithumber of nodes) that is always better in turnaround time
entirely possible that although HC and CC1 are cheaper pghd cost. For this to happen, it would be necessary to have
node-hour than CC2, CC2 may be both fasted cheaper |inear scalingand a performance gap between CC2 and the
than either—considering that users are charged for usage.other two that is relatively larger than the cost difference
Figure 4 shows the tradeoff between cost and turnarouge, the least-cost cluster depends on the application arel ti
time. The figure is displayed as a scatterplot of cost (x)axisound. Obviously, the key is to determine this ahead of time
and turnaround time (y-axis), with the points representitgy as opposed to after the fact through exhaustive executions.
same cluster connected to show scalability of each cluster.
In general, computational scientists execute large progra
for large amounts of time. For practical reasons (again, ourOur evaluation has revealed several interesting itemst, Fir
cost on EC2), we had to execute short programs. This does have established that the choice of which cluster to use
not map well to the hour billing granularity used by EC2is dependent on the application, queue wait time, and price.
Therefore, to calculate cost, we take the hourly rate anideliv Obviously, the user does not have the luxury of exhaustively

V. DISCUSSION
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Fig. 4. Cost versus turnaround time comparison for CC1, Gg, HC.

trying all clusters and then deciding which was best after Third, in order to develop systems that decide between HPC
the fact. In our opinion, this motivates designing softwarelusters such as those at LLNL and EC2, it is necessary for
systems that perform cluster selection automaticallyctvhias the HPC systems to provide wait queue data—likely both
also been discussed by Li et al. [21]. While this is certainlyistorical and current. This would allow analysis to detieen
not a simple task, an effective software system could sathe expected wait time on the HPC clusters, which is clearly
users a significant amount of money. (Also, while we did nat critical factor in which cluster to choose. However, there
investigate cost bounds in this paper, given such a bourde clear security concerns. These can probably be akeliat
presumably a software system could save the user time.)biyn anonymizing some queue data. On the positive side, there
general, a user could, for example, be choosing betweersteould be an incentive for organizations like LLNL to prowid
desktop machine, a department cluster, a university-ownilis data, as it could reduce some demand.
cluster, a national-lab-owned cluster, and the cloud (evenFinally, the sort of results shown in this paper could mdéva
though we studied only the last two kinds of systems). Eaduwners of HPC clusters to use the cloud for overflow capacity.
has its own performance and cost tradeoff. Obviously, this depends on the particular organizationthed
Second, the cost-performance tradeoff seems to us faimyportance and timeliness of jobs.
likely to become more interesting going forward. Currently
for example, CC2 is priced attractively, causing it to be the
best option in many cases. Amazon already lowered the priceThere is a large body of work related to this paper. Broadly
of CC1 from $1.60 to $1.30 upon the arrival of CC2, andpeaking, it falls into three categories. First, othersehav
we would not be surprised if that price drops further with thanalyzed performance of standard HPC benchmarks on public
natural migration of users to the highest-end cluster als@l clouds. Second, there has been work in comparative usabilit

VI. RELATED WORK



and cost analysis of running real scientific codes on smdtipsting a cluster. The authors present a detailed analysis o
medium and large scale HPC clusters against pay-as-youMBl applications on CC1. Also, a cost comparison between
public clouds. Finally, there has been work in performanc€EC1 and an HPC cluster is presented with amortized cost
energy and cost optimization for software components aalculations.
infrastructure-as-a-service (laaS) platforms. We focnghe Our work differs from that above in several ways. Most
first two types. importantly, our work studies turnaround time and cost; i.e

The introduction of virtualization technologies has opgnehe perspective of the user, as opposed to the cost of running
up interesting possibilities for running HPC applicatipssch a supercomputer center. From the point of view of the owner
as increasing resource utilization, sandboxing and wghitit of the center, operating an HPC cluster is always better as
customize. Youseff et al. analyzed performance of MPI ajpng as the system is reasonably well utilized, and supercom
plications on virtualization technologies such as Xen [31puter centers easily fit that characteristic, as they tendeto
Ibrahim et al. studied the impact of resource customizatiaversubscribed.
and utilization for various virtualization techniques [18loud Other differences also exist with our work. First, the scale
computing platforms incorporated these techniques to vat which benchmarks were studied is typically quite small in
tualize computing resources for various computation needgmber of cores/nodes and problem sizes. Second, most of the
of individuals to enterprise scale users. Platforms such \asrk employed small and medium instance types provided
Amazon EC2[5], FutureGrid [3] and OpenCirrus [9] makdéy Amazon EC2 that are not specifically intended for HPC
it possible to configure HPC scale resources for MPI-basegplications. We present benchmarking results on the tigcen
distributed applications. Amazon EC2 provides a wide rangaroduced CC2. Third, most conclusions present network
of virtualized computational resources at a hourly cost p&tency and bandwidth, and virtualization overhead as the
resource. FutureGrid and OpenCirrus provide medium-scédetors causing application performance degradation. Wievs
test beds for virtualized computational resources at na, cothat system noise is not significant compared to HPC clusters
but performance can be an issue. so long as core 0 is not utilized. Finally, we present a cost-

Amazon EC2 has become increasingly popular with sddenefit comparison between different Amazon EC2 clusters
entific HPC users due to high availability of computationahfluenced by application scalability characteristics.
resources at large scale. Several researchers have bakeddma
EC2 using MPI programs. Previous work [26], [16], [24], . ) . _
[13], [17], [19], [12], [11], [14] has focused on extensiyel This paper evaluated the clou_d aga_unst t_radmonal h|g_h-
benchmarking currently available EC2 cluster types wigmst Performance clusters along multiple dimensions. These in-
dard MPI benchmarking suites such as NAS [6] and Sequ&i%ﬂded execution time, tulrnaround time, an_d cost. V_\/e found
[2]. Our work uses both large task counts and takes a udB@t from a user perspective, there are multiple consiterst
perspective, which has not been studied simultaneoustp,AllN hoosing a cluster to run on, including raw performance,
we investigate the cost/performance tradeoff at diffeseates PUt @lso including the expected queue wait time along with
on EC2, which to our knowledge has not been investigated€ actual cost. _ _

Several attempts have been made to formalize and compar2€€mining a cluster on which to run is a task that we
the cost of running standard HPC benchmarks as well d9ue should be abstracted from the typical user. Our end goa
real applications on Amazon EC2 and standard cluster S)|/§_to develop tools and techniques for directing diverss set

tems. Formalizing the cost of a standard HPC cluster is nd@Pplications and users to the most appropriate cluster in
straightforward due to the manner in which the computation@@rticular situation.
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