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Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion
drivers. In this paper, we show studies on the effect of non-linear space charge on longitudinal emittance
growth in the drift compression section. We perform simulations, using the 3-D PIC code WARP, for a high
current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal
emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity
tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic
calculations.

PACS numbers: 52.58.Hm,29.27.Eg,41.75.Ak

I. INTRODUCTION

Heavy ion fusion driver designs require in general, mul-
tiple intense ion beams with small spots and short dura-
tions to impinge on the target with precise timing. To
generate the illumination pattern required by the target
design, multiple drift compression beamlines with bends
are usually required to transport beams from the multi-
beam linear accelerators to the target. For two-sided or
one-sided indirect target designs, the final focusing mag-
nets for each beam subtend a finite solid angle and area
near the entrance to the reactor chamber. Since there
are many such beams, packing considerations force some
beams to be aimed at the target at significant angles, for
example at about 20 degrees, relative to the polar axis
of the group of beams. Direct targets require spherically
symmetric beam configurations, implying yet larger an-
gles of incidence at chamber entrance.

The pulse length and focal spot sizes at target are fun-
damentally limited by beam emittances just before the
focus. How the beam dynamics within the final com-
pression beamline affect the final emittances therefore
becomes a crucial question. In the presence of bends,
the transverse dynamics is greatly affected by longitu-
dinal momentum dispersion. One source of momentum
spread comes from the head to tail velocity tilt required
for beam compression, which will lead to centroid offset1.
Another is the local velocity spread, which will also con-
tribute to transverse emittance growth. Both the local
velocity spread as well as head-to-tail distortion of the
longitudinal phase space can lead to longitudinal emit-
tance growth. Understanding the longitudinal emittance
growth and finding ways of minimizing it, is the primary
focus of this paper.

In this study, simulations are carried to understand
the origin and parametric dependence of the emittance
growth, using WARP, a 3-dimensional particle-in-cell
code, which treat fields as electrostatic. The results are
compared to an analytic model using an approximation
to the problem of the longitudinal space charge self-field
of an intense, long beam (”g-factor” model).234

II. SIMULATION PARAMETERS AND RESULTS ON
FINAL BEAM DIMENSIONS

In this paper, we use an example of a direct target, be-
cause the requirement on spherical symmetry is more de-
manding on the drift compression beamline design. The
example we consider is a 1MJ driver with 128 beams
of 500MeV Rubidium+1 ions5. Beams are in a 4 po-
lar ring configuration (Fig. 1). In a previous study, it
was shown that this configuration could achieve suffi-
cient uniformity for a direct target6. Because the beam
channels are arranged in an annular symmetric configu-
ration with beams entering from both sides, this essen-
tially only requires 2 independent channel designs. In
this study, we consider only the channel design for the
smaller angle. Each channel consists of bends, a match-
ing section, a plasma-filled neutralized drift7 and final
focusing section. The bending section of each channel is
made of two arcs arranged in opposite directions, adding
up to a net of about 37 degrees of bend. The bending
dipoles are in combined-function magnets with the con-
fining quadrupoles, each 0.8m long and the lattice period
is 2m. After the bends end there is a matching section,
which consists of the last four quadrupoles just before
the start of neutralization. They change the beam enve-
lope to circular and slightly diverging when it enter the
neutralized drift, allowing the beam to expand before
the final focusing magnets. The length of the neutralized
drift is about 27m, in which the 12T final focus solenoid is
placed at 4m before the target, close to the limit posed by
typical chamber size and neutron induced damage. The
total length of the whole compression section is about
91m, which is reasonable for cost and engineering issues.
Table I lists some parameters used.

The effect of emittance on the final spot size and pulse
length is shown by two main runs: one with canoni-
cal parameters as shown in Table I, and another with
the same parameters, except for the initial emittances
which are set to zero in all directions. The latter case
corresponds to the most optimistic results for spot size
and pulse length achievable under these conditions. The
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FIG. 1. Overview of beam channels geometry. The opposite
side (which is not shown here) is identical.

TABLE I. Parameters used in this study

Parameter Value

Initial peak current/beam (A) 100.0

Energy/beam (kJ) 7.5

Initial perveance 5.35 × 10−5

Initial pulse length, r.m.s. (ns) 51

Initial transverse emittance (m rad) 5.2 × 10−5

Initial longitudinal emittance (m rad) 4.56 × 10−3

Velocity tilt 10%

Section total length (m) 91

Bend length (m) 20, 30

Neutralized drift length (m) 27

Lattice period (m) 2.0

Quad length (m) 0.8

Quad strength (T/m) 64.33

Max dipole strength (T) 4.65

Undepressed tune (degree) 72

Pipe radius (cm) 10

beam has semi-gaussian distribution and a parabolic cur-
rent profile, loaded with matched envelope in the lattice
and given a linear head-to-tail velocity tilt for compres-
sion.

We first consider canonical parameters. As the beam
runs along the channel, its dimensions are recorded as
function of z (Fig. 2, 3). In particular, at the focus
around z=91m, the final pulse length (twice rms) is about
4.8 ns and the spot size is about 5 mm on the target. Next
for the case with no initial emittance, the pulse length is
1.2 ns and a spot of roughly 2.6 mm, where εz and εx
just before the focus are approximately 1.2 × 10−3 m
rad and 3.5× 10−5 m rad respectively. These values are
minimum achievable with the set of parameter used. To
understand the physical origin of this emittance growth,
we vary the input parameters, and observe the paramet-
ric dependence of the growth rate. The findings will be
discussed in the next sections.

The final focused spot size is roughly given by trans-
verse emittance divided by the final focus angle provided
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FIG. 2. Beam length as a function of z.
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FIG. 3. Beam envelope (twice rms) as function of z. (red is
x and green is y)

by final focus magnet a′:

afinal ≈
εx
|a′|

(1)

Similar expression can be derived for the pulse length
observing the similarities between transverse and longi-
tudinal envelope equations in force-free region8. Here |L′|
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is identified as beam velocity multiplied by final velocity
tilt at the start of force-free region f :

Lfinal ≈
εz
|L′|

=
εz
vbf

(2)

In addition, possible contributing factors other than
emittance to the final spot size are remaining centroid
offset, chromatic effects from off-momentum slices and
residual space charge effects. In the simulations, how-
ever, we observe those contributions from off-momentum
slices are small. From Fig. 4 consider only the central
slice (shown with blue line). Its spot is not much smaller
than that of the whole beam, showing that the major
limiting factor is still emittance.

III. EFFECT OF INITIAL EMITTANCE AND BENDS
ON FINAL EMITTANCE

In reality, drift compression begins at the exit of ac-
celerator, where the beams come out with non-zero emit-
tance. In this section, the final emittance given a range of
input transverse and longitudinal emittances, will be dis-
cussed. The final emittance is recorded at the end of bend
section (z=60m), as we only focus on the growth within
vacuum drift and bends, ignoring that in the matching
and final focusing. Fig. 5 shows a sample simulation run
of emittance as a function of distance travelled. The
results of all runs are summarized in Fig. 6 and Fig. 7 re-
spectively for cases with bends and just a straight channel
of the same length.

The square of the longitudinal emittance is defined in
general as:

ε2z =
16

v2b
(< (∆z)2 >< (∆vz)2 > −< ∆z∆vz >

2) (3)

Here vb is the average beam velocity, ∆z and ∆vz are
the position and velocity difference from their respective
means.

In our simulation, the initial emittance is assumed to
be purely thermal, with ∆vz = δvt which is uncorrelated
with ∆z (< δvt∆z = 0 >). The initial thermal emittance
is then given by:

ε2t =
16

v2b
< (∆z)2 >< δv2t > (4)

We observed an emittance growth which arises from a
new component δvc which may or may not be correlated
with ∆z. The square of the emittance may then be writ-
ten:

ε2z =
16

v2b
(< (∆z)2 >< (δvt+δvc)

2 > −< ∆z(δvt + δvc) >
2
)

(5)

ε2z =
16

v2b
(< (∆z)2 > (< δv2t > + < δv2c > +2 < δvtδvc >)

− < ∆zδvt >
2 − < ∆zδvc >

2 −2 < ∆zδvt >< ∆zδvc >)

(6)
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FIG. 4. Beam edge as function of z near the focus showing a
small chromatic effect: blue line corresponds to central slice;
purple and cyan lines are off momentum slices near the beam
tail and head respectively. Two cases shown here are with
normal emittance (a) and zero initial emittance (b).

Now if δvc and δvt are uncorrelated, i.e. < δvtδvc >= 0,
then,

ε2z = ε2t + ε2c (7)

Where ε2c = 16
v2
b
(< (∆z)2 >< δv2c > −< ∆zδvc >

2) We
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FIG. 5. One example of central slice x (red),y (green) emit-
tances vs. z and whole beam z emittance vs. z, all emittance
are initially zero.

define ∆ε2z as the change in the square of the emittance,

ε2zf = ε2zi + ∆ε2z (8)

If the emittance growth and the assumed initial thermal
spread are uncorrelated, then, as discussed above, we ex-
pect ∆ε2z to be independent of the initial emittance εzi.
Fig. 8 and Fig. 9 demonstrate that this is indeed the case.
Indeed, ∆ε2z is also independent of εxi and no matter if
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FIG. 6. Final emittance (x and z) vs. initial emittance (x and
z)

bends are present.

On the other hand, if we treat transverse emittance
similar to above, we observe ∆ε2x depends on εxi and
especially εzi when bends are present (Fig. 8). This
means is ∆ε2x correlated to the initial thermal distribu-
tion. However, the correlation is much weaker without
bends (Fig. 9), suggests momentum dispersion is a pos-
sible mechanism of correlation as particles within a slice
traveling at different curvatures through the bends corre-
sponding to their longitudinal momentum (see ref.1 and
ref.9). Hence the thermal εzi directly affects ∆ε2x in the
direction of the bends.

The fact ∆ε2z are essentially constant suggests it may
be dominated by a single mechanism (in this case, the
longitudinal space charge effect), which will be addressed
in the next section.
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FIG. 7. Final emittance (x and z) vs. initial emittance (x and
z), runs with bends removed.

IV. SPACE CHARGE EFFECT ON LONGITUDINAL
EMITTANCE GROWTH

To understand the mechanism for longitudinal emit-
tance growth in more detail, we carried out simulations of
an initially cold beam with varying beam parameters. We
consider a cold beam (i.e. zero emittance) as it provides
the lower bounds for the final emittance and bunch length
on target. In addition, previously presented results show
the rate of longitudinal emittance growth is totally in-
dependent of the initial emittances assumed, thus it is
sufficient to consider starting with zero emittance here.
It provides an unambiguous scenario for the study of the
physical mechanism for the emitance growth. Since we
suspect that emittance growth is due to non-linear space
charge effect, so the parameters we varied are related to
the longitudinal space charge force. From the geometric
factor model:

Ez = − g

4πεo

∂λ

∂z
(9)
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FIG. 8. Square root of ∆ε2x and ∆ε2z vs. initial εx and εz

For an elliptical beam with radius independent of z and
on axis:

g = ln (
R2

p

ab
) + 1 (10)

where Rp denotes pipe radius, and a and b are envelope
in x and y directions.

The parameters we vary include the geometric factor
and peak current; these appear explicitly and scale di-
rectly with longitudinal electric force of the beam, In
addition, we also vary the beam length and velocity tilt
velocity tilt, both of which would affect the rate at which
the beam compresses.

Starting with the canonical parameters: 100A current,
200ns pulse length and 10% velocity tilt, one parameter
is varied each time. In all runs, longitudinal emittance
growth follows the pattern exhibited in Fig. 8, which can
be summarized as follow: an initial nearly linear growth
followed by a slight acceleration in the growth rate and
finally, the growth slows down, peaks at a certain value
and drops back. Depending on the initial beam parame-
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FIG. 9. Square root of ∆ε2x and ∆ε2z vs. initial εx and εz,
runs with bends removed.

ters, the relative position in z for the transition from the
linear to nonlinear phase varies.

In Figures 10 to 13, we summarize the final emittance
at the position of 60 m. In Fig. 10, we vary the geo-
metric factor; this is done by changing the pipe radius
(10cm, 8cm and 5cm) and/or the focusing strength to
adjust the beam envelope. The observed dependence on
g factor is due primarily to the varyng onset of the nonlin-
ear phase and the associated final drop, larger g values
corresponding to an earlier onset, and thus lower final
emittance. In Fig. 11, we vary the initial beam current;
it is varied together with focusing strength to keep the
beam size approximately constant. Results show that
the final emittance has a strong dependence on current,
which is consistent with our expectation as space charge
force increases linearly with current. In Fig. 12, we vary
the initial beam length, while the peak current is kept
constant. The total amount of charge is therefore chang-
ing with beam length. It is somewhat surprising that the
growth is nearly independent of the beam length. For the
shorter beams, the slightly lower final emittance is due to
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FIG. 10. Final z emittance at z=60m (×10−3) vs. initial
geometric factor on axis with various pipe radius.
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FIG. 11. Final z emittance at z=60m (×10−3) vs. initial
peak current.

an earlier onset of the nonlinear phse, in contrast to the
long beams which stay in the linear regime through the
entire 60 meters. Lastly, we vary the amount of velocity
tilt, and the result is shown in Fig. 13. We found small
dependence of final emittance within the range tested.

In the above runs no bends were present. We have
found that the effects of the bends are negligible in the
high current cases. The effects of bends show up in cases
with currents less than around 30A. (See Fig. 14)

Looking at the same data at an earlier position, (at
z=20m), the growth is linear in all cases. At this posi-
tion, the features noted become even more evident. The
linear growth rate is clearly independent of g factor, pulse
length, and velocity tilt, and is linear with current. This
very simple result motivated us to look for an analytic
understanding, which we present in the next section. The
WARP data at 20m will be shown together with the an-
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alytic results in Figures 16 to 19.

V. ANALYTIC RESULT ON LONGITUDINAL
EMITTANCE GROWTH

In this section, we calculate the linear growth rate
within the g-factor model. We assume a perfect parabolic
line charge density and a linear initial phase space which
has zero emittance. Although realistic beams have non-
zero emittance, we will focus on the zero emittance case.
The reason is same as that in doing simulations, since
it is for a baseline study. In addition, the same emit-
tance can be obtained from many individual phase space
profiles, each canbehave differently. There is in general
no unique solution in the case with non-zero initial emit-
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FIG. 14. z emittance growth as a function of initial current
with non-zero initial emittance, effect of bend shows up in low
current regime. Otherwise, longitudinal emittance growth is
dominated by space charge.

tance, so we stick with zero emittance, which phase space
can only be straight lines. In sections below, we consider
2 ideal cases: the first case for a beam with constant
beam radius from head to tail, and a second case with
uniform current density throughout the entire beam. We
calculate the contribution to longitudinal emittance by
the non linear terms in g, by directly evaluating the terms
from the definition of longitudinal emittance (Equation
3). The ensemble average terms are calculated directly
by integration, for example:〈

(∆vz)2
〉

=
1

C

∫
ρ(v − vb)2d3r (11)

C is the total charge and ρ is the volume charge density,
the beam extends from z = −L/2 to +L/2. The beam
starts with a perfectly linear velocity tilt with zero lon-
gitudinal emperature, i.e. zero initial longitudinal emit-
tance.

A. Beam with uniform radius

Consider a circular beam with uniform radius along
its length, with uniform cross sectional density and
parabolic line density, i.e.

ρ(z) =
λ(z)

πa2
(12)

λ(z) =
3C

2L
(1− 4

z2

L2
) (13)

Staying on axis, the longitudinal space charge force is
linear. However, there is a radial dependence of g:

g(r) = 2 ln(
Rp

a
) + 1− r2

a2
(14)
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hence the electric field:

Ez(z, r, t) =
g(r)

4πεo
· 12C

z

L3
(15)

which leads to off axis particles experiencing smaller
forces than those on axis. If particles always stay at same
distance from axis, i.e. flow is laminar, there will be a
systematic difference in force within each beam slices,
which would lead to a spread in beam energy. The time
dependence is hidden in L, as the beam we consider is
compressing due to the given tilt. Here we take some sim-
plifications to the problem. First, we assume the beam
maintain a self similar shape (i.e. parabolic), only its
length L scales with time, hence the position parameter
is s = z/L rather than z. Second, within the short time
interval, we assume z is not affected by Ez, by the fact
that z scales with Ezt

2, its effect appears slower than
vz. This is also required to be consistent with the first
assumption. Therefore

〈
(∆z)2

〉
is just the mean-square

length: 〈
(∆z)2

〉
=

1

C

∫
ρz2d3r =

L2

20
(16)

The third assumption is we neglect the space charge slow-
down effect on beam compression, i.e. beam length only
depends on the initially given tilt. In other words, beam
length change linearly with time, such that:

L(t) = Lo − vbft (17)

where Lo is the initial length and f is the initial tilt.
This approximation is quite good within a short time,
especially if the tilt is large.

With all these assumptions, we can now evaluate the
evolution of emittance:

v(r, s, t) = vb(1 + sf) +
12qCg(r)

4πεom
s · F (t) (18)

with

F (t) =

∫
dt′

(Lo − vbft′)2
=

t

L(t) · Lo
(19)

From velocity of particles,〈
(∆vz)2

〉
=

1

C

∫
ρ(v − vb)2d3r (20)

=
1

C

∫
3C

2Lπa2
(1− 4s2)[vbsf + 12ACg(r)sF (t)]2d3r

(21)

=
12

5
(ACF )2(1−3go−3g2o)+

3

5
ACF (2go−1)vbf+

v2bf
2

20
(22)

where A = q/4πεom and go = 2 ln(Rp/a) + 1
Similarly,

〈(∆vzz)〉 =
1

C

∫
ρz(v − vb)d3r (23)

=
L

C

∫
3C

2Lπa2
(1− 4s2)[vbsf + 12ACg(r)sF (t)]sd3r

(24)

= [
3

10
ACF (2go − 1) +

vbf

20
]L (25)

Putting all terms together:

ε2z =
16

v2b
[
〈
(∆z)2

〉 〈
(∆vz)2

〉
− 〈∆z∆vz〉2] (26)

=
144

300v2b
(
AC

Lo
t)2 (27)

Hence

εz =

√
12

25

qC

4πεomvbLo
t (28)

or

εz =

√
12

25

q2N

4πεomv3b τo
d ∼= 0.69

q2N

4πεomv3b τo
d (29)

Where N is number of ions, d is the distance travelled
and τo is the initial pulse duration in time. We note
that the longitudinal emittance only depends on total
charge/initial beam length, which is also proportional to
the peak line charge density. The growth is linear with
time (or distance travelled), i.e. a constant growth rate.
These features agree with the simulation results from Sec-
tion 4.

It is interesting that the emittance growth does not
depend on the vacuum chamber radius and beam radius,
since the space-charge force clearly depends on these pa-
rameters (evident from the g-factor model). The physical
origin can be traced back to Eq. (10), where the leading
term in the g-factor depends on the chamber and beam
radius, but the nonlinear term, which is responsible for
the emittance growth, depends only on the dimensionless
parameter r/a.

B. Beam with uniform charge density

Another ideal case is a beam with uniform charge den-
sity all over its volume. This is in fact the initial condition
assumed for the beams in the simulations of Section 4.
For the same parabolic line density and cross section:

ρ =
λ(z)

πa2(z)
(30)

λ(z) =
3C

2L
(1− 4

z2

L2
) (31)

The beam envelope can be written as a function of s =
z/L:

a2(z) =
3C

2πρL
(1− 4s2) (32)
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We assume g factor still holds towards the ends of beam,
which is given by:

g(s) = 2 ln(
Rp

a
) = ln(

2πρLR2
p

3C(1− 4s2)
) (33)

Note that this assumption may not be really correct and
that divergence occurs as s tends to ±1/2. However as
the line charge density falls off rapidly, the final result
converges. As the edge contribution is small, we expect
emittance calculated is well approximated.

In Eq. (29), the g factor consists of only axial depen-
dence, as the radial term is cancelled exactly in below
expression, since ρ and hence λ/a2 is constant10:

Ez = − 1

2πεo
[
1

2
(1− r

2

a2
)+ln(

Rp

a
)]
∂λ

∂z
− 1

2πεo
(1− r

2

a2
)
λ

a

∂a

∂z
(34)

Where

∂a

∂z
=

a

2λ

∂λ

∂z
(35)

Following similar calculations as above, but replacing
g(r) with g(s):

〈
(∆vz)2

〉
=

1

C

∫
ρ(v − vb)2d3r (36)

=
4

125
(ACF )2(1772−75π2+930g′+225g′2)+

2

25
ACF (15g′+31)vbf+

v2bf
2

20
(37)

where

g′ = ln(
R2

p

4a2o
) = 2 ln(

Rp

2ao
) (38)

a2o =
3C

2πρL
(39)

Similarly:

〈(∆vzz)〉 =
1

C

∫
ρz(v − vb)d3r (40)

= [
1

25
ACF (15g′ + 31) +

vbf

20
]L (41)

The final result is

εz =
4

25

√
811− 75π2

qC

4πεomvbLo
t (42)

or

εz =
4

25

√
811− 75π2

q2N

4πεomv3b τo
d ∼= 1.35

q2N

4πεomv3b τo
d

(43)

initial

 nal - uniform radius

 nal - uniform density

FIG. 15. Longitudinal phase space (vz vs. z) evolution for the
ideal cases. Top - initial phase space for both two cases, with
linear tilt and no temperature. Middle - uniform radius case
showing increase in thickness of the phase space as a growth
of temperature. Bottom - uniform density case showing a
head-to-tail distortion (S-ing) results in a growth of effective
area.

The formula has the same form as the previous case with
uniform envelope with just a different numerical con-
stant. Both cases show the same dependence of longitu-
dinal emittance growth on the initial line charge density
only. We observe that the emittance growth in Case A
corresponds to a growth of local temperature, while Case
B results from a nonlinear distortion of head-to-tail beam
profile. In case B, the phase space is still a thin line with
no area, so the area is not directly related to emittance
like common understanding (as that in case A). It seems
the rms definition of emittance here does not accurately
reflect thermal spread in velocity. However, the distorted
beam will not converge to a single point on the target al-
though it has no occupied phase space area. So the rms
emittance rather than the phase space area is ultimately
the parameter that is directly related to the pulse length
at target. Fig. 15 is a schematic illustration of the evo-
lution of the longitudinal phase spaces in these two ideal
cases.

C. Comparison of analytic formula with warp simulation

We take the warp simulation results and compare with
the derived formula, the longitudinal emittance values
at z=20m are plotted as functions of initial parameters
(Fig. 16, 17, 18, 19). The derived and simulated growth
with canonical parameters is plotted as a function of dis-
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FIG. 16. z emittance at z=20m (×10−3) vs. initial geometric
factor on axis, showing 2 cases with uniform beam radius
(red), uniform charge density (green) and warp simulation
(blue).

tance as well (Fig. 20). Both results show that initial
growth rate of εz is proportional to initial current but
independent of the other 3 parameters. The prediction
of the uniform charge density case is well matched to the
simulations in terms of the initial growth rate, except
for the ripples related to quadrupole focusing. This is
expected as the beam in the WARP simulation is initial-
ized with the assumptions of Case B. For more general
beams intermediate between the cases considered above,
it is expected that both axial and radial non-linearities
will appear, and the final result will also have same form
as above, with different numerical factors depending on
details of the initial beam profile. We can write a more
general formula as:

εz = k
q2N

4πεomv3b τo
d (44)

Here k is the numerical factor to be determined. For the
two cases discussed above, k has values of order unity.

VI. CONCLUSIONS

Longitudinal emittance is a limiting factor to the final
pulse length. In many driver designs where bends are
present, it also induces transverse emittance growth and
in turn enlarges the spot size on target. Both of them
are crucial requirements in heavy ion fusion applications.
We present in this paper one mechanism for longitudi-
nal emittance growth, due to self non-inear space charge
force. The growth is proportional to line charge den-
sity and distance travelled. It suggests that the growth
can be reduced by designing beamlines with short drift
distance and separating high current beams into multi-
ple beamlets, when short pulses are required. Another
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FIG. 17. z emittance at z=20m (×10−3) vs. initial current,
showing 2 cases with uniform beam radius (green), uniform
charge density (red) and warp simulation (blue).
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FIG. 18. z emittance at z=20m (×10−3) vs. initial beam
length with fixed peak current, showing 2 cases with uniform
beam radius (green), uniform charge density (red) and warp
simulation (blue).

important question is whether the emittance growth de-
scribed in this paper can be reversed or mitigated, either
by external means or by inherent mechanisms. We ob-
serve that in the case of uniform charge density (case B),
the emittance growth mainly results from a head-to-tail
distortion of the longitudinal phase space (it takes an ”S”
shape). This emittance can be reduced if the distortion is
corrected, for example, by correction voltage pulses with
just the right form to undo the S-ing, This method be-
comes prohibitively costly if applied to individual beams
in each of the drift compression beamlines, where they
are separated. A second possible way is to prepare the
beam bundle before the exit of the accelerator with a
head-to-tail energy profile to compensate in advance the



11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 7 9 11

simula on

analy c 

(uniform 

density)

analy c 

(uniform 

radius)

ini al velocity  lt (%)

εz at z=20m (10
-3m rad)

FIG. 19. z emittance at z=20m (×10−3) vs. initial tilt, show-
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density (red) and warp simulation (blue).
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FIG. 20. z emittance vs. z (m), showing 2 cases with uniform
beam radius (green), uniform charge density (red) and warp
simulation (blue).

nonlinear distortion in the drift compression section. Fi-
nally, we observed in our simulations a significant drop in
the longitudinal emittance as we move beyond the region
of linear growth. We observe that the phase space dis-
tortions undo itself to a certain extent .We are exploring
all of these mechanisms for the reduction of longitudinal
emittance.
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